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Pyramid-based computer graphics

Pyramid-based graphics techniques can provide realistic
computer graphics on small systems without the complexities
of physics simulations.

Human beings have an intuitive feel for graphics. Graphics
problems such as blending two images smoothly, interpolating    
to fill in missing image data, or creating realistic looking images
are routinely solved by artists using traditional media. It i s       
much more difficult to perform these tasks mathematically. A
major step in solving a computer graphics problem is choosing     
an appropriate numerical representation for the image, one      
which allows us to use our visual and artistic intuition in a      
natural way.

Artists often tend to separate the spatial scales of an image  
when creating or altering a picture. When an artist paints a
landscape, the coarse scale (low spatial frequency) information     
is filled in first, as a wash of color in a large region. Inter-
mediate-size details can be added next with a medium-size        
brush. As a last step, the artist draws the fine details with a        
small brush. The image can be considered a sum of overlays of
increasingly fine detail. When an artist touches up a damaged
picture, both the large and small scale variations are considered      
in filling in the missing pieces. In synthesizing and combining
images, we would like to imitate the artist’s ability to see an  
image on both large and small scales by representing the image
mathematically on many different spatial scales simultaneously.

The simplest way to represent an image is to set the numerical
value of each pixel proportional to the image intensity. This
representation is useful when we want to paint or draw directly     
one pixel at a time, or when simple manipulations of contrast        
or color are desired. But it becomes cumbersome when we            
want to look at an image at several spatial resolutions.

Abstract: This paper describes pyramid solutions to graphics
problems that have proven difficult in other image
representations. The "physics simulation" approach grows more
out of the physics and mathematical modelling traditions.
Greater realism can be achieved by using the physics simulation
approach but the complexity and computation time are vastly
increased over the multiresolution pyramid approaches
described here.
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A Fourier transform representation can be used to separate        
the various spatial scales of an image. Unfortunately, when we
leave the familiar spatial domain for the spatial frequency      
domain our intuitive feel for the problem is lost. Operating on      
the Fourier transform of an image, we can no longer "see" local
spatial features in a recognizable form. What is really needed i s        
a representation that describes an image at multiple spatial
resolutions, and also preserves the local spatial structure that
allows us to "see" the picture at each scale. Pyramid representa-
tions are ideal for this class of problems.1,2,3

The pyramid representation and computer graphics

The pyramid representation expresses an image as a sum of
spatially bandpassed images while retaining local spatial informa-
tion in each band. A pyramid is created by lowpass-filtering an
image G0 with a compact two-dimensional filter. The filtered
image is then subsampled by removing every other pixel and
every other row to obtain a reduced image G1. This process i s
repeated to form a Gaussian pyramid G0, G1, G2, G3 ... Gn        
(Fig. 1).

Gk (i,j)= Σ Σ
m n

 Gk - 1(2i + m, 2 + n),k = 1,N

Expanding G1 to the same size as G0 and subtracting yields the
bandpassed image L0. A Laplacian pyramid Lo, L1, L2, ... Ln - 1, can
be built containing bandpassed images of decreasing size and
spatial frequency.

Lk = Gk - Gk + l,k = 0,N-1

where the expanded image Gk,1 is given by

Gk,l (i,j) = 4 Σ Σ
m n

Gk,l - 1[(2i + m/2, 2j + n)/2)]f(m,n)

The original image can be reconstructed from the expanded
bandpass images:

G0 = L0 + L1,1, + L2,2 + ....LN - 1,N-1 + GN,N
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Figure 2 shows an image represented as a sum of several spatial
frequency bands.

The Gaussian pyramid contains lowpassed versions of the
original G0, at progressively lower spatial frequencies. This    
effect is clearly seen when the Gaussian pyramid "levels" are
expanded to the same size as G0 (Fig. 3a). The Laplacian        
pyramid consists of bandpassed copies of G0. Each Laplacian     
level contains the "edges" of a certain size, and spans approxi-
mately an octave in spatial frequency (Fig. 3b).

This pyramid representation is useful for two important classes
of computer graphics problems. First, tasks that involve analysis
of existing images, such as merging images or interpolating to fill
in missing data smoothly, become much more intuitive when we
can manipulate easily visible local image features at several
spatial resolutions. And second, when we are synthesizing images,
the pyramid becomes a multiresolution sketch pad. We can fill in
the local spatial information at increasingly fine detail (as an
artist does when painting) by specifying successive levels of a
pyramid.

