RABBIT.—Sung=

PRODUCT MANUAL

Dynamic C

TCP/IP User’s Manual

Volume 2

019-0144 - 090409-F

The latest revision of this manua is available on the Rabbit Web site,
www.rabbit.com, for free, unregistered download.

http://www.rabbit.com/

Dynamic C TCP/IP User’s Manual
Volume 2

Part Number 019-0144 » 090409—F ¢ Printed in U.S.A.
Digi Internationa Inc. © 2006-2008 < All rightsreserved.

No part of the contents of this manual may be reproduced or transmitted in any form or by any means
without the express written permission of Digi International Inc.

Permission is granted to make one or more copies as long as the copyright page contained therein is
included. These copies of the manuals may not be let or sold for any reason without the express written
permission of Digi International Inc.

Digi reserves theright to make changes and
improvements to its products without providing notice.

Trademarks

Rabbit and Dynamic C® are registered trademarks of Digi International Inc.

Windows? is a registered trademark of Microsoft Corporation

Dynamic C TCP/IP User’s Manual

RABBIT.—Sung=

PRODUCT

MANUAL

Table of Contents

1 INtroducCtion.........ccoeevenereneneneenenn 1
2 Web-Enabling Your Application........ 3
2.1 Designing Your Application..........c.c....... 3

2.2 The Smallest Web Server in the WWW ... 4

2.3 Web Server Architectureccoceeennene 6
2.3.1 Application Block 7
2.3.2HTTP Block 8
2.3.3HTTP Block Subcomponents 9

2.3.4 Zserver Block 9

2.4 Architecture of a Toy Application.......... 11
2.5 A Simple but Realistic Application........ 13

2.6 Adding Access Controls........c.cccoeeeeuenne 16

2.7 A Full-Featured Application................... 22

2.8 Living Without RabbitWeb and FAT 26

3 Server Utility Library........cccceeeeneee 31
3.1 Data Structures for Zserver.lib 31
3.1.1 MIMETypeMap Structure 32

3.1.2 ServerSpec Structure 33

3.1.3 ServerAuth Structure 35

3.1.4 ServerPermissions Structure 35

3.1.5 RuleEntry Structure 36

3.1.6 ServerContext Structure 36

3.1.7 SSpecStat Structure 37

3.1.8 sspec_fatinfo Structure 37

3.1.9 FormVar Structure 38

3.1.10 SSpecFileHandle Structure 38

3.2 Constants Used in Zserver lib................. 38
3.2.1 ServerSpec Type Field 38

3.2.2 ServerSpec Vartype Field 39
3.2.3 ServerPermissions Servermask Field

39

3.2.4 Configuration Macros 39
3.2.5 Macros for Control Data Initialization

41
3.3 File Compression Supportcccceceeeeene 43
34 HTML FOrms.......cccoeeeeiiecceeecieee e 44
3.5 APl FUNCLiONS......cccoevieeceeiiee e, 45
4 HTTP SEIVEr e 137
4.1 HTTP Server Data Structures............... 138
4.1.1 HttpState 138
4.2 Configuration Macros..........ccceveevrvernenn. 141

4.2.1 Sending Customized HTTP Headers to

the Client 143
4.2.2 Saving Custom Headers from the Client
144
4.3 Authentication Methods...........ccccouenee 145
4.4 Setting the Time Zone.......cccoevveeervennene 146
4.5 Sample Programs..........ccceeevevenenenens 146

4.5.1 Serving Static Web Pages 146
4.5.2 Dynamic Web Pages Without HTML
Forms 149
4.5.3 Web Pages With HTML Forms 153
45.4HTML FormsUsing Zserver.lib 159

46 HTTPFileUpload........ccccovvieuenneninene 164
4.6.1 What isa CGI Function and Why is It
Useful ? 164
4.6.2 How Do | Usethe New CGI Facility?
165
4.7 API Functionsfor HTTP Servers......... 185
5 RabbitWeb.........ccoooviirii 249

5.1 Getting Started: A Simple Example..... 249
5.1.1 Dynamic C Application Code for

Humidity Detector 249
5.1.2 HTML Pages for Humidity Detector
254
5.2 Dynamic C Language Enhancements for
RabbitWeEDccocvieireeviecee 259
5.2.1 Registering Variables, Arrays and
Structures 259
5.2.2 Web Guards 260
5.2.3 Security Features 263
5.2.4 Handling Variable Changes 265
5.3 ZHTML Scripting Language................ 267
5.3.1 SSI Tags, Statements and Variables
267
5.3.2 Flow Control 268
5.3.3 Selection Variables 270
5.3.4 Checkboxes and RadioButtons 271
5.3.5 Error Handling 272
5.3.6 Security: Permissions and Authentica-
tion 273

5.4 TCPto Seria Port Configuration Example 274
5.4.1 Dynamic C Application Code 274
5.4.2 HTML Page for TCP to Serial Port
Example 286

TCP/IP Manual, Vol. 2

rabbit.com iii

http://www.rabbit.com

5.5 RabbitWeb Reference. ... 288 9.1 BOOTP/DHCP ..o 345

5.5.1 Language Enhancements Grammar 9.2 Data Structure for TFTP.......vvvvrienees 346
288)) 9.3 APl FUNCLIONS......eieveicieceeee e 346
552 CO”f'QUfaI"?” M.acros 289 PNt oo 347
5.5.3 Compiler Directives 290 EFED NI v 348
5.5.4 ZHTML Grammar 291 tHP_tICK o 349
5.5.5 RabbitWeb Functions 202 P tCKX e, 350
6 HTTPC 205 tP EXEC .o, 351
O 10 SMTP Mail Client....ooccocccoeern.e. 353
2; 'CAZ\(;Tf::gure:tllon MBCIOS..vsvvvrves e ;32 10.1 Sample Conversation............cccceeeneee. 353
. UNCLIONS ... -

6.2.1 Initialization Functions 296 10.2 SMTP Authe.ntlcan on......... s 354
6.2.2 Connect and Request Functions 296 10.3 Sample Ser_1d|ng of an E-mail 355
6.2.3 Read Server Response Functions 296 10.4 Configuration Macros..........cc.cceeueene 356
6.2.4 Miscellaneous Functions 296 10.5 APl FUNCLIONS.....cccoineeeireeienieie e 357
6.2.5 Function Descriptions 297 smtp_data_handler........c.ccoovenenenne. 357
. smtp_mailticK.......ccccoevveeveneeniennnnne, 359
A = 1Yo T= o SO 313 ot sendmail 30
7.1 Configuration Macros..............cco.ow.... 313 Sm%p_;pdrphai IXMem ..o, gg%

. smtp_setauthcoceevveevvenersinne,

7.2 APl Fun<_:t|ons 314 STIP_SELSEIVEX rooooeoeseeeeeeeeer e 363
ftp_client_Setup.........cccocveninninne 314 SMEP_SELSEIVEr P oo, 363
ftp_client_setup_urlc....... 315 SMEP_SEALUS. ..o 364
ftp_client tick ...oocvvvveveveecieee, 316 .
ftp_client_filesize..........ccccomererrne 317 11 POP3Clientcccouveeeuveecreeecieeenen. 365
Ep_ggtentﬁ)(fgﬁ --------------------------------- gig 11.1 Configuration...........oceeeerveerneeereenenes 365

p_data handler.........ccocoovvnennnnae . .
ftp_last_COde ..., 319 11.2 Stepsto Receive E-mail.................. 366
7.3 Sample FTP Transferooovvevvenveene, 320 11.3 Call-Back Function..........ccccceeeveeneeee. 366
11.3.1 Normal call-back 366
8 I_—l-P %’Ver ------------------------------------- 321 11.3.2 POP_PA RSE_EXTRA Ca.ll-ba:k 366

8.1 Configuration Macros.............ccco..... 322 11.4 APl FUNCHONS ..ooceeoeee oo 367

8.2 FileHandlers........ccooeninieinenneien 324 POP3 NI v 367
8.2.1 Replacing the Default Handlers 324 pop3_getmailccocvivrininiinninnn. 368
8.2.2 File Handlers Specification 324 010 0 XS I ;G 369
ftp_dflt_OPEN......oveeveeeeeeeeeeeeneane, 325 11.5 Sample Receiving of E-mall 370
ftp_dflt_getfilesize......ccoccovveveunnene. 326 11.5.1 Sample Conversation 371
ftp dflt_read.......ccccooeiiiniie 327
FD_OFIE WEIEE oo 328 12 SNMP....coiiiis 373
ftp_dflt_close ..., 329 12.1 SNMP OVEIVIEW. ... 373
ftp_dflt_l I a 330 12.1.1 M an@w ObJ &:ts 374
ftp dflt Cd.eoeeieee 331 1212 SNMP A 374
FED_ O PWO oo 332 L. gent
ftp_dflt_mdtm ..o 333 12.1.3 MIBs 375
ftp_dflt_delete......coevvreiereerinennne 334 12.1.4 SMI 376

8.3 APl Functions.......ccccceeveveveciecieceenn, 335 12.2 DEMO Program...........coeeeveeveeeeseennen. 378
ftp_dflt_is auth ... 335 12.2.1 Creating Managed Objects 379
ftp_l nit TP E PP TP P TP PITR 336 12.2.2 Callback Functions 380
ftp load filenames........ccccoeoereenne. 337 122 3 Creating C o 380
ftp_save filenames............ccco.ouv..... 338 -2.3 Creating Communities
ftp_Set_anonymous.............c..coe...... 339 12.2.4 Creating the MIB 383
ftp_shutdown.......cccooeveinininenee, 340 12.2.5 Defining Managed Objects with SMI
P tICK e 340 385

