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Abstract

We propose a technique for fusing a bracketed exposure

sequence into a high quality image, without converting to

HDR first. Skipping the physically-based HDR assembly

step simplifies the acquisition pipeline. This avoids camera

response curve calibration and is computationally efficient.

It also allows for including flash images in the sequence.

Our technique blends multiple exposures, guided by simple

quality measures like saturation and contrast. This is done

in a multiresolution fashion to account for the brightness

variation in the sequence. The resulting image quality is

comparable to existing tone mapping operators.

1. Introduction

Digital cameras have a limited dynamic range, which is

lower than one encounters in the real world. In high dy-

namic range scenes, a picture will often turn out to be under-

or overexposed. A bracketed exposure sequence [5, 17, 26]

allows for acquiring the full dynamic range, and can be

turned into a single high dynamic range image. Upon dis-

play, the intensities need to be remapped to match the typ-

ically low dynamic range of the display device, through a

process called tone mapping [26].

In this paper, we propose to skip the step of computing a

high dynamic range image, and immediately fuse the multi-

ple exposures into a high-quality, low dynamic range image,

ready for display (like a tone-mapped picture). We call this

process exposure fusion; see Fig. 1. The idea behind our ap-

proach is that we compute a perceptual quality measure for

each pixel in the multi-exposure sequence, which encodes

desirable qualities, like saturation and contrast. Guided by

our quality measures, we select the “good” pixels from the

sequence and combine them into the final result.

Exposure fusion is similar to other image fusion tech-

niques for depth-of-field extension [19] and photomon-

tage [1]. Burt et al. [4] have proposed the idea of fusing a

(a) Exposure bracketed sequence

(b) Fused result

Figure 1. Demonstration of exposure fusion. A
multi-exposure sequence is assembled di-
rectly into a high quality image, without con-

verting to HDR first. No camera-specific
knowledge, such as the response curve, had
to be accounted for. Total processing time

was only 3.3 seconds (1 megapixel). Image
courtesy of Jacques Joffre.

multi-exposure sequence, but in the context of general im-

age fusion. We introduce a method that can more easily

incorporate desired image qualities, in particular those that

are relevant for combining different exposures.

Exposure fusion has several advantages. First of all,

the acquisition pipeline is simplified, no in-between HDR

image needs to be computed. Since our technique is not



(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that

a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-

tion of the camera response curve, and keeping track of

each photograph’s exposure time. We can even add a flash

image to the sequence to enrich the result with additional

detail. Our approach merely relies on simple quality mea-

sures, like saturation and contrast, which prove to be very

effective. Also, results can be computed at near-interactive

rates, as our technique mostly relies a pyramidal image de-

composition. On the downside, we cannot extend the dy-

namic range of the original pictures, but instead we directly

produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high

dynamic range image from a set of low dynamic range im-

ages that were acquired with a normal camera [5, 17]. The

camera-specific response curve should be recovered in or-

der to linearize the intensities. This calibration step can be

computed from the input sequence and their exposure set-

tings.

Most display devices have a limited dynamic range and

cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic

range of the display device [26]. Many different tone map-

ping operators have been suggested with different advan-

tages and disadvantages. Global operators apply a spa-

tially uniform remapping of intensity to compress the dy-

namic range [7, 14, 24]. Their main advantage is speed,

but sometimes fail to reproduce a pleasing image. Local

tone mapping operators apply a spatially varying remap-

ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-

ferent regions in the image. This often yields more pleasing

images, even though the result may look unnatural some-

times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],

which decomposes the image into edge-aware low and high

frequency components, to compression in the gradient do-

main [10]. The following two local operators are related

to our method. Reinhard et al. [25] compute a multi-scale

measure that is related to contrast and rescales the HDR

pixel values accordingly. This is in a way similar to our

measures. However, our measures are solely defined per

pixel. The method by Li et al. [15] uses a pyramidal im-

age decomposition, and attenuate the coefficients at each

level to compress the dynamic range. Our method is also

pyramid-based, but it works on the coefficients of the dif-

ferent exposures instead of those of an in-between HDR

image. Other tone mappers try to mimic the human visual

system, e.g., to simulate temporal adaptation [20]. Instead,

we aim at creating pleasing images and try to reproduce as

much detail and color as possible.