In this paper, we will describe pyramid solutions to some
graphics problems that have proven difficult in other image
representations:

1. Image analysis problems

(a) Interpolation to fill missing pieces of an image

(b) Smooth merging of several images to form mosaics

2. Creation of realistic looking images

(a) Shadours and shading

(b) Fast generation of natural looking textures and scenes using
fractals

(c) Real-time animation of fractals.

Multiresolution interpolation and extrapolation
The problem

The need to interpolate missing image data in a smooth, natural
way arises in a number of contexts. It can be used to remove      
spots and scratches from photographs, to fill in transmitted
images that are incomplete, and to create interesting computer
graphic effects.

A solution

Insight into the problem of interpolation is gained by considering
the image as a sum of patterns of many scales. A typical
photograph includes small scale fluctuations due to surface    
texture, superimposed on more gradual changes due to surface
curvature or illumination variations. Similarly, a painting is a
composite  made up   of   features   of   many   scales,  rendered   with

REDUCE (filter + subsample)

Fig. 1. Building the pyramid.

brushes of different sizes. In predicting the values of the missing
pieces of an image, we need to consider intensity variations on
both small and large scales.

Figure 4 shows a one-dimensional representation of an image   
G0 that has some missing values. One method of interpolating to
find the unknown region is to use a Taylor series expansion. If     
the size of the missing piece is comparable to the finest scale
features of the image, a good estimate of the unknown value        
x+dx can be obtained through a simple linear prediction based      
on the first derivative G0' at the point x:

G0 (x + dx) = G0 (x) + dx G0'(x).

If the  missing piece is large  compared to  the fine scale  features of

Fig. 2. The pyramid as a sum of spatial frequency bands.
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Fig. 3. Expanded Gaussian and Laplacian pyramids.

the image, we need to examine variations on larger scales as well.
We can compute such an estimate by fitting the function G0(x)         
to a Taylor polynominal of higher degree. This involves        
taking higher order derivatives that represent the image variation
over a larger number of pixels. One disadvantage of this     
approach for computer graphics is that it is computationally
expensive. It is also difficult to adjust the degree of the interpo-
lating polynomial to account for missing regions of different
sizes.

An alternative way to look at the missing information on   
many scales is to build a Gaussian pyramid. This represents the
image G0 at different spatial resolutions ranging from fine (G0) to
coarse (Gn). The unknown piece of G0 is also missing from G1,     
G2, ... Gn. Note that the size of the missing region is reduced in the
reduced pyramid levels. Now, instead of fitting a Taylor poly-
nomial of high degree at the finest spatial scale, we use linear
interpolation at multiple spatial resolutions to fill in the missing
information.

In the example shown, the size of the missing piece is large
compared to the fine scale variations contained in G0 and G1, but    
is comparable to the feature size in Gn-1 and small compared             
to the coarse features of Gn. Starting with G0, we use linear
extrapolation to predict the values of unknown points with two
known neighbors.

G0 (i) = 2 G0 (i + 1) - G0 (i + 2)

For this example, most of the unknown values of G0 are "left
blank." A small border one pixel wide is extrapolated into the
unknown region. Now we build G1 and extrapolate again. At        
this reduced resolution, the extrapolated border corresponds to a
larger proportion of the unknown region. When the extrapolated
G1 is expanded to full size, the border also expands in size from  
one pixel to several pixels. Continuing to lower spatial resolu-
tions, we eventually reach a reduced pyramid level Gn, where the
unknown region has shrunk to only one pixel. Extrapolation at    
Gn gives a pyramid level with all the values filled in.

An extrapolated image is built by reconstructing the extrapo-
lated pyramid. Starting with Gn, we expand to form Gn,1. Where        
a pixel in the next highest frequency band Gn-1 is missing, the
value from Gn,1 is used. Continuing this process, we form an
extrapolated image G0, with all unknown points filled in.

Examples

Figure 5a shows a portrait that has had ink spilled on it. The
locations of the ink spots are indicated in a mask image, Fig.       
5b. When a two-dimensional multiresolution interpolation proce-
dure is applied, the missing image points are filled in smoothly,
as shown in Fig. 5c. In many cases, the result is so natural  
looking that the flaw would not be detected except on close

6            RCA Engineer  •  30-5  •  Sept./Oct. 1985



Ogden/Adelson/Bergen/Burt: Pyramid-based computer graphics                    7



Fig. 5. Interpolation to fill missing points in an image.