8.4 Sample FTP Serverccoooeveiieeecinen. 341 12.2.6 Running the SNMP Agent 389

8.5 Getting Through aFirewall.................. 342 12.3 Configuration Macros........................ 390

8.6 FTP Server Commands...............cooeee.. 342 12.4 APl FUNCHONS.......oovvvereereeeeseenereonee 392

8.7 Reply Codesto FTP Commands.......... 344 SMP_add......ooeeeee, 393

. snmp_add_community.................... 396
9 T I_—I— P Cl | ent 345 Snmp_append_b| nary_()l d _______________ 397

iv rabbit.com Table of Contents

http://www.rabbit.com

shmp_append_binary_stem.............. 398 13.2.2 API Functions 455
stmp_append_0id.........covriieniines 399 1101]2 L S 455
snmp_append_parse _oid 400 L NEL_HICK ovvoveeeeeee e 456
shmp_append_parse_stem............... 401 eI NEE_ClOSE...eeveeeee e, 456
snmp_append_stemccoevenne 402 13.2.3 An Example Telnet Server 457
snmp_community_mask.................. 403 13.2.4 An Example Telnet Client 458
SNMp_community_Name.................. 404
snmp_gglpé_md 282 14 Genera Purpose Console............... 459
snmp_delete......ccoovvvviiriieine
SIMp_format_oid..........ccoeeveeereenne. 407 141 ZiglniolleFl':leatu? """ . . igg
S 110 o= RN 408 .1.1 File System Requiremen
snmp_get_indexed..........ccccceeeruenee 409 14.1.2 TCP/IP and Zconsole 460
SAMP_QEL NEXL....oooioiiennns 410 14.2 Login Name and Password................. 460
SAMP_INIL_Parmsccceveeevveeieeennnn. 411
SIMP_1aS_INAEX w.vvooeveieiiinines 412 14.3 Zconsole Commands and Messages... 460
snmp_last int....cccocevevenieneieseene 413 14.3.1 Zconsole Command Data Structure
snmp_last len.....cccovvevvveeievceee, 414 460
?QB—:ﬁ—mg%'éﬁ'_::::::'_:::::'_::::::::: ﬂg 14.4 Zconsole Command Arfay 461
SIMP_last_MeM ..., 417 14.4.1 Zconsole Commands 462
snmp_last_objectID........ccccoeennee 418 14.4.2 Zconsole Error Messages 469
imp—: i_tsnn;’p_type """"""""""" j'ég 14.5 Zconsole /O Interface..........covveveen... 472
Smp et e o 14.5.1 How to Include an 1/0 Method 472
SMP_MONILON ... 422 14.5.2 Predefined 1/0 Methods 472
SNMP_Print_tree.....cvcvvveceeeveveenene 425 14.5.3 Multiple I/O Streams 473
img—g—ggﬁ%?ck """"""""""""""" 211%(75 14.6 Zconsole EXECUtion..............coverveenne, 474
SNMP_SEt_COMMUNILY ...c..rvvvvveeeennens 428 14.6.1 File System Initialization 474
snmp_set_dflt_communities........... 429 14.6.2 Serial Buffers 474
SIMP_set_fOCt ..., 430 14.6.3 Using TCP/IP 474
snmp_g_: N 23% 14.6.4 Requ| red Zconsole Functions 475
SIMP_SELTONG oo CONSOIE NIt cvvvveverereeeeeseeeeeeeeeeen. 475
SMP_Set_ODJECHID ..ovvvvvvee 433 CONSOIE tICK ...vervverereeeereeeseeeniennes 475
?mp_g_g% 2%2- 14.6.5 Useful Zconsole Function 476
mmB_set]aaréé"(.).i.a """"""""""""" 436 con_backup.......coeoevivenieeieeee 476
simp_set _parse_sterﬁ """""""""""" 437 con_backup _bytes.........cccoceeeieenne 476
SMP_SEL_SOM .o 438 con_backup reserve.......ccccceveuenee. 477
SMP_SEL S erorroooooeooeeeooee 439 con_chk_timeoutcceeeevevieennnne a77
I s O 440 con_load backup.......cccccoeeeeeenuennnne 478
smp stop:::::::::::::::::::::::::::::::::::::::440 CON_TESEt 10...cviireieeeiieieieeie e 478
SMP_tiME_SINCE ..coovvvvererercrreeeres 441 ggﬂ—g—ﬁfgﬂg—l Xioverssessssesnenssenees gg
snmp_?metlcks ﬁ% con st User idle. T el
?QB‘&?&BH&& """""""""""""""" 43 CON_SBt_HiMEOUL ..o 480
SMP_UP_ 01 oo 444 con_set_user _timeout..........ceevenee. 481
snmp_up_sterﬁ """""""""""""""""" 445 console_disable.......cccccveeeveveennnnee. 481
T DO 446 console enable........ccccceveeeeiieenenn, 482
SO 47 1466 Zoonsole Execution Choices 483
14.7 Backup System........cccceeeevrieeieneniennens 484
13 Tenet................. LR 449 14.7.1 Data Structure for Backup System
13.1 Telnet (Dynamic C 7.05 and L ater).... 449 484
1311Setup _ 449 14.7.2 Array Definition for Backup System
13.1.2 API Functions (Dynamic C 7.05 and 485
.L ater) 450 14.8 Zconsole Macros........ccoveereennenienenne 486
vserial _CloSe.....ccovvvievvivie i 450
V=1L 121 SR 451 14.9 Sample Program..........c.coueeeeeinennn. 488
vserial_keepalive........cccooviieinnenne 451
e T 452 INAEX oo 493
vSerial_OpeN......cccvieinene e 453
vserial ticK...icee e, 454
13.2 Telnet (pre-Dynamic C 7.05).............. 455
13.2.1 Configuration Macros 455
TCP/IP User’s Manual, Vol. 2 rabbit.com

http://www.rabbit.com

Vi

rabbit.com

Table of Contents

http://www.rabbit.com

PRODUCT MANUAL

1. INTRODUCTION

The Dynamic C TCP/IP User’s Manual, Vol. 2 isintended for embedded system designers and support
professionals who are using a Rabbit-based controller board. Most of the information contained here is
meant for use with Ethernet- or WiFi-enabled boards, but using only serial communication is also an
option. Knowledge of networks and TCP/IP (Transmission Control Protocol/Internet Protocal) is assumed.
For an overview of these two topics a separate manual is provided, An Introduction to TCP/IP. A basic
understanding of HTML (HyperText Markup Language) is aso assumed. For information on this subject,
there are numerous sources on the Web and in any major book store.

The Dynamic C implementation of TCP/IP comprises several libraries. The main library is
DCRTCP.LIB. Asof Dynamic C 7.05, thislibrary is alight wrapper around DNS . LIB, IP.LIB,
NET.LIB, TCP.LIB and UDP.LIB. Theselibrariesimplement DNS (Domain Name Server), IP, TCP,
and UDP (User Datagram Protocol). This, along with the librariesARP.L.IB, ICMP.LIB, IGMP.LIB
and PPP . LIB are the transport and network layers of the TCP/IP protocol stack.

The Dynamic C libraries.

e BOOTP.LIB

e FTP SERVER.LIB

e FTP CLIENT.LIB

e HTTP.LIB

e HTTP CLIENT.LIB

e POP3.LIB

e SMNP.LIB

e SMTP.LIB

e TFTP.LIB

e VSERIAL.LIB

implement application-layer protocols. Except for BOOTP, which is described in the Dynamic C TCP/IP
User’s Manual, Vol. 1, these protocols are described here in the following chapters.

All user-callable functions are listed and described in their appropriate chapter. Example programs
throughout both volumes of the manual illustrate the use of all the different protocols. The sample code
also provides templates for creating servers and clients of various types.

To address embedded system design needs, additional functionality has been included in Dynamic C's
implementation of TCP/IP. There are step-by-step instructions on how to create HTML forms, allowing
remote access and manipulation of information. Thereis also a serial-based console that can be used with
TCP/IP to open up legacy systems for additional control and monitoring. The console may also be used for
configuration when a serial port isavailable. HTML forms and the console are discussed in Chapter 4 and
Chapter 14, respectively.

Multiple interfaces are supported starting with Dynamic C version 7.30.

TCP/IP Manual, Vol. 2 rabbit.com 1

http://www.rabbit.com

rabbit.com Introduction

http://www.rabbit.com

PRODUCT MANUAL

2. WEB-ENABLING YOUR APPLICATION

This chapter, and the next three, describe how to add web browser control to your application. Web-
enabling isalogical and appealing choice for adding a user interface to your application, since the neces-
sary hardware (an Ethernet or seria port) is available on all Rabbit core modules and SBCs. Most users of
your application will be familiar with at least one web browser (Netscape, Mozilla, Internet Explorer,
Opera), with its graphical user interface, so they will be ready to start controlling your application with
minimal training.

This chapter provides an overview of the steps you will need to take to web-enable an application. Knowl-
edge of browsers, and something of their capability, is assumed. With this knowledge, you can understand
the concepts described in this chapter. The following chapters go into more detail about the specific librar-
ies; but for simple programs, you may be able to use just the information in this chapter along with the
sample code to write aworking application.

Dynamic C provides libraries that implement most of the functions required to implement a web server,
more formally known as an HTTP (HyperText Transfer Protocol) server. (The browser is formally called
an HTTP client). You only need to write code specific to your application, such as dealing with 1/0Os and
the Rabbit peripheral devices, and possibly some code to help the HTTP server generate the appropriate
responses back to the user’s web browser. |n addition, thereis a small amount of “boilerplate” that needsto
be written to include and configure the HTTP server and any ancillary libraries such asthe TCP/IP suite
and filesystems.

2.1 Designing Your Application

Should you decide to web-enable your application, you probably already have some idea of the format and
layout of the web pages that will be presented to the browser. Unless the application only returns informa-
tion and does not allow any updates (such as a data logger), you will probably need to lay out some forms.
Forms, in web parlance, allow the browser’s user to fill in some information then submit it to the server.
The server then performs the requested actions and sends a confirmation back to the browser. Thisisthe
most common means for implementing control of the server as opposed to merely querying it.

There are several other things to consider. Answers to the following list of questions will determine the
pieces of software that need to be gathered into your application, and how they link together.

e Does access to some or al resources need to be limited to a select set of users?

e If so, how confident does your application need to be that the user’s credentials are valid?

e Do you need to be able to upload large amounts of data (over, say, 250 bytes)?

e Do you want to update the web pages themselves, or maybe even the entire application firmware?
e |sthe application small, medium, or large?

e Do you want to use this same (web) interface to configure all aspects of the application including, for
example, the network settings? In other words, is the web interface going to be the only interface once
the unit leaves the factory?

TCP/IP Manual, Vol. 2 rabbit.com 3

http://www.rabbit.com

The first and second questions relate to user authentication and access control. The next two questions
relate to the HTTP upload facility. Thelast two questions concern the overall design of your application; in
particular, alarge application may necessitate more storage than is usually available for a given Rabbit
product, and may require a sophisticated filesystem to manage the large number of resources.

Since the terms small, medium and large are rather vague, we shall define them by example. A small appli-
cation would be limited to less than 10 different web pages, and up to about 30 different “ controls’ (but-
tons to press, dialsto twiddle, options to select etc.). A large application may have upwards of 100 pages,
and more than 10K B of configurable data. A medium application sits, as you might expect, near the mid-
dle of these.