Image fusion techniques have been used for many years.

For example, for depth-of-field enhancement [19, 13], mul-

timodal imaging [4], and video enhancement [23]. We

will use image fusion for creating a high quality image

from bracketed exposures. In the early 90’s, Burt et al. [4]

have already proposed to use image fusion in this context.

However, our method is more flexible by incorporating ad-

justable image measures, such as contrast and saturation.

Goshtasby [11] also proposed a method to blend multiple

exposures, but it cannot deal well with object boundaries. A

more thorough discussion of these techniques is presented

in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images

using a pyramid decomposition [3]. We use a similar blend-

ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-

ple way to fuse flash/no-flash images. Previous techniques

for this are much more elaborate [9, 2] and are specifi-



cally designed for this case, whereas our method is flexible

enough to handle that case as well.

3. Exposure Fusion

Exposure fusion computes the desired image by keeping

only the “best” parts in the multi-exposure image sequence.

This process is guided by a set of quality measures, which

we consolidate into a scalar-valued weight map (see Fig. 2).

It is useful to think of the input sequence as a stack of im-

ages. The final image is then obtained by collapsing the

stack using weighted blending.

As with previous HDR acquisition approaches [17, 5],

we assume that the images are perfectly aligned, possibly

using a registration algorithm [30].

3.1. Quality Measures

Many images in the stack contain flat, colorless regions

due to under- and overexposure. Such regions should re-

ceive less weight, while interesting areas containing bright

colors and details should be preserved. We will use the fol-

lowing measures to achieve this:

• Contrast: we apply a Laplacian filter to the grayscale

version of each image, and take the absolute value of

the filter response [16]. This yields a simple indicator

C for contrast. It tends to assign a high weight to im-

portant elements such as edges and texture. A similar

measure was used for multi-focus fusion for extended

depth-of-field [19].

• Saturation: As a photograph undergoes a longer ex-

posure, the resulting colors become desaturated and

eventually clipped. Saturated colors are desirable and

make the image look vivid. We include a saturation

measure S, which is computed as the standard devia-

tion within the R, G and B channel, at each pixel.

• Well-exposedness: Looking at just the raw intensities

within a channel, reveals how well a pixel is exposed.

We want to keep intensities that are not near zero (un-

derexposed) or one (overexposed). We weight each in-

tensity i based on how close it is to 0.5 using a Gauss

curve: exp
(

− (i−0.5)2

2σ2

)

, where σ equals 0.2 in our im-

plementation. To account for multiple color channels,

we apply the Gauss curve to each channel separately,

and multiply the results, yielding the measure E.

For each pixel, we combine the information from the dif-

ferent measures into a scalar weight map using multiplica-

tion. We opted for a product over a linear combination, as

we want to enforce all qualities defined by the measures at

once (i.e. like an “AND” selection, as opposed to an “OR”

selection, resp.). Similar to weighted terms of a linear com-

bination, we can control the influence of each measure using

a power function:

Wij,k = (Cij,k)ωC × (Sij,k)ωS × (Eij,k)ωE

with C, S and E, being contrast, saturation, and well-

exposedness, resp., and corresponding “weighting” expo-

nents ωC , ωs, and ωE . The subscript ij, k refers to pixel

(i, j) in the k-th image. If an exponent ω equals 0, the corre-

sponding measure is not taken into account. The final pixel

weight Wij,k will be used to guide the fusion process, dis-

cussed in the next section. See Fig. 2 for an example of

weight maps.