Fig. 6. Extrapolation example.

examination. Figure 6 illustrates extrapolation when known    
image points represent only a small island within the image
domain.

Image merging
The problem

It is frequently desirable to combine several source images into      
a larger composite. Collages made up of multiple images are      
often found in art and advertising, as well as in science (for
example, NASA's mosaic images of the planets). images can      
even be combined to extend such properties as depth-of-field        
and  dynamic  range.

The essential problem in image merging may be stated as         
one of "pattern conservation." Important details of the compo-
nent images must be preserved in the composite, while no
spurious pattern elements are introduced by the merging process.
Simple approaches to merging often create visible edge artifacts
between regions taken from different source images.

To illustrate the problems encountered in image merging,
suppose we wish to construct a mosaic consisting of the left half  
of an apple image, Fig. 7a, and the right half of an orange, Fig.  
7b. The most direct procedure is to simply join these images     
along their center lines. However this results in a clearly visible
step edge (Fig. 7c).

An alternative approach is to join image components smoothly
by  averaging  pixel  values  within  a  transition  zone  centered  on

Fig. 7. Multi-resolution spline of apple an orange. (a) Apple,
(b) orange, (c) cut and paste composite (d) multi-resolution
pyramid mosaic.

the join line.3,4 The width of the transition zone is then a critical
parameter of the merging process. If it is too narrow, the
transition will still be visible as a somewhat blurred step. If it i s
too wide, features from both images will be visible within the
transition zone as in a photographic double exposure. The   
blurred-edge effect is due to a mismatch of low frequencies along
the mosaic boundary, while the double-exposure effect i s        
due to a mismatch in high frequencies. In general there is no   
choice of transition zone width that can avoid both artifacts.
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Multiresolution spline

We can resolve the transition zone dilemma if the images are
decomposed into a set of bandpass components before they are
merged. A wide transition zone can then be used for the low
frequency components, while a narrow zone is used for the high
frequency components. In order to have smooth blending, the
width of the transition zone in a given band should be about       
one wavelength of the band's central frequency. The merged
bandpass components are then recombined to obtain the final
image mosaic.

Let S0, S1, S2, ... Sk be a set of K source images. A set of      
binary mask images M o, M 1, M 2, ... Mk determine how the source
images should be combined. Mk is "1" where source image Sk            
is valid, and "0" elsewhere. Simply multiplying Sk 5 Mk and
summing over k would give a "cut and paste" composite with       
step edges. Instead, we build a Laplacian pyramid Lk1 for each
source image, and a Gaussian pyramid Mk1 for each mask          
image. A composite Laplacian pyramid Lk1 is formed by "cutting
and pasting" at each spatial scale by weighting each source
pyramid level by its corresponding mask:

Lcl (i,j)= Mk (i,j) Lkl (i,j)

The final image is reconstructed from LC by expanding each        
level and summing. Smooth blending is achieved because the
transition zone in each pyramid level is comparable to a wave-
length of the central frequency of that level. When this procedure   
is applied to the apple and orange images of Fig. 7, an "orple"         
is obtained with no visible seam (Fig. 7d).

Multifocus

When assembling information from multiple source images we
need not always proceed region by region guided by mask      
images. Some types of information can be merged in the       
pyramid node by node and be guided by the node's own value.     
Here we show how this type of merging can be used to extend        
the depth-of-field of an image or increase its dynamic range.3

Figures 8a and 8b show two exposures of a circuit board         
taken with the camera focused at different depth planes. We         
wish to construct a composite image in which all the components
and the board surface are in focus. Let LA and LB be Laplacian
pyramids for the two source images. The low frequency levels        
of these pyramids should have nearly identical values, since
changes in focus have little effect on the low frequency compo-
nents of the image. On the other hand, changes in focus will    
affect node values in the pyramid levels where high spatial
frequency information is encoded. However, corresponding nodes
in the two images will generally represent the same feature of       
the scene, and will differ primarily in attenuation due to blur.      
The node with the largest amplitude will be in the image that i s
most nearly in focus. Thus, "in focus" image components can        
be selected node-by-node in the pyramids rather than region-        
by-region in the original images. A pyramid LC is constructed        
for the composite image by setting each node equal to the
corresponding node in LA or LB  that has the larger absolute         
value:

If                                              LAl (i,j) > LBl (i,j)

then                                         LCl (i,j) = LAl (i,j)

Fig. 8. Multi-focus composite. (a, b) Two images of the same
scene taken with different focuses, and (c) composite with
extended depth-of-field.

else                                 LCl (i,j) = LBl (i,j)

The composite image is then obtained simply by expanding and
adding the levels of LC. Figure 8c shows an extended depth-of-field
image obtained in this way.

Creating realistic looking images: shadows and
shading
The problem

We will consider three different approaches to the problem of
creating a realistic looking image. The first approach is to use    
the computer as a paint box. No mathematical description of        
the scene is given. All the renderings, shading, shadows, and
highlights are done "by hand," as though the artist were using a
canvas. The advantage of "paint box" approach is complete
artistic control. The disadvantage is that it is time consuming to
create an image and difficult to make major changes without
redrawing completely.

A second approach is to create a three-dimensional mathe-
matical "universe." The artist specifies the location of objects in
this new world, their shapes and physical properties, and the
location of light sources. A two-dimensional, photograph-like
image of the three-dimensional world is made by tracing a large
number of light rays as they are reflected, refracted and absorbed.
The advantage of this "physics simulation" approach is that     
very realistic looking images can be created. This approach i s     
also flexible in that the viewing angle and properties of the
component parts can be changed as input parameters. The
disadvantage is that it requires a complex physical model and a     
lot of computation time.

There is a third, "multiresolution," approach that lies some-
where between the first two and combines some of the advantages
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Fig.9. Multiresolution shadowing and shading of flat shapes.

of each. As in the paint box approach, we are concerned    
primarily with painting the two-dimensional image. The differ-
ence lies in the type of information on the artist's palette. We
usually think of a palette as an array of colors that can be     
blended and applied to an image. Using the pyramid we can    
extend the definition of palette to include multiresolution shape
and edge information as well as color and intensity. Multi-
resolution lowpass and bandpass copies of image features are
extremely useful in creating special effects and in adding realism
to an artifically generated shape. The advantage of this approach
is that natural looking images can be generated quickly without
resorting to an elaborate physics simulation. Artistic decisions are
made by viewing the two-dimensional image and the pyramid
levels and combining desired elements of each.

An example

As an example of how an artist might use the pyramid as a     
spatial frequency palette, consider the problem of making flat
shapes (Fig. 9a) appear three-dimensional by adding realistic
looking shadows and shading. Both the shadows and shading
resemble blurred copies of the original shape. Building a Gaussian
pyramid of Fig. 9a, we select a lowpass copy that resembles soft
shadows (Fig. 9b). Comparing Fig. 9a and a slightly displaced      
9b  pixel  by  pixel, and taking  the  maximum value  at  each point,

gives an image of shadowed paper cutouts floating or sitting on       
a glass-topped table (Fig. 9c). Now we need to add dimension        
to the white cutouts. It has long been known that filtering an
image with a "gradient" filter (1, -1) gives an effect of side
illumination. When gradient filtering is done at multiple resolu-
tions, there is a great improvement in this bas-relief effect.
Performing a combination of gradient and lowpass filtering on
Fig. 9a gives us the low-frequency relief 9d. If the minimum of
Figs. 9d and 9a is taken, the result is an image of three-
dimensional-looking droplets (Fig. 9e). Finally, we add Fig. 9e to
9c to form shadowed droplets in Fig. 9f.

Clearly, many other interesting graphic effects can be gener-
ated by imaginative use of the pyramid. It provides the artist       
with a convenient and efficient way of accessing certain impor-
tant features of an image—shapes and edges—at multiple resolu-
tions. For certain problems, especially when computation facil-
ities are limited, the multiresolution approach offers considerable
realism for little computation time.

Pyramid generation of fractals
The problem

The computer graphics community has adopted fractals as a
remarkably effective way of synthesizing natural looking tex-
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Fig. 10. Cloud as a sum of random circles.

Fig. 11. Coastline on three different spatial scales.