Note that we are not considering the size of the application other than the web interface part. For example,
you may have a sophisticated G-code interpreter and motion control system, where the web interfaceis
limited to simply enabling/disabling the actuators and showing an error log to maintenance personnel. For
the purposes of our discussion, this would be a small application.

The next section describes a“ smaller-than-small” application, that is, atoy, which we use to show the bare
essentials of aweb-enabled application.

2.2 The Smallest Web Server in the WWW

Before moving on to real applications, the following sample code shows how to create the simplest possi-
ble web server. It does nothing but show “Hello WWW?” on the browser. There are two files needed for
this. Thefirst is the Dynamic C code to be loaded to the target board (which must support TCP/IP). The
second is the web page content itself, written in a syntax known asHTML (HyperText Markup Language).
The second file is effectively included in the program, using the #ximport directive.

// toy http.c

#define TCPCONFIG 1
#use “dcrtcp.lib”
#use “http.lib”

#ximport “hellowww.html” hellowww html

SSPEC MIMETABLE START
SSPEC_MIME (“.html”, “text/html”)
SSPEC_MIMETABLE END

SSPEC RESOURCETABLE START
SSPEC_RESOURCE XMEMFILE ("/hellowww.html", hellowww html)
SSPEC_RESOURCETABLE END

void main() {
sock init () ;
http init () ;

for (;;) http handler();

4 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

The second file, named hellowww.html iscoded asfollows:

<HTML >
<HEAD><TITLE>Hello, WWW</TITLE></HEAD>
<BODY><H1>Hello, WWW</H1></BODY></HTML>

That'sall thereisto it. However, thereis actually alot of activity going on beneath the covers. For a start,
the #use “dcrtcp.lib” directive and the TCPCONFIG macro definition bring in the TCP/IP networking suite
and configure it. Unless you have a private test network, you probably have to modify the default setting -
how to do that is beyond the scope of this chapter; it is described in volume 1 of the manual. The #use
“http.lib” statement is required in order to bring in the web server. The next lines down to the start of the
main () function are setting up tablesthat are consulted by the HTTP server and other librariesin order to
“do theright thing.” Finally, themain () function callsthe necessary runtimeinitialization of the network
and the HTTP server. It then callsthe HTTP server in an endless loop, which drives the entire system into
motion.

The .html fileis ASCII text, in HTML syntax, which is transferred back to the browser when it is
requested. Apart from the server adding some header lines, the .html file istransferred verbatim. This
markup is merely telling the browser to display “Hello, WWW” asa 1st level heading, i.e., big bold text.
Thisis specified by the second line. The first line adds atitle to the page, which most browsers display in
the window bar.

To see this web page on screen, the user needs to tell their browser what to get. If doing it manually, they
would need to enter something like * http://10.10.6.100/hellowww.html” in the browser’s URL entry field.
The browser strips off the http://10.10.6.100 part of it, and sends the rest to the specified host address
(10.10.6.100) using a TCP connection to port 80 (interpreted from the http:// part). The server getsthe /hel-
lowww.html part, which it knows about since it has a page of that name, and returns the contents of that
file as aresponse. The browser interpretsthe HTML it receives, and generates a nice visual rendition of
the contents.

TCP/IP Manual, Vol. 2 rabbit.com 5

http://www.rabbit.com

2.3 Web Server Architecture
Before describing areal application, it is useful to know how such an application is organized. The follow-
ing diagram shows al of the relevant components of a web-enabled application. There may seemto be a

large number of components, however keep in mind that not all components need to be used by your appli-

cation.
Figure 2.1 Components in a web-enabled application.
Application
Compile-Time Run-Time Main Application CGl
Initialization s Initialization i Loop __}Specifics, I/O(__ Functions
A A
\
#web
Variables
X
_/
HTTP HTTP-X
Metadata .
Requests,
[mivE]| Resources Context
i~ | Table '
: \\ 4
i F N zserver TCP/IP
. »|Rule |~ | > Resource Manager
¢ | Table [. /; (ger) I
/ Virtual File System Q
: User : 1
' Table :
Authorization /
pemmmm e e ¥-- .
i | Static Dynamic '
4| Resource Resource FS2 FAT]
1 | Table Table '
______ e
4| Program Second Battery- Serial
t| Flash Flash YAV Flash |
6 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

2.3.1 Application Block

At the top of thisdiagram isablock, called “ Application,” consisting of five sub-blocks. The Application
block represents the code that you have to create. Everything below thisis provided by the libraries,

although you will need to specify some parts of the interface to these components. Thiswill be described
in detail in the following sections.

The application block is subdivided into 5 parts:

1. Compile-time initialization. Thisincludes things like selection of the appropriate library modules; ini-
tialization of static (constant) data structures and tables; selecting default network configuration; and
inclusion of static resources (external files) viathe #ximport or #zimport directives. The arrows

leading from the “ Compile-Time Initialization” sub-block indicate the tables that may be set up at com-
pile time; namely:

e The MIME type mapping table. This mandatory table indicates to the browser how the content isto

be presented to the user. Thisis necessary for the browser, and needs to be specified by the server,
however the server does not need to be particularly aware of the details,

e Theruletable. Thisisonly necessary if afilesystemisin use. It is used by the resource manager to

apply access permissions to the resources contained in afilesystem. This is necessary because not
all filesystems can associate file ownership and access rights with individual files.

e The dtatic resource table. Thisisthe classic method of defining resources in Dynamic C. Thistable

isoptional, since all necessary resources may be loaded in afilesystem, or in the dynamic resource
table. Most applications will contain at least afew static resources, as an initial default or fallback,
or for data that will never change such as alogo image.

e Program flash. Thisrealy represents the loading of resource files into program memory viathe

#ximport directive. There will almost always need to be afew #ximport files, but this can be
limited to afew kilobytes total.

2. Runtimeinitiaization. Your main () function needsto call some specific library functions, once only,
when it starts:

sock_init (). Thisisaways mandatory. It initializes the TCP/IP networking system.

sspec_automount (). Thisisoptional. It initializes the available filesystems (FS2 and/or FAT)
for use by the resource manager, Zserver.

http init (). Thisismandatory. It initializesthe HTTP server.

Various functions for setting up a user ID table, the rule table and/or the dynamic resource table.
These are optional, but would be used in the majority of applications. The user ID table can only be

initialized at run time, unlike the other tables that may, at least partially, be initialized at compile-
time.

3. Main loop. Thefinal codeinthemain () function continuously callshttp handler () and possi-
bly other functions. Thisis mandatory, since it allows the HT TP server to process requests from the net-

work. Other functions may be specific to your application. For example, you may need to poll an 1/0
device in order to obtain best performance.

4. Application specificsand I/O. Thisisreally your part of the application or, if you like, the “back end” to
the HTTP server. There are anumber of ways that your application can communicate with the HTTP
server. (These are not all shown on the diagram since it would add needless complexity.) Your applica-
tion can directly call functionsin the HTTP server, in the resource manager (Zserver), in TCP/IP, and

TCP/IP Manual, Vol. 2 rabbit.com 7

http://www.rabbit.com

just about anywhere else. One very clean and powerful interface is provided via #web variables, pro-
vided by RabbitWeb software which was introduced in Dynamic C 8.50.

5. CGl functions. CGI stands for “Common Gateway Interface,” however this acronym has amore specific
use in Dynamic C—it refersto a C function that is called by the HTTP server to generate some
dynamic content for the browser. Thisisthe only truly optional block. Many applications can be written
without resorting to CGI functions; however, there are some cases where the power and flexibility of a
CGlI will be required. Prior to Dynamic C 8.50, writing a robust CGI was the most difficult part of the
process. Starting with Dynamic C 8.50, there is a new style of CGI writing that simplifies the process
and reduces the chances of error. The old-style CGl is still supported for backwards compatibility.

2.3.2 HTTP Block

Let usnow progressto the HTTP server itself. In the diagram, thisisthe block with two circlesinside. The
server isresponsible for fielding requests from the outside world. Each request is analyzed to determine
the resource that is being requested, the user who is making the request, and whether the user is authorized
to obtain that resource. If the resource is available, the user is known and has the proper permissions, then
the resource is transmitted back to the browser.

Following the above steps in more detail, we have:

1. Analyze the request: obtain the resource name. Part of the information provided by the browser isa
request header that contains a URL (Uniform Resource Locator). The URL is simply the name of the
resource to retrieve. URL s typically look like a file namein a Unix-style filesystem, that is, component
directory and file names separated by slash (/) characters.

2. Obtain the user ID. The browser has the option of sending the username and password of its user. If it
does not do this, then the userid is “anonymous.” If thisis not good enough, then the browser can
awaystry again when it is denied a protected resource. On receipt of user credentials (name and pass-
word), the HTTP server consults the resource manager (which in turn looks up the rule table) to seeif
the user’s credentials are OK. If they are, then the resource manager also determines the group(s) of
which this user is amember. Thereafter, all access and permission checking is based on the group, not

the individual user.

3. Return the resource. Having verified the group accessrights (if necessary), the resource is transmitted
back to the user. The resource may be an HTML or image file obtained from program memory or afile-
system, or it may be a script file that is processed “on the fly” to generate markup language. It may
even represent a CGlI function that will be called to generate all the necessary response. Note that a
complete response requires a small amount of header information to be prefixed to the actual resource.
The HTTP server usually takes care of this, however CGls sometimes need to generate the header
themselves.

Referring to the diagram in Figure 2.1, you can see that there are several arrows leading in and out of the
HTTP server block. These represent lines of communication, and the arrow heads indicate the usual direc-
tion of dataflow or, for function cals, “who calls whom.”

1. Thisisanecessary optimization. There may be hundreds of individual users; however, the majority of
these would be considered to bein asingle “ class,” with that class giving equal accessto all its members.
Considering the class, i.e., group, as the entity that is requesting a resource reduces the amount of infor-
mation that needs to be stored.

8 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

2.3.3 HTTP Block Subcomponents

The inner circles represent subcomponents of the server. Thefirst of these, RabbitWeb, was introduced in
Dynamic C 8.50. RabbitWeb is an extension to C language syntax to simplify presentation of C language
objects (variables, structures) to a browser. RabbitWeb allows you to write web pagesin a special scripting
language. The script makesit easy to generate HT TP, which is the format expected by the browser. In addi-
tion, the script alows the contents of your C language objects to be turned into HTML fragments for pre-
sentation by the browser. See Chapter 5 for details about Rabbit\Web.