3.2. Fusion

We will compute a weighted average along each pixel to

fuse the N images, using weights computed from our qual-

ity measures. To obtain a consistent result, we normalize

the values of the N weight maps such that they sum to one

at each pixel (i, j):

Ŵij,k =
[

N
∑

k′=1

Wij,k′

]−1
Wij,k

The resulting image R can then be obtained by a

weighted blending of the input images:

Rij =

N
∑

k=1

Ŵij,kIij,k (1)

with Ik the k-th input image in the sequence. Unfortu-

nately, just applying Eq. 1 produces an unsatisfactory re-

sult. Wherever weights vary quickly, disturbing seams will

appear (Fig. 4b). This happens because the images we are

combining, contain different absolute intensities due to their

different exposure times. We could avoid sharp weight map

transitions by smoothing the weight map with a Gaussian

filter, but this results in undesirable halos around edges, and

spills information across object boundaries (Fig. 4c). An

edge-aware smoothing operation using the cross-bilateral

filter seems like a better alternative [22, 9]. However, it is

unclear how to define the control image, which would tell

us where the smoothing should be stopped. Using the orig-

inal grayscale image as control image does not work well,

as demonstrated in Fig. 4d. Also, it is hard to find good pa-

rameters for the cross-bilateral filter (i.e., for controlling the

spatial and intensity influence).

To address the seam problem, we use a technique in-

spired by Burt and Adelson [3]. Their original technique

seamlessly blends two images, guided by an alpha mask,

and works at multiple resolutions using a pyramidal image

decomposition. First, the input images are decomposed into
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Figure 3. We fuse differently exposed images using a Laplacian decomposition of the images and a

Gaussian pyramid of the weight maps, which represent measures such as contrast and saturation.
Image courtesy of Jacques Joffre.

a Laplacian pyramid, which basically contains band-pass

filtered versions at different scales [3]. Blending is then car-

ried out for each level separately. We adapt the technique

to our case, where we have N images and N normalized

weight maps that act as alpha masks. Let the l-th level in a

Laplacian pyramid decomposition of an image A be defined

as L{A}l, and G{B}l for a Gaussian pyramid of image B.

Then, we blend the coefficients (pixel intensities in the dif-

ferent pyramid levels) in a similar fashion to Eq. 1:

L{R}l
ij =

N
∑

k=1

G{Ŵ}l
ij,kL{I}

l
ij,k

I.e., each level l of the resulting Laplacian pyramid is com-

puted as a weighted average of the original Laplacian de-

compositions for level l, with the l-th level of Gaussian

pyramid of the weight map serving as the weights. Finally,

the pyramid L{R}l is collapsed to obtain R. An overview

of our technique is given in Figure 3.

Multiresolution blending is quite effective at avoiding

seams (Fig. 4), because it blends image features instead of

intensities. Since the blending equation (1) is computed at

each scale separately, sharp transitions in the weight map

can only affect sharp transitions appear in the original im-

ages (e.g. edges). Conversely, flat regions in the original

images will always have negligible coefficient magnitude,

and are thus not affected by possibly sharp variations in the

weight function, even though the absolute intensities among

the inputs could be different there.

For dealing with color images, we have found that carry-

ing out the blending each color channel separately produces

good results.

3.3. Discussion

Seamless blending is an often-encountered problem in

image processing and graphics. We use a multiresolution

technique based on image pyramids [3], but other methods

are available as well. In particular, gradient-based blend-

ing [21] has shown to be effective, and it has been applied

to image fusion as well [1, 23]. Gradient methods convert

images to gradient fields first, apply the blending operation,

and reconstruct the final image from the resulting gradients.

However, reconstruction requires solving a partial differen-

tial equation, which can be costly for high resolution im-

ages. In addition, gradient-based fusion incurs a scale and

shift ambiguity, and is prone to color shifting [23].

Tone mapping operators may also cause color shifts

like oversaturation [15], and possibly reduce contrast (see

Fig. 7). Our blending is robust against changes in appear-

ance, as it can be seen as a selection process. Even though

we select based on contrast and saturation, we do not di-

rectly change pixels to meet these constraints.