Fig. 12. Pyramid generation of fractals.

tures.5,6,7,8 The problem is to generate these textures quickly        
using multiresolution techniques.

Fractals and the pyramid

Traditional mathematics has relied on idealized models of the
complicated and irregular forms of nature. Structures such as
clouds, mountains, and coastlines are difficult to describe in     
terms of continuous, differentiable functions. Recently,
Mandelbrot devised a new class of functions called "fractals" to
express these complex natural forms.5

A fractal function includes both the basic form inherent in        
the object and its statistical or random properties. For example,      
a cloud can be visualized as a sum of random circles. The basic
circle shape is seen at randomly distributed sizes and positions
(Fig. 10).

Fractals have the property of self-similarity over many differ-
ent geometric scales. A fractal appears similar as the spatial       
scale is changed over many orders of magnitude. As an example,
consider a very jagged, rocky coastline. The coastline looks
qualitatively similar when plotted on different special scales (see
Fig. 11).

We have devised a fast fractal generation technique based on     
the pyramid algorithm, which takes advantage of the self-
similarity of fractals. The pyramid breaks an image up into a       
sum of bandpassed images plus a lowpass filtered image. If an
inherently self-similar fractal image is decomposed into pyramid
form, one would expect the bandpassed images to look similar        
at each spatial frequency scale. Conversely, if similar patterns   
were entered into each spatial band of a pyramid, the recon-   
structed image should look like a fractal.
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Fig. 13. Examples of fractals. (a) Clouds, (b) woodgrain, (c)
galaxy, (d) papyrus, (e) granite, (f) waves, (g) fractal
"tree," and (h) fractal gasket

Fractal generation method

The method used involves replicating a basic form, or "gener-   
ator," at a succession of spatial scales, then summing to produce      
a fractal image (Fig. 12):

1. A "seed image" is set. This can be a regular array or a        
random pattern of dots.

2. A basic form, or "generator, " is selected. This shape will  
appear at many spatial scales.

3. The seed image is convolved with a filter having the same    
shape as the generator. Each dot in the seed image will
reproduce as an image of the generator. The result is a sum of
generators with amplitude and position determined by the seed
image.        The convolved image is entered into the various
levels of the pyramid.

4. The pyramid is reconstructed by expanding the various        
levels and adding. Because we have included generators over        
a wide range of spatial frequencies, the reconstructed image        
is  a  self-similar fractal.

5. The fractal image can be threshholded, colored, shaded,     
filtered, or otherwise manipulated to give pleasing effects.

Some examples of pyramid fractuals are given in Table I and in     
Fig. 13.

Realtime fractal animation method

A moving fractal image (for example, clouds drifting by, or
rippling waves) can be decomposed into a sum of spatial     
frequency bands. The different spatial frequency components    
move at different speeds. In an ocean wave, for example, low-
frequency swells move more quickly than high-frequency ripples
on the water’s surface.

An initial fractal image is expressed as a sum of several       
spatial frequency components. The image is advanced one time
frame by moving each spatial frequency component a specified
amount and summing again. This creates a new fractal, which        
is slightly changed from the previous frame. Continuing this
process gives an animated sequence of continuously evolving
fractal images. Each spatial frequency component can be periodic
with a fairly short repeat distance (say, half the image width),       
but the sum has a much longer period if the different components
move at various speeds that are not multiples of each other. We
have demonstrated this technique using our DeAnza 1P8500   
image processor. Each new frame takes about 1/15th of a        
second to compute, and the overall repeat time was several
minutes. Figure 14 shows an example of fractal animation for a
beach scene (also see front cover).

Conclusions

Pyramid representations have much in common with the way
people see the world. Human beings like to look at things on
many spatial scales simultaneously. A strong analogy exists
between an artist who paints images by adding progressively    
finer details, and a computer scientist who constructs images by
adding together the spatial frequency bands of a pyramid.
Representing an image on multiple spatial scales allows us to        
do things like blending apples and oranges naturally. When we
express a picture as a sum of pyramid bands and operate on        
each band separately, we are taking an artistically familiar
"painter's" approach. This contrasts with the "physics simulation"
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approach, which grows more out of the physiw and mathe-   
matical modelling traditions. Greater realism can be achieved        
by using the physics simulation approach, but the complexity      
and computation time are vastly increased over the multireso-
lution pyramid approaches described. Considering how well we  
can fake reality with the pyramid, it seems particularly well      
suited for making "realistic looking" computer graphic images      
on  small  systems.
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Fig. 14. Fractal animation method

Joan M. Ogden received a BS in Mathematics from the
University of Illinois in 1970, and a PhD in Physics from the
University of Maryland in 1977. After two years as a Postdoctoral
research associate at Princeton Plasma Physics Laboratory, she
started her own consulting company, working on a variety of
applied physics problems.