The small block named “#web Variables,” between the Application block and the RabbitWeb circle, indi-
cates that the #web variables are the means of communication between your application and the server.
Since #web variables areredly just ordinary C variables, arrays or structures, they are extremely easy to
manipulate by your application. Since they also have the property of being registered with the web server,
the server has easy access too. (Registering an object with the web server is discussed in Chapter 5.)

The second circlein the HTTP server block represents the classic way of generating dynamic content. SSI
(Server Side Includes) is also a scripting language. It is not nearly as easy to use SSl asit is to use Rabbit-
Web; however, an SSI can generate the same content as a RabbitWeb script. It isjust that you will need to
write CGlI functions, and such functions can get large and complicated fairly quickly! In fact, SSI hasthe

ability to invoke CGI functions whereas RabbitWeb does not. In addition, SSIs have the ability to include
other resources directly in the primary returned resource much like how #include worksin ANSI C.

The server a'so communicates with lower layersin the diagram. On the right hand side isthe TCP/IP
block. Thisisthe pipeline to the outside world, i.e., the browser. Usually only the server needs to talk
directly to TCP/IP (viaa TCP socket). Prior to Dynamic C 8.50, it was often necessary for the applica-
tion’s CGI functionsto call TCP/IP functions. Thisis no longer recommended. Instead, there are functions
inthe HTTP server that should be called to mediate all networking calls.

2.3.4 Zserver Block

Directly under the HTTP server block isthe Zserver, or resource manager, block. Thisisthe “central tele-
phone exchange” of the entire application. It controls access to many of the other blocks in the diagram. In
gpite of itsimportance and central placing, you do not usually need to be aware of itsinner workings.
Zserver has applicability to other types of servers, such as FTP, because it provides a consistent interface to
the various different types of resource. Asindicated in the diagram, Zserver is architected as aresource
manager and avirtua filesystem. The virtual filesystem is basically a notational convenience for accessing
all resources using a uniform naming scheme. The external appearance of the virtua filesystem is mod-
elled on the Unix approach. In Unix, al storage devices, and the filesystems contained therein, are
accessed from a single starting point known as the root directory, written as asingle slash (/) character.
Under the root directory may be any number of files and directories. Some of these directories may actu-
aly refer to acompletely different device and filesystem. The term for such directory entriesis mount-
point.

Note the distinction between this naming convention and the one used by (PC) DOS and similar operating
systems. In DOS, you have to explicitly indicate the device by prefixing the file name. For example,
C:\index.htm and A:\index.htm are different files, on different devices. On Unix you create two mount
points in the root directory; /backup and /production for example. Then, the above mentioned files are
known as /backup/index.htm and /production/index.htm. This may seem like a fine distinction, however it

TCP/IP Manual, Vol. 2 rabbit.com 9

http://www.rabbit.com

matches better with the naming convention used by HTTP, i.e,, the URL. It also offers greater flexibility
with regards to naming devices.

Zserver does not currently allow arbitrary mount-point names like Unix. Instead, there is an established
convention for each filesystem. If FS2 isin use, then thereis amount-point called “/fs2.” If the FAT file-
system isin use, then one or more mount points called “/A,” “/B,” “/C” etc. are created.

Since Zserver is the resource manager, it takes responsibility for mapping the various filesystems and
resource typesinto asingle unified API. This API not only takes care of the detailed differences between
the various filesystem APIs, but also alows some functions to be emulated that are not natively supported
by the underlying filesystem.

In addition to the resource storage and filesystem, the resource manager needs to be able to associate other
datawith each resource. This other datais divided into two categories, which are listed in the blocks on the
left of the diagram.

The two categories are “ metadata’ and “authorization.” Metadata consists of two tables: the MIME table
and the Rule table. The authorization dataiis currently just asingle table of userids. The reason for the split
into two categories is this. the metadata is logically associated with individual resources, whereas the
authorization data is a mapping from external entities (“users’) to the unit in which authorization is per-
formed, namely user groups. The Rule table has some overlap, since it associates groups with individual
resource permissions.

The lowest blocks in the diagram are divided into two groups, with a dashed outline. The upper group is
labelled “filesystems,” and the lower “storage.” Both of these groups are indefinitely extensible, meaning
that new classes of storage and their organization (filesystems) may be added in future releases of
Dynamic C, or by you. The arrows between these groups are indicative of the most common patterns of
communication; others may be defined.

10 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

2.4 Architecture of a Toy Application

Using the diagram of the previous section as a basis, we now focus on writing a simple web-enabled appli-
cation. The following diagram is the same as the one above, except that the relevant parts have been visu-

ally emphasized. Thisdiagram is essentially the toy application that was described at the start of this
chapter. It shows the mandatory components for all web-enabled applications. Later, we introduce the

other elements of the diagram to show how afully featured application is built up.

Figure 2.2 Minimum components for a web-enabled application

Application
Compile-Time Run-Time Main Application CGl
Initialization 1 Initialization s Loop __»Specifics, I/O{__ Functions
A A
A
#web
Variables
K
N__— \
HTTP HTTP-X
Metadata
pmmmm . X
' R Requests,
o mive| esources Context
| Table '
' \ AJ
E N Zserver TCP/IP
|Rule : N (Resource Manager)
" |Table [! / I
/ Virtual File System Q
i User :
: Table :
Authorization
prmmmmmm e ¥-- .
1 | Static Dynamic '
4| Resource Resource FS2 FAT '
1 | Table Table '
r Q
‘:L' Program Second Battery- Serial :
T| Flash Flash Y Flash | |
TCP/IP Manual, Vol. 2 rabbit.com 11

http://www.rabbit.com

Let uswork again from left to right in the Application block. To reiterate, the Application block represents
the coding that you have to do. First, there is the compile-time initialization. Taking the super-simple
exampleillustrated in Figure 2.2, Dynamic C code is given with the relevant part highlighted in boldface.

#define TCPCONFIG 1
#use “dcrtcp.lib”
#use “http.lib”

#ximport “hellowww.html” hellowww html

SSPEC_MIMETABLE START
SSPEC_MIME (“.html”, “text/html”)
SSPEC_MIMETABLE END

SSPEC_RESOURCETABLE START
SSPEC_RESOURCE XMEMFILE ("/hellowww.html", hellowww html)
SSPEC_RESOURCETABLE END

void main() {
sock init();
http init();
for (;;) http_ handler();

}

Thefirst boldface line isthe #ximport directive. Thistells the compiler to include the specified filein
the program flash, and make it accessible viathe hellowww html constant. In the diagram, the arrow
from compile-time initialization to program flash represents thisinclusion. In most cases you would be
including more than just onefile.

The three lines starting with SSPEC_ MIMETABLE START areinitialization statements for the MIME
table. In this case, there is a single mapping from resources that end with “.html” to a MIME type of
“text/html.” All MIME types are registered with the relevant standards body, and must be entered correctly
so that the browser does not get confused. “text/html” isthe registered MIME type for HTML.

The next three lines, starting with SSPEC_ RESOURCETABLE_ START, Set up the static resource table.
Again, this contains a single entry that associates the resource name “/hellowww.html” with the file that
was #ximported on the first line. Note that the resource name suffix (.html) matches the first parameter of
the SSPEC_MIME entry.

Although not directly indicated on the diagram, the other compile-time initialization that is always
required is the #use of the appropriate libraries. In this case, the first three lines create a default TCP/IP
configuration (TCPCONFIG = 1) and bring in the networking and HTTP libraries. Note that http.1ib
automatically includes zserver.1lib.

Back in the Application block of the diagram, we move right and consider the runtime initialization block.
Thisiscontained inthemain () function. sock init () comesfirst, toinitialize the TCP/IP network
library and bring up the necessary interface(s). http init () resetsthe HTTP library to a known state.

The last statement embodies the Main Loop sub-block. Thisis aways required. Typically, only
http handler () needsto be caled; however, your application can insert callsto its own polling and
event handling code. Since thisis such a simple example, there is not even any application-specific code.

12 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

2.5 A Simple but Realistic Application
To turn the above toy example into something more realistic, we need to add some application specifics,
and the ability to customize the resource returned to the browser depending on the relevant state of the

application. The following diagram shows the necessary parts.
Figure 2.3 Minimum components for a web-enabled application with dynamic

content.
Application
Compile-Time Run-Time Main Application CGl
Initialization _1, Initialization |, ~ Loop __)Specifics, I/Q__ Functions
A A
\i
#web
Variables
X
HTTP HTTP-X
_Metadata X
. Requests,
ImivE| Resources Context
~| Table \\
Y Y
: N Zserver TCP/IP
'+ J[Rule [T > (Resource Manager)
} " |Table | / 1
/ Virtual File System
i |User |)
| Table (<=
Authorization
Optional i
pommmmmmafenanaes e Rt R | it
| Static Dynamic :
$| Resource Resource FS2 FAT
i [Table Table
S N AU N AR S R
R Y i mmeean S_tp_r?_QQI
4| Program Second Eattlfr{j' Serial
Flash Flash RAM Flash

The easiest way to introduce dynamic content is to use RabbitWeb and the associated scripting language.
SSI can be used instead (described in Section 4.5.2.1). Thisexample, illustrated in Figure 2.3, assumes that
you have RabbitWeb. Chapter 5 describes RabbitWeb and the scripting language, ZHTML, in detail.

TCP/IP Manual, Vol. 2 rabbit.com 13

http://www.rabbit.com

The following code is asimplification of Samples\tcpip\rabbitweb\web.c.

#define TCPCONFIG 1
#define USE RABBITWEB 1

#use "dcrtcp.lib™
#use "http.lib"

#ximport "my app.zhtml" my app zhtml

SSPEC MIMETABLE START
SSPEC_MIME FUNC(".html", "text/html", zhtml handler),
SSPEC _MIMETABLE END

SSPEC_ RESOURCETABLE START
SSPEC RESOURCE XMEMFILE ("/index.html", my app zhtml)
SSPEC_RESOURCETABLE END
int io_ state;
#web io state

void my io polling(void);

void main ()

{

sock init () ;

http init () ;

for (;;) {
my io polling();
http handler () ;

}
}

void my io polling()

{
}

The differences between the above code and the toy example in the previous section areinboldface.
All the differences relate to the use of RabbitWeb. Thefirst additionisa#def ine of USE_RABBITWEB.
Thisis necessary in order to include the necessary library code.