Our work bears similarity to early work on image fusion,

where the Laplacian (or another) pyramid decomposition is

used as well [19, 28, 4]. These methods work directly on

the coefficients by retaining only those pyramid coefficient

that are most salient. For instance, the coefficients with the

largest magnitude are kept [19]:

L{R}l
ij = argmax

L{I}l
ij,k

|L{I}l
ij,k|

Burt and Kolczynski’s exposure fusion technique [4]

is based on the same principle. These approaches com-

pound all details present in the sequence, but they do not

necessarily produce an appealing result; see Fig. 5. In-

stead, we blend the pyramid coefficients based on a scalar

weight map, but do not directly process individual coeffi-

cients at different levels. Measures like saturation and well-

exposedness are hard to evaluate directly from pyramid co-

efficients. Our technique basically decouples the weighting

from the actual pyramid contents, which enables us to more

easily define quality measures. In fact, any measure that can

be computed per-pixel, or perhaps in a very small neighbor-

hood, is applicable.

Goshtasby’s technique [11] selects the optimal exposure



(a) input sequence

(b) Naive (c) Blurred

(d) Cross-Bilateral (e) Multiresolution

Figure 4. Weighted blending. The input se-
quence is shown in (a). Naive per-pixel

blending (b) yields obvious seams due to
sharp variations in the weight map. Blur-
ring the weight map using a Gaussian kernel

(c) removes the seams, but introduces halos
around edges. Cross-bilateral filtering (d) is
able to avoid some of the halos, but not all.

Multiresolution blending (e) creates the de-
sired result.

on a per-block basis, and smoothly blends between blocks.

Since blocks may span across different objects, spill infor-

mation across object boundaries, similar to the artifacts re-

lated to Gaussian blurring of the weight map (Fig. 4c).

4. Results

All of our examples were constructed from JPG-encoded

photographs, with unknown gamma correction and camera

response curve. We used equally weighted quality measures

(ωC = ωS = ωE = 1) in most examples, except where

mentioned otherwise.

4.1. Quality

Fig. 1 and 2 show a typical bracketed exposure shot:

underexposed, normally exposed and overexposed. Every

exposure contains relevant information that is not present

(a) Input sequence

(b) Ogden et al. [19] (c) Burt et al. [4] (d) Our technique

Figure 5. Comparison with other pyramid-

based fusion techniques [19, 4]. These meth-
ods select the most salient Laplacian pyra-
mid coefficients in the input sequence (a),

whereas our technique does blending. The
results (b,c) are too dark, and exhibit color
shifts. Our technique (e) produces a more

faithful result compared to the input se-
quence (a). Image courtesy of Jesse Levin-
son.

in the other exposures. Our technique is able to preserve

finescale details of the buildings, and the warm appearance

of the sky.

In Fig. 7 and 9, we compare our result to tone map-

ping. A rigorous comparison is hard, due to the operators’

implementation-specific differences and parameter settings.

We therefore limit ourselves to an informal comparison with

a few popular tone mappers. Compared to Durand et al. [8]

and Reinhard et al. [25], our method offers better contrast.

Li et al.’s approach [15] produces quite similar results to

ours in terms of contrast, but it also exhibits slight oversat-

uration. We had to tweak the saturation parameter in their

implementation to correct the colors.

The multiresolution blending technique discussed in

Sec. 3.2 is not without its problems. In Fig. 6, our result

contains a spurious low frequency brightness change, which

is not present in the original image set. It is caused by a

highly varying change in brightness among the different ex-

posures. Intuitively speaking, this artifact can be considered

as a very blurred version of the seam problem, illustrated

in Fig. 4b. Constructing a higher Laplacian pyramid par-

tially solves this problem. However, the pyramid height is

also limited by the size of the downsampling/upsampling

filter [3].



w × h × N init. (s) update (s) total (s)

864 × 576 × 3 .75 .82 1.6

1227 × 818 × 3 1.5 1.6 3.2

1728 × 1152 × 3 3.0 3.2 6.2

864 × 576 × 7 1.5 1.5 3.0

1227 × 818 × 7 3.0 3.1 6.1

1728 × 1152 × 7 6.0 6.0 12.0

Table 1. Computation times for our tech-
nique. We computed results for 1

2 , 1 and 2
megapixel images. N is the number of im-

ages in the stack. The initialization builds
the Laplacian pyramids for each input image.
The update step computes the weight maps,

the corresponding Gaussian pyramids, and
the blending. For small image sizes (half to
one megapixel), the user gets interactive in-

teractive feedback (about one second).