In 1982 Dr. Ogden joined the Advanced Image Processing
Research group at RCA Laboratories, first as a consultant and,
in 1984, as a part-time Member of the Technical Staff. Her
research interests at RCA include applications of the pyramid
algorithm to noise reduction, data compression, and texture
generation. She is the author or coauthor of more than 20
articles, has one patent pending, and is coinventor of an issued
patent.

Dr. Ogden was awarded a National Science Foundation
Visiting Professorship at Princeton University in 1985. She is on
leave from RCA to teach at Princeton during the 1985 academic
year.
Contact her at:
Princeton University
Princeton, N.J.
(609) 452-4966

14     RCA Engineer  •  30-5  •  Sept./Oct. 1985



Edward H. Adelson received the BA degree, summa cum laude,
in Physics and Philosophy from Yale University in 1974, and a
PhD degree in Experimental Psychology from the University of
Michigan in 1979. Dr. Adelson joined RCA Laboratories in 1981
as a Member of the Technical Staff. As part of the Advanced
Image Processing group, in the Advanced Video Systems
Research Laboratory, he has been involved in developing
models of the human visual system, as well as image-
processing algorithms for image enhancement and data
compression.

Dr. Adelson holds two U.S. patents and has published a dozen
papers on vision and image processing. His awards include the
Optical Society of America's Adolph Lomb Medal (1984) and an
RCA Laboratories Outstanding Achievement Award (1983). He is
a member of the Association for Research in Vision and
Ophthalmology, the Optical Society of America, and Phi Beta
Kappa.
Contact him at:
RCA Laboratories
Princeton, N.J.
Tacnet: 226-3036

James R. Bergen received the BA degree in Mathematics and
Psychology from the University of California, at Berkeley, in
1975, and the PhD degree in Biophysics and Theoretical Biology
from the University of Chicago in 1981. His interests concern the
quantitative analysis of information processing in the human
visual systems, and the application of this analysis to problems
in imaging system design and evaluation.

During 1981-82, Dr. Bergen was a Postdoctoral Member of
Technical Staff at Bell Laboratories. In 1982 he joined RCA
Laboratories as a Member, Technical Staff. His research
activities at RCA include theoretical and experimental work on
human vision, as well as perceptual aspects of HDTV systems
and image processing techniques. In 1983, he shared an RCA
Laboratories Outstanding Achievement Award.

Dr. Bergen has published many papers on visual
psychophysics and perception, and is a frequent speaker at
conferences on these subjects. He is a member of the Optical
Society of America and the Association for Research in Vision
and Ophthalmology.
Contact him at:
RCA Laboratories
Princeton, N.J.
Tacnet: 226-3003

Peter J. Burt received the BA degree in Physics from Harvard
University in 1968, and the MS and PhD degrees, both in
Computer Science, from the University of Massachusetts,
Amherst, in 1974 and 1976, respectively. From 1968 to 1972 he
conducted research in sonar, particularly in acoustic imaging
devices at the U.S. Navy Underwater Systems Center, New
London Connecticut, and in London, England. As a Postdoctoral
Fellow, he has studied both natural vision and computer image
understanding at New York University (1976-78), Bell
Laboratories (1978-79), and the University of Maryland (1979-
80). He was a member of the engineering faculty at Rensselaer
Polytechnic Institute from 1980 to 1983.

In 1983 Dr. Burt joined RCA Laboratories as a Member of the
Technical Staff. He worked in the areas of computer vision,
image data compression, and human perception, and in 1984 he
became Head of the Advanced Image Processing group.

Dr. Burt has published more than 20 technical papers in his
fields of expertise and is a member of the IEEE.
Contact him at:
RCA Laboratories
Princeton, N.J.
Tacnet: 226-2451

Ogden/Adelson/Bergen/Burt: Pyramid-based computer graphics               15