Next, there is amodification to the MIME table. The SSPEC_MIME FUNC macro definesan entry that
saysthat if the resource name endswith “.html” then the MIME type is text/html (as before), and thereisa
special scripting function that must be run by the HTTP server. This scripting function iscalled

zhtml handler; itisprovided by the HTTP library. ZHTML is the unique embedded scripting lan-

guage that converts script filesinto ordinary HTML so the browser can understand it.*

io state = read that io device();

Theint io_state and #web statements define and register aweb variable. Such avariable is an ordi-
nary global variable as far as your C program is concerned. In addition, the script is able to accessiit.

1. Most applications will want to use a different resource suffix to distinguish between “ordinary” HTML
files and script files. The samples provided with dynamic C use .zhtml for script files, and .html for plain
HTML. In this sample, we only have script files, so it is convenient to retain the .html suffix. The other
reason for this relates to the way the HTTP server handles requests for adirectory. If given aURL of “/”,
the HTTP server will append “index.html” to determine the actual resource. We take advantage of this
default behavior so that this sample would work as expected.

14 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

my io polling () isafunction that ispart of the Application Specifics sub-block. Asthe name sug-
gests, it is called regularly to poll some external device so asto keep the #web variable up-to-date. The
implementation of themy io polling () functionisshown updating the #web variable, but we don’t
specify the actual 1/0 reading function since that istoo, well, application specific.

Now you may be wondering what this scripting language, ZHTML, looks like. The following code shows
the contents of themy app.zhtml file

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>

<BODY><H1>Web Variables</H1l>

<P>The current value of io_state is

<?z echo($io_state) ?>

</P>

</BODY></HTML>
Thislooks like plain HTML, and it is, with the only difference being the existence of special commands
flanked by “<?z” and “?>.” In this case, the command simply echos the current value of the web variable
that was registered. The value (binary in the global variable) is converted to ASCII text by adefault
printf () conversion, in thiscase“%d" because the variable is an integer. When the browser getsthe
results returned by the HTTP server, it will see:

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1l>
<P>The current value of io state is
50
</P>
</BODY></HTML>

Where the “50” represents the current variable value—of course, it may be any decimal value that an inte-
ger variable could take: -32768 through 32767.

Thisistill atrivial example, but it is infinitely more real-world than the toy example. We have introduced
the concept of dynamic content, which is required for embedded type applications. One thing that has been
glossed over is how (and even whether) the variable can be updated from the browser, rather than just
within the application. Yes, all #web variables may be updated via the browser. This requires use of
HTML forms, which is a subject covered in Chapter 4 and Chapter 5. We will not go over this again here;
however, the possibility of remote updating introduces us to the topic of the next section, access control.

TCP/IP Manual, Vol. 2 rabbit.com 15

http://www.rabbit.com

2.6 Adding Access Controls

If your application allows updating of the controller state via remote access, and the network connection
allows access from locations that are not always under control, then it isimportant to add some access con-
trols or “security.”

The most common way of doing thisisto define a set of users, plus a method of authenticating those users,
and attaching a set of “permissions” to each resource. The Dynamic C libraries allow you to do thisfairly
easily, viatwo tables. The relevant tables are:

TheUser Table

The user table contains alist of user 1Ds (short strings) and authentication information (currently a pass-
word string). Each user table entry also contains a group mask. The group mask indicates the user groups
to which this user belongs. Up to 16 groups can be defined, and any given user can belong to one or more
of these 16 groups. There are two additional masks in each user table entry. Thefirst is awrite access mask
that indicates which server(s) allow the user to write (modify) its resources. The second mask indicates the
server(s) that can recognize the user.

TheRuleTable

Theruletableisalist of information associated with each resource name, generally called “ permissions.”
Each resource has the following information:

e Theream (string) that may be used by certain servers (including HTTP).

e The group mask of the user groups that are allowed read-only access.

e The group mask of the user groups that are allowed modify/write access.

e The server(s) that are allowed any access to this resource.

e The authentication method that is recommended.

e The MIME type of the resource.

Resources in the static and dynamic resource tables may be set up to have their own specific permissions,
independent of the rule table itself. Resources in afilesystem may be very numerous hence a simple one-
to-one table would waste alot of storage. To solve this problem, the rule table uses a name prefix matching
algorithm. Using this technique, entire directories of resources need only have one rule table entry pro-
vided that all resources therein use the same permissions.

16 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

The following diagram shows the application components when access control is added:

Figure 2.4 Minimal components of a web-enabled application with dynamic
content and access control

Application
Compile-Time Run-Time Main Application CGl
Initialization _|J Initialization |, ~ Loop __>Specifics, I/Q__ Functions
A A
\d
#web
Variables
/)

HTTP HTTP-X

Metadata

e . A A

' Requests,

L [MImE] Resources Context

| Table \\

: Y y

5 : Zserver TCP/IP
L > Rule [~ (Resource Manager)

>

o

D
\v /

/ Virtual File System Q

Authorization /
Y AN JUS SR VR File Systems
| Static Dynamic ;
+| Resource Resource FS2 FAT
1 | Table Table :
S S '
____________________ e
; Battery- . :
+| Program Second Y Serial |
*| Flash Flash Badked Flash | |

The main difference between this and the previous diagram is that the Rule Table and User Table blocks
have been activated.

TCP/IP Manual, Vol. 2 rabbit.com

http://www.rabbit.com

The sample program is now expanded to add access control. As before, the changesareinboldface.

#define TCPCONFIG 1
#define USE RABBITWEB 1

#define USE HTTP BASIC AUTHENTICATION 1

#use "dcrtcp.lib™
#use "http.lib"

#web groups monitor group, admin group
#ximport "my app.zhtml" my app zhtml

SSPEC MIMETABLE START
SSPEC_MIME FUNC(".html", "text/html", zhtml handler),
SSPEC _MIMETABLE END

SSPEC _RESOURCETABLE START
SSPEC_RESOURCE XMEMFILE ("/index.html", my app zhtml)
SSPEC _RESOURCETABLE END

int io state;
#web io state auth=basic groups=monitor group(ro),admin group

void my io polling(void) ;
void main ()

sspec_addrule("/index.html", "Pet", admin group |monitor group,
0, SERVER HTTP, SERVER AUTH BASIC, NULL);

sauth setusermask(sauth adduser ("admin", "dog", SERVER ANY),
admin group, NULL) ;

sauth setusermask(sauth adduser ("monitor", "cat", SERVER ANY),
monitor group, NULL) ;

sock init () ;
http init () ;

for (;;) {
my io polling() ;
http handler () ;

}
}
void my io polling()

{
}

io state = read that io device() ;

18 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

The first change isthe definition of USE_ HTTP BASIC AUTHENTICATION. Thissetsupthe HTTP
server to be able to process this form of authentication. If not defined, then the server is unable to do this;
thereislittle point in setting up any other access controlsif the user cannot be verified!

Next, the user groups are defined. In this case, we are defining an “admin” and a*“monitor” group. Pre-
sumably, the admin group has ability to alter the state of the controller, but the monitor group can only read
its current state. The names admin group andmonitor group are actualy defined to be unsigned
integer constants with just one bit set out of 16.

The #web registration of the io_state variableis augmented with some access controls. #web vari-
ables are not strictly resources—they are included as parts of other resources—however, they can be
assigned some access controls of their own. In this example, access to the variable is being set to require
“basic authentication,” and the allowable user groups are both of the defined groups, with the proviso that
the monitor group is to be allowed read-only access.

The last mgjor changeisinthemain () function, where some runtime initialization needs to be per-
formed. Since the user ID table cannot be statically initialized (i.e., at compile-time), thisis a necessary
step. The rule table can be statically initialized, but in this example we choose to do it at runtime.® First,
the rule table entry:

sspec_addrule ("/index.html", "Pet", admin group|monitor group, O,
SERVER_HTTP, SERVER AUTH BASIC, NULL) ;

The first parameter specifies the name of the resource to which this rule applies; or rather, the first charac-
tersin the resource name. For clarity, the sample shows the full name. In practice, since thereisonly one
resource, it would be acceptable to usejust “ /" instead of “ /index.html.”

The second parameter, “Pet,” isan arbitrary string called the “realm.” Thisis presented to the browser’s
user when prompted for the password, as shown in Figure 2.5.

Figure 2.5
Enter Network Paszsword | 7] |
% Pleaze type your uzer name and pazsword,
Site: 1010422
Realm Fet
Uszer Hame I

Pazzword I

[~ Save this password in vour passward list

OF. I Cancel

1. Inthis example we also choose to use arule table. Thisis not strictly necessary since no filesystemisin
use. The dlternative isto use a different form of initializing the static resource table, namely by using the
SSPEC_RESOURCE_ P XMEMFILE macro, which allows permission information to be stored in
the static table instead of in the rule table. See Section 3.2.5.3 ” Static Resource Table.”

TCP/IP Manual, Vol. 2 rabbit.com 19

http://www.rabbit.com

The third and fourth parameters indicate the group(s) that have read and write access to the resource. Both
groups are alowed read access, and none write (0). Note that the resource in this case isthe
index.html page, not the variables which may or may not be displayed on it. Since this web page
(actually aZHTML script) isin program flash, it is obviously not modifiable.

The SERVER_HTTP parameter indicates that this resource is only visible from the HTTP server. This
would be more relevant is there was another server, such as FTP, running concurrently.

SERVER_AUTH BASIC indicates that the server should use “basic authentication” when the browser
callsfor thisresource. Note that Zserver does not enforce the method of authentication; it only stores the
recommended method in the rule table. Any enforcement of authentication requires the co-operation of
the server, since each different type of server may have widdy different means of implementing the same
type of authentication. Rest assured that the HTTP server (and other servers provided with Dynamic C)
always enforce the suggested authentication method.

Thefinal NULL parameter allows some arbitrary datato be stored in the rule table entry. This datais avail-
ableto the server. It is not currently used by any of the serversin Dynamic C, but it may be useful if you
implement your own server.

Now, let’s turn to the user ID initialization:

sauth setusermask (sauth adduser ("admin", "dog", SERVER ANY),
admin group, NULL) ;

Thisisanested function call. sauth _adduser () iscalled first, to add auser called “admin” with pass-
word “dog.” Thisuser isvisibleto all servers (SERVER ANY).

The result of this function call isauserlD handle, which isthe first parameter to

sauth setusermask (). Thisfunction explicitly assigns a group mask to the user. You can omit this
call; however, the default method of assigning group masksis designed to be backward compatible with
old versions of the library, and may not be what you want when using new features. You should always use
the sauth setusermask () function for each user ID.

In this example, we have added access control to the code. We do not need to change the ZHTML script,
although in reality you would probably want to. Using the script unchanged, when the user triesto retrieve
index.html, the browser will prompt for a userid and password. If one of the valid usersis entered,
then the page will be displayed. Otherwise, the browser will print an error message saying that access was
denied.