4.2. Performance

Our unoptimized software implementation performs ex-

posure fusion in a matter of seconds; see table 1. After

building the Laplacian pyramids, our technique can provide

near-interactive feedback (see timings of update step). This

enables a user gain more control over the fusion process,

as he or she can adjust the weighting of quality measures.

Additional controls on the input images, such as linear

and non-linear intensity remappings are also possible (like

brightness adjustment or gamma curves). This can be used

to give certain exposures more influence. Motivated by the

work of Strengert et al. [27], we expect that our algorithm

could eventually run in real-time on graphics hardware.

4.3. Including Flash­Exposures

A flash exposure can fill in a lot of detail, but tends to

produce unappealing images, and it may include spurious

highlights and reflections. Recent work on flash photogra-

phy has introduced techniques for combining flash/no-flash

image pairs [9, 22, 2]. Our technique can be used here as

well, as our quality measures are also relevant in this case.

Fig. 8 shows how our technique has successfully removed a

highlight and filled in details, similar to Agrawal et al. [2].

However, it cannot remove flash shadows [9] or unwanted

reflections [2].

4.4. Comparison of Quality Measures

Fig. 10 shows a comparison of our quality measures.

Exposure fusion is performed with either contrast, satura-

tion or well-exposedness. The desk scene in the first row

(a) Fused (b) Single exposure

Figure 6. A spurious low-frequency change
in brightness might occur due to the differ-
ence in exposure among the input images.

The result (a) appears too bright toward the
bottom, which seems unnatural compared to
the input images. One of the input images is

shown in (b) for reference.

comes out better with saturation turned on. Contrast makes

the background a bit dark, and well-exposedness darkens

the center of the monitor, making the result look unnatural.

For the house scene on the next row, saturation and well-

exposedness produce vivid colors, which is less so for con-

trast. Finally, the last row shows how contrast retains de-

tails, which are not present in the saturation image (e.g. in

the water, and the buildings’ windows). Well-exposedness

yields an interesting image, but it looks less natural than the

other two.

In general, we found that well-exposedness by itself pro-

duces fairly good images. However, in some cases it tends

to create an unnatural appearance, because it always favors

intensities around 0.5. Saturation and contrast does not have

this problem. But then again, the results from those mea-

sures are not always as interesting as those produced by

well-exposedness.

5. Conclusion

We proposed a technique for fusing a bracketed exposure

sequence into a high quality image, without converting to

HDR first. Skipping the physically-based HDR assembly

step simplifies the acquisition pipeline. It avoids camera

response curve calibration, it is computationally efficient,

and allows for including flash images in the sequence.



(a) Durand et al. [8] (b) Reinhard et al. [25]

(c) Li et al. [15] (d) Our technique

Figure 7. Comparison with several popular tone mapping techniques. Our algorithm yields image

quality that is competitive with the other results. See Fig. 9 for a more detailed inspection.

Our technique blends images in a multi-exposure se-

quence, guided by simple quality measures like saturation

and contrast. This is done in a multiresolution fashion to

account for the brightness variation in the sequence. Qual-

ity is comparable to existing tone mapping operators. Our

approach is controlled by only a few intuitive parameters,

which can be updated at near-interactive rates in our unop-

timized implementation.

We would like to investigate different pyramidal image

decompositions, such as wavelets and steerable pyramids.

Also, we would like to include more measures, in particu-

lar one that would detect camera noise. An optimized GPU

implementation would enable the user to interactively con-

trol the fusion process, but could also be used to display a

multi-exposure video stream [18] in real-time. Finally, we

would like to look into the applicability of our technique

to other image fusion tasks, such as depth-of-field exten-

sion [19] and multimodal imaging [4].
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