20 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

Unfortunately, as written above, the sample will not allow us to test the distinction between the two users
regarding the ability to modify the #web variable. We have shown how to add access control, but not how
to actually specify aweb form that allows the user to update the variable. It turns out that adding aformis
not difficult. A modified script fileis shown below. Thereis quitealot to HTML forms, so most of the
details are documented el sewhere. There are many good HTML reference books available.

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</Hl>
<P>The current value of io state is
<?z echo($io state) ?>
</P>
<?z if (error($io state)) { 2>
<P>Sorry, you were not authorized to perform an update.</P>
<?z } ?>

<FORM ACTION="/index.html" METHOD="POST">
<P>Enter a new value if you dare:</P>

<INPUT TYPE="text" NAME:"io_state" SIZE=5
VALUE="<?z echo($io state) ?>">
<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" VALUE="Reset">
</FORM>
</BODY></HTML>

If you run the above sample with this script, then the user will be able to attempt an update to the #web
variable, io_state. If the user was “monitor,” that is, not able to make an update, then the “ Sorry” mes-
sage will be printed. Recall that the accessto 1o state was set up when the variable was registered with
#web.

You may be asking how the application notices when the #web variable is updated by the browser, not just
inthemy io polling () function. Thisisagood question, sincethe HTTP server updates the variable
just likeanormal C variable. The solution to this requires that you specify an “update’ callback functionin
the #web variable registration. Thisis described in detail in Chapter 5. For the purposes of this section,
just remember that it is easy to do.

TCP/IP Manual, Vol. 2 rabbit.com 21

http://www.rabbit.com

2.7 A Full-Featured Application

The previous examples have relied on #ximport to store filesin the program flash. Thisislimiting in
terms of storage capacity and does not allow for dynamic file updates. Adding the ability to storefilesin a
filesystem that is located somewhere besides the program flash is of high value because it adds storage

capacity and alows for dynamic updates.
Figure 2.6 Components of a full-featured web-enabled application.

Application
Compile-Time Run-Time Main Application CGl
Initialization _|J Initialization |, ~ Loop __>Spe0|f|cs, I/Q__ Functions
A A
A
#web
Variables
A
~— !
HTTP HTTP-X
_Metadata y\
Requests,
| MIME| Resources Context
Table \\ v A
RN Zserver TCP/IP
> Rule [> (Resource Manager)
i |Table | ! / i
[—'—'—'—'—'—'—'—'—'—'—;/ Virtual File System {::’3
i | User |]
1| Table <=
Authorization /
__________________ N i e en oo \[1le Systems
| Static Dynamic
| Resource Resource FS2 FAT
i | Table Table
S R AN N A S B
____________ NoenenmemooogStOrage
+| Program Second Battery- Serial
Flash Flash Backed Flash

RAM

As mentioned previoudly, Zserver implements avirtual filesystem that can be used by an application for a
clean, consistent interface to the various avail able methods of resource organization. An application can
also bypass the resource manager and access a filesystem directly. (Note that there is no arrow in the dia-
gram showing this line of communication.)

Looking at the bottom of the diagram in Figure 2.6 you can see that there are some additional hardware
requirements when using FAT or FS2. The FAT needs a serial flash; and FS2 needs a second flash or bat-
tery-backed RAM, as well as a Rabbit 2000 or 3000 processor.

22 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

The sample program is now expanded to use a FAT filesystem and has the ability to upload filesto it. As

before, the changesareinboldface.

#define FAT USE FORWARDSLASH
#define FAT BLOCK
#define USE HTTP UPLOAD

#define TCPCONFIG 1
#define USE RABBITWEB 1
#define USE HTTP BASIC AUTHENTICATION 1

#use "sflash fat.lib"
#use "fat.lib"

#use "dcrtcp.lib"

#use "http.lib"

#web groups monitor group, admin group
#ximport "my app.zhtml" my app zhtml

SSPEC MIMETABLE START
SSPEC_MIME FUNC(".html", "text/html", zhtml handler),
SSPEC MIME (".cgi", "m)

SSPEC_MIMETABLE END

SSPEC RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE ("/index.html", my app zhtml),
SSPEC_RESOURCE CGI ("upload.cgi", http defaultCGI)
SSPEC_RESOURCETABLE END

int io state;
#web io state auth=basic groups=monitor group(ro),admin group

void my io polling(void) ;
void main ()

int rc;

sspec_addrule ("/index.html", "Pet", admin group|monitor group,

0, SERVER HTTP, SERVER AUTH BASIC, NULL) ;

sauth setusermask (sauth adduser ("admin", "dog", SERVER ANY),

admin group, NULL) ;

sauth setusermask (sauth adduser ("monitor", "cat", SERVER ANY),

monitor group, NULL) ;
rc = sspec_automount (SSPEC MOUNT ANY, NULL, NULL, NULL);

if (rc)
printf ("Failed to initialize, rc=%d\n
Proceeding anyway...\n", rc);

sock init () ;

http init();

for (;;) {
my io polling() ;
http handler() ;

}

TCP/IP Manual, Vol. 2 rabbit.com

23

http://www.rabbit.com

The first change is the addition of FAT USE FORWARDSLASH and FAT BLOCK. These are needed by
Zserver to work with the FAT filesystem. The definition of USE_ HTTP_UPLOAD is needed for Zserver to
use the file upload feature. Next, the libraries for the FAT (fat . 1ib) and for the serial flash driver
(sflash fat.lib) arebroughtinwith #use statements.

The MIME type mapping for CGlsis added to the MIME table with SSPEC_ RESOURCE_ CGI. An
empty string is the registered type for CGls. This makes sense since CGls are not displayed by the
browser.

Next, we want to give the server access to the CGI function by creating an entry for it in the static resource
tablewith SSPEC_RESOURCE_CGI. Thefirst parameter isastring that must match the string used in the
FORM ACTION tag inthe HTML code. The second parameter identifies the CGI function that will be
called when the form is submitted. http defaultCGI () isaCGl that is provided with the HTTP
server. It uploads filesto a FAT filesystem, shows a status page to the browser after the upload and alows
the user to click back to the server’s home page. For a detailed description of the file upload feature, see
Section 4.6.

Finally, the FAT filesystem must be readied for use. The call to sspec_automount () takescare of
everything, assuming that a FAT partition already exists on the serial flash. How to create theinitial file-
system is discussed in the Dynamic C User’s Manual.

The application now supports uploading files to the FAT, but we have yet to give the user any way to actu-
aly doit. That involves changing the HTML page.

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1l>
<P>The current value of io_state is
<?z echo($io_state) ?>
</P>
<?z if (error($io_state)) { 2>
<P>Sorry, you were not authorized to perform an update.</P>
<?z } ?>

<FORM ACTION="/index.html" METHOD="POST">
<P>Enter a new value if you dare:</P>
<INPUT TYPE="text" NAME="io state" SIZE=5
VALUE="<?z echo($io_state) ?>">
<INPUT TYPE="submit" VALUE="Submit"s>
<INPUT TYPE="reset" VALUE="Reset">
</FORM>

<FORM ACTION="upload.cgi" METHOD="POST" enctype="multipart/form-
data">

<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=1>
<TR>
<TD ALIGN=RIGHT>File to upload
(to /A/new.htm)</TD>
<TD><INPUT TYPE="FILE" NAME="/A/new.htm" SIZE=50></TD>
</TR>
</TABLE>
<INPUT TYPE="SUBMIT" VALUE="Upload">
</FORM>
</BODY></HTML>

24 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

Thetext in boldface is the description of a new form, which, when displayed by the browser, alows afile
to be uploaded to a FAT filesystem.

The FORM tag includes
the METHOQOD attribute,
which isthe same asthat

|Web Variables - Mozilla {Build ID: 2001090111} NI

=]l

File Edit View Search Go Bookmarks Tasks Help

of thefirst form. The Web Variables
ACTION attribute has
changed to specify the The current value of {o_state is 50

CGil function that was
added to the server’s

dtatic resourcetable; this || Fo _ Submit | Reset |
isthe default CGI pro-

vided by the server. File to upload
When the Upload but- (to /A/new.him) Browse... |

tonis clicked, Upload |
http defaultCGI (
) will be called by the
server. A new attributeis
included that specifiesthe MIME type used to submit the form to the server: enctype="multipart/form-
data'. Thisisthe MIME type required when the returned document includes files.

Enter anew value if you dare:

Note that the two forms are being submitted and processed separately. Could they be processed as one
form? Yes, but from a modular design perspective, it makes sense to keep the form submissions separate
when the purpose of each form is entirely separate.

You may have noticed that no security was added to protect the filesystem—anyone can upload afile that
passed the initial user and password protection that limits access to the web page. Thisis probably not the
ideal situation. Typically there needs to be some limit placed on who is able to write to the filesys-
tem.When considering security, there are three possible things to protect:

e The web page that contains the form. Give read access only to those users who could conceivably
upload the files specified therein.

e The CGl itself. Protect the same as the web page.

e The uploaded resource. You should set up arule alowing write access only to the intended user(s).

When defining user 1Ds that can use the upload, don't forget to give those users overall write access using
ed.

sauth setwriteaccess(uid, SERVER HTTP) ;
Another way to design this application is to have a separate HTML file that contains the form for the file

upload; then instead of having the form for the file upload on the current HTML page, you put alink to the
new page and then apply a permission to alow the new page to be displayed, such as:

sspec_addrule (“/newpage.html”, “Pet”, admin group, admin group,
SERVER HTTP, SERVER AUTH BASIC, NULL);

TCP/IP Manual, Vol. 2 rabbit.com 25

http://www.rabbit.com

That way the only people who see the Upload button are those authorized to use it. Design decisions such
as these are guided by the needs of the application. The point here is that these design decisions are not
limited by the underlying tools you are using to accomplish your goal.

2.8 Living Without RabbitWeb and FAT

Without the use of RabbitWeb we are back to SSI tags in the HTML page and writing a CGlI to process

them. With the new-style CGlsintroduced in Dynamic C 8.50, thisis easier than it used to be. If thereisno

seria flash, the FAT filesystem isn’t available; but if there is a second flash or some battery-backed RAM,

FS2 is. The following diagram shows the components that are used in this case. Note that even though

both the second flash and the battery-backed RAM are highlighted, an application can use either or both.
Figure 2.7 Components of a full-featured web-enabled application.

Application
Compile-Time Run-Time Main Application CGl
Initialization _| Initialization |, ~ Loop _l 5 Specifics, I/Q_| Functions
A A
A
#web
Variables
X
S ¥
HTTP HTTP-X
_Metadata X
Requests,
_ImivE| Resources Context
~| Table \\
Y Y
3 AN Zserver TCP/IP
>Rule | . > (Resource Manager)
Table [/ 1
/ Virtual File System Q
User |/)
Table (e«

______________________ File Systems
| Static Dynamic
$| Resource Resource FS2 FAT
i | Table Table
S N SR N AN S B
RS D AR e mmeenn yStorage
| Program Second E:E@é Serial
i | Flash Flash RAM Flash

rabbit.com Web-Enabling Your Application

http://www.rabbit.com

The sample program is now modified to use the FS2 filesystem. It still has the ability to upload files to the
filesystem. Asbefore, the changesareinboldface.

#define USE_HTTP_ UPLOAD

#define TCPCONFIG 1
#define USE HTTP BASIC AUTHENTICATION 1

#use "fs2.1lib"

#define admin group 0x0001
#define monitor group 0x0002

#use "dcrtcp.lib"
#use "http.lib"

#ximport "my app.shtml" my app shtml

SSPEC MIMETABLE START
SSPEC_MIME FUNC(".ssi", "text/html", shtml handler),
SSPEC_MIME(".Cgi", UL

SSPEC_MIMETABLE END

int io state;

SSPEC RESOURCETABLE START
SSPEC_RESOURCE_ROOTVAR (“io state”, &io state, INT16, “%d”),
SSPEC_RESOURCE_XMEMFILE ("/index.html", my app shtml),
SSPEC _RESOURCE CGI ("upload.cgi", http defaultCGI),
SSPEC_RESOURCE CGI ("update.cgi", VarUpdateCGI)

SSPEC _RESOURCETABLE END

void my io polling(void) ;

void main ()

int rc;

io state = 42;

sspec_addrule ("/index.html", "Pet", admin group|monitor group,
0, SERVER HTTP, SERVER AUTH BASIC, NULL) ;

sauth setusermask (sauth adduser ("admin", "dog", SERVER ANY),
admin group, NULL) ;

sauth setusermask (sauth adduser ("monitor", "cat", SERVER ANY),

monitor group, NULL) ;
rc = sspec_automount (SSPEC _MOUNT ANY, NULL, NULL, NULL);

if (re)
printf ("Failed to initialize, rc=%d\n
Proceeding anyway...\n", rc);
sock init();
http init();
for (;;) {

my io polling() ;
http handler () ;

}

TCP/IP Manual, Vol. 2 rabbit.com 27

http://www.rabbit.com

Thefirst change is the removal of the macros we added for FAT and also the removal of #use statements
for the FAT library and the associated serial flash driver library. Aswith the samplein the last section, this
code assumes that a valid filesystem partition exists on the target board; in this case, it's an FS2 partition.
In the simplest case, which is one FS2 partition on the secondary flash, bringingin £s2.11ib and then
mounting the filesystem with acall to sspec_automount () isall that isrequired. (For more informa-
tion on FS2, refer to the Dynamic C User’s Manual.)

The next changeisthe #def ine of the user groups. Each user group has to be explicitly given avaue
when RabbitWeb is not available to do it. Note that they are word values, each with a unigue bit position
Set.

Next, thefirst entry in the MIME table was changed. Recall that the entry “ /" and requests without an
extension are dealt with by the handler in the first entry of the MIME table. In this example, if a browser
pointsto the Rabbit board’s I P address, the pageis processed by shtml handler (), ahandler that will
understand the SSI tags that we are about to add to the HTML file. The #ximport statement did not, techni-
cally, need to change. The extension used for the file was changed from . zhtml to . shtml. Thesefile
extensions are only a convention. The important thing isthat the HTML file is touched by the correct han-
dler function. As amatter of fact, in this example, our HTML page is not recognized by the server as end-
ing with either .zhtml or .shtml, but by . htm1. The name known to the server is determined by the name
parameter of the file's resource table entry, “/index.html.”

The next change is a new entry in the static resource table. This reflects the shift in how the variable
io state becomesknown to the HTTP server. Previoudly, it was done using the #web statement of
RabbitWeb.

A second new entry in the resource table is for a CGI function that will handle the processing when

io state isupdated. When using RabbitWeb, this same form submission did not require a CGI. The
enhanced HTTP server took care of all the details for us. Without Rabbit\Web, we have to do the work our-
selves. Fortunately, the new-style CGls make thisjob easier. A detailed description of writing a new-style
CGl isgivenin Section 4.6 "HTTP File Upload.” Aswe saw in Section 2.7, thereisaCGIl inhttp.1ib
that processes file uploads to afilesystem. If you study and understand Section 4.6 and the code in

http defaultCGI (), youwill be ableto write anew-style CGI that will process the form that is sub-
mitted when io_state ischanged.

28 rabbit.com Web-Enabling Your Application

http://www.rabbit.com

Since we are not using RabbitWeb and have changed from using FAT to FS2, the HTML page must be
changed. Asbefore, all changes are in boldface.

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1l>

<P>The current value of io state is:
<!--#echo var="io state” -->
</P>

<FORM ACTION="update.cgi" METHOD="POST" enctype="multipart/form-
data">

<P>Enter a new value if you dare:</P>
<INPUT TYPE="text" NAME="io state" SIZE=5
VALUE="<!--#echo var="io state” -->">
<INPUT TYPE="submit" VALUE="Submit"s>
<INPUT TYPE="reset" VALUE="Reset">
</FORM>

<FORM ACTION="upload.cgi" METHOD="POST" enctype="multipart/form-
data">

<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=1>
<TR>
<TD ALIGN=RIGHT>File to upload
(to /A/new.htm)</TD>
<TD><INPUT TYPE="FILE" NAME="/fs2/extl/new.htm"
SIZE=50></TD>
</TR>
</TABLE>
<INPUT TYPE="SUBMIT" VALUE="Upload"s
</FORM>
</BODY></HTML>

The first change is the substitution of the new server-parsed tags with SSI tags. The next change isthe
absence of any error checking. Without RabbitWeb, it is difficult to achieve this same functionality. The
CGil responsible for the processing the variable update would need to do it. Which brings us to the next
change in thisHTML page, the need for a second CGI function.

The ACTION attribute in the FORM tag identifies the new CGI by name, update.cgi. The FORM tag
also has a parameter for the encoding type. When no encoding typeis specified, it defaults to URL-
encoded. All new-style CGls must set the encoding type in the FORM tag to “multipart/form-data’ as
shown above.

The other change on this page is the NAME attribute in the first INPUT tag of the second form. When
uploading to an FS2 partition, the mount-point “/fs2” must be prepended to the filename. The /extl part is
also prepended to the filename and refers to the second flash. The default CGI function can now store an
uploaded filein avalid FS2 partition.

TCP/IP Manual, Vol. 2 rabbit.com 29

http://www.rabbit.com

30

rabbit.com

Web-Enabling Your Application

http://www.rabbit.com

PRODUCT MANUAL

3. SERVER UTILITY LIBRARY

This chapter isintended to be a detailed description of the resource manager, Zserver, and how it interfaces
to other libraries, such as servers (HTTPR, FTP etc.) and filesystems (FS2, FAT). For an overview, please
see Chapter 2., “Web-Enabling Your Application.”

The resource manager, Zserver . 1ib, contains the structures, functions, and constantsto allow HTTP
(Hypertext Transfer Protocol) and FTP (File Transfer Protocol) servers to share data and user authentica-
tion information while running concurrently.

In general, you do not need to know some of the details of Zserver described in this chapter if you are
using the server libraries provided with Dynamic C. Such sections are marked as “advanced,” and you may
skip them unless you are writing a server or filesystem. Some sections are marked “historical.” They are
included to describe how previous versions of the library worked. These may be skipped for new code.

The basic facility provided by Zserver is the ability to translate resource names (URLs in the case of
HTTP) into references to filesystem and memory objects. The term resource refers to the objects (files,
functions and variables) that are manipulated by the Zserver library on behaf of the server. A fileresource
refers specifically to aresource of typefile, as opposed to the actual file that is manipulated by an underly-
ing filesystem (which may not be a resource as such).

Support for HTML formsisalsoincluded in Zserver. 1ib. Starting with Dynamic C 8.50, an enhanced
HTTP server (RabbitWeb) is available that has an easy-to-use interface for form generation and no limita-
tions on the form layout. See Chapter 5 for more information on this enhanced HTTP server.

Zserver supports the concept of avirtual file system. Thisis modeled on the Unix directory structure.

3.1 Data Structures for Zserver.lib

There are several data structuresin this library that servers with Zserver functionality must use, and may
need to be manipulated or initialized by the application program:

® MIMETypeMap

® ServerSpec

® ServerAuth

® ServerPermissions

® RuleEntry

Use of the following structuresis considered advanced:

® ServerContext
® SSpecStat

® sspec_ fatinfo

TCP/IP Manual, Vol. 2 rabbit.com 31

http://www.rabbit.com

The following structures are documented for historical reasons:

® FormVar

® SSpecFileHandle

3.1.1 MIMETypeMap Structure

This structure, organized into a table, associates a file extension with a MIME type (Multipurpose I nternet
Mail Extension) and a function that handles the MIME type. Users can override HTTP MAXNAME
(defaults to 20 characters) in their source file. If the function pointer given is NULL, then the default han-
dler (which sends the content verbatim) is used.

typedef struct

char extension[10] ;

char type [HTTP MAXNAME] ;

int (*fptr) (/* HttpStatex */);
} MIMETypeMap;

For example, to create an HTTP server that can serve files with html or gif extensions, the following decla-
ration is required in the application code:

SSPEC MIMETABLE START
SSPEC_MIME (".html", "text/html"),
SSPEC MIME(".gif", "image/gif"),
SSPEC_MIMETABLE END

Use of the above macros is the recommended method for maintaining forward compatibility. For more
information, see Section 3.2.5.2 "Static MIME Type Table." All these macros are doing is generating the
correct C syntax for a static constant initializer.

Note that servers that do not implement MIME, such as FTP, do not require a MIME table to be defined.
Currently, thistableisrequired only for HTTP.

32 rabbit.com Server Utility Library

http://www.rabbit.com

3.1.2 ServerSpec Structure

This structure is used for both the static and dynamic resource tables. The only difference between these
two tablesisthat oneisaconstant (initialized at compile-time) and the other is created at runtimein RAM,
and thus modifiable.

Historical note: The Ht tpSpec datastructure in HTTP . 1ib used prior to Dynamic C 8.50 is now syn-
onymous with this structure, ServerSpec.

typedef struct
word type;
char name [SSPEC MAXNAME] ;
long data;
void *addr;
word vartype;
char *format;
ServerPermissions perm;

#ifdef FORM_ERROR BUF
#endif
} ServerSpec;
The structure fields are described below. The #ifdef expression adds somefieldsto the ServerSpec
structure if the HTML form functionality provided by Zserver isincluded by the web server application.

These fields are not described below. For more details, Section 4.5.4 "HTML Forms Using Zserver.lib."

Starting with Dynamic C 8.50, enhanced support is provided for HTML forms with the Dynamic C Rab-
bitWeb software. RabbitWeb provides an easy to develop web interface for your embedded device and
allows for complete flexibility in form layout. See Chapter 5 for more information on this enhanced HTTP
server.

In older versions of Dynamic C, it was necessary to explicitly create the static resource table by doing
something like this:

const HttpSpec http flashspec[] = {

}i

in your main application code (filling in the entries, of course). Starting with Dynamic C 8.50, there is new
recommended syntax for creating these resources, using the SSPEC_ RESOURCETABLE* series of mac-
ros. This new method is recommended for maintaining future compatibility. For more information, see
Section 3.2.5.3 "Static Resource Table."

TCP/IP Manual, Vol. 2 rabbit.com 33

http://www.rabbit.com

3.1.2.1 ServerSpec Fields

The fields in each resource table (static or dynamic) are usually manipulated via Zserver functions, or by
using the SSPEC_RESOURCE* macros. The field descriptions below are for reference only.

type Thisfield tellsthe server if the entry isafile, variable or function
(SSPEC_FILE, SSPEC VARIABLE, SSPEC_ FUNCTION, €efc.).

name Thisfield contains the resource name, as a null-terminated string.

data Location of data(when *FILE isthetype of data), or maximum number of
variablesin aform (when SSPEC_FORM is the type of data)

addr Address of function or variable (when SSPEC_FUNCTION, SSPEC_CGI
or SSPEC_VARIABLE isthetype of data). Address of form struct for
SSPEC_FORM.

vartype Type of variable (when SSPEC_ VARIABLE isthe type of data), or length

of data(when *FILE isthetype of dataand the length is needed e.g., aroot
file). For SSPEC_HARDLINK, contains the sspec index number of a
http flashspec Or server spec entry.

format sprintf () format for avariable, or form title for aform, or base address
for SSPEC_ROOTFILE. For SSPEC LINK, pointsto astring containing
the linked-to resource name.

perm Permissions associated with this resource. |If realm subfield isNULL, then
the permissionstableisconsulted asfor filesystem resources. Note: thisfield
usedto be char* for therealm string (only). Programsthat used thisfeature
need to be modified. This structure is detailed under ServerPermissions.

There are some other fidlds that are conditionally included if HTTP forms are in use. These are not gener-
aly relevant. Seethelibrary source for details.

34 rabbit.com Server Utility Library

http://www.rabbit.com

3.1.3 ServerAuth Structure
This structure defines a global array that isalist of user name/password pairs.

ServerAuth server auth[SAUTH MAXUSERS] ;

Throughout this manual, this array is called the user table. Thefieldsin the Serverauth struct are
manipulated using the sauth_* () functions. The description below is for reference only.

username
password
mask
writeaccess
servermask

data

Name of user, or ""

Password, or "

Group mask

Which servers this user has write access to
Which serversthisuser isvisibleto

Arbitrary data (application-dependent)

3.1.4 ServerPermissions Structure

This data structure holds access permissions for aresource or a group of resources. An instance of
ServerPermissions iscontained in each ServerSpec structure, aswell aswithin each rule table
entry. Thefields for the ServerPermissions struct are:

realm

readgroups

writegroups

servermask

method

mimetype

Pointer to realm string of the resource. It isonly used by HTTP servers, but
can be used for other purposes.

Read permission is granted if the current ServerAuth.mask vaue
matchesin at least one bit position.

Write permissions is granted if the current ServerAuth .mask vaue
matchesin at least one bit position and ServerAuth.writeaccessis
Set.

A 16-bit mask with abit set for each server that can accessthisresource. NB:
for backwards compatibility, if thisis set to zero then all serversare allowed.

Authentication method(s) allowed: combination of SERVER_AUTH_ * hits.
Notethat Zserver.1ib doesnot directly support anything other than ba-
sic authentication, that is SERVER _AUTH BASIC; however, the required

information is stored here so that servers can access it as needed in aconsis-
tent manner.

MIME type for this resource, or NULL. If NULL, the MIME type will be
derived from the file name using the MIMETypeMap table caled

http types. If not found in that table, the first entry in that table will be
used (for backward compatibility.)

Historical note: Prior to Dynamic C 8.50, Ht tpRealm was used in place of ServerPermissions. If
you have used Ht t pRea 1m for password protection in existing code and are upgrading to Dynamic C

TCP/IP Manual, Vol. 2

rabbit.com

35

http://www.rabbit.com

8.50 or later, you must rewrite any code that used this old structure. For an example of the new way to
password protect an entity, see the sample program samples\tcpip\http\authentication.c.

3.1.5 RuleEntry Structure

This structure associates a resource name prefix with aserverPermissions structure. Therule table
isan array of these structures.

prefix Prefix of resource name(s) which are associated with thisrule table entry. If
there are multiple entries which match a resource name, then the rule with
the longest matching prefix is used.

perm ServerPermissions to usefor thisentry.

3.1.6 ServerContext Structure

Starting with Dynamic C 8.50, context information must be maintained by each server that wants Zserver
functionality. Therefore, servers must provide a ServerContext struct when required. The fields of
ServerContext are

userid Thisfield identifies the current user.

server Thisfield identifiesthe server, for example, SERVER _HTTP. Thisisone of
the few cases where only a single server bit should be set.

rootdir Thisfield isapointer to the root directory Thisisusualy “ /" if the whole
namespace is to be accessible. Otherwise, it may be, for example, “ /A" to
restrict accessto just thefirst DOS FAT partition. Thefirst and last character

must be*“ /"1

cwd [] Thisfield isan array containing the current working directory. Thiswould
normally contain the root directory as a prefix. Thefirst and last character
must be“ /!

dfltname Thisfield pointsto afile nameto be used as aresource name suffix when the

first parameter refersto a directory name.

The SserverContext structure helps support more powerful resource access control. It is needed by
severa of the new API functions that deal with resource retrieval and control, as well as functions that per-
form directory navigation.

There are two functions that return a ServerContext struct: http getcontext () and
http getContext (). Thelatter isfor usein CGI functions.

These functions can be used with other API functions that need the context structure. For example:
sspec_open (“MyFile”, http getcontext (servno), O _READ, 0);

will open “MyFile” for reading for the server instance identified by servno.

36 rabbit.com Server Utility Library

http://www.rabbit.com

3.1.7 SSpecStat Structure

This structure holds status information about afile resource. It isfilled in by the function
sspec_stat ().

Thefieldsof SSpecStat are:

flags A 16-bit mask that passes information about the file resource. The f1ags
field can be any number of the following:

SSPEC_ATTR_MDTM - have modification date/time
SSPEC_ATTR_LENGTH - have current length
SSPEC_ATTR WRITE - fileiswritable
SSPEC_ATTR_EXEC - fileis "executable"
SSPEC_ATTR_HIDDEN - "Hidden" attribute bit
SSPEC_ATTR_SYSTEM - "System" attribute bit
SSPEC_ATTR_ARCHIVE - "Archive" attribute bit
SSPEC_ATTR DIR - directory name

SSPEC_ATTR COMPRESSED - stored in compressed format
SSPEC_ATTR_ MAXLENGTH - have maximum length
SSPEC_ATTR_SEEKABLE - resource is randomly accessible
SSPEC_ATTR_EXTENSIBLE - File may be expanded at end

mdtm Modification date/time (SEC_ TIMER format), thisfield isonly valid if
SSPEC_ATTR_MDTM iS Set.

length The current file size; thisfield isonly valid if SSPEC_ ATTR LENGTH is
Set.

maxlength The maximum allowable file size; thisfield isonly valid if
SSPEC_ATTR MAXLENGTH is Set.

perm Pointer to ServerPermissions struct. This structure is described
above.

3.1.8 sspec_fatinfo Structure

This structure isonly relevant if you are using the FAT filesystem. It alowsthe sspec automount ()
function to return some FAT-related information to your application. The fields in this structure are;

ctrl Pointer to dos_ctrl (controller) structure.

drive Pointer tombr_ drive structure.

part[4] 4 pointersto fat part (partition) structures. Only the mounted partitions
arereturned.

Note that when used with sspec_automount (), some of the above fields may be set to non-NULL in
order to indicateto sspec_automount () that the application has aready initialized some or all of the
FAT.

TCP/IP Manual, Vol. 2 rabbit.com 37

http://www.rabbit.com

3.1.9 FormVar Structure

An array of FormVar structures represent the variablesin an HTML form. The developer will declare an
array of these structures, with the size needed to hold all variables for a particular form. The Formvar
structure contains;

e A server_ spec index that references the variable to be modified. Thisisthe location of the form
variablein the server spec list.

An integrity-checking function pointer that ensures that the variables are set to valid values.

High and low values (for numerical types).

Length (for the string type, and for the maximum length of the string representations of values).

A Pointer to an array of values (for when the value must be one of a specific, and probably short, list).

The developer can specify whether the variable is set through atext entry field or a pull-down menu, and if
the variable should be considered read-only.

ThisFormVar array isplaced in aServerSpec structure using the function sspec_addform ().
ServerSpec entriesthat represent variables will be added to the Formvar array using
sspec_addfv (). Propertiesfor these Formvar entries (for example, the integrity-checking proper-
ties) can be set with various other functions. Hence, thereis alevd of indirection between the variablesin
the forms and the actual variables themselves. This allows the same variable to be included in multiple
forms with different ranges for each form, and perhaps be read-only in one form and modifiable in another.

3.1.10 SSpecFileHandle Structure

This structure is used internally by Zserver, and is only of interest to developers of new filesystems which
may be incorporated into Zserver.

3.2 Constants Used in Zserver.lib

The constants in this section are values assigned to the fields of the structures ServerSpec and
ServerAuth. They are used in the functions described in Section 3.5, some as function parameters and
some as return values.

3.2.1 ServerSpec Type Field
Thisfield describes the resource in the server spec list. The possible values are:

® SSPEC XMEMFILE - The dataresidesin xmem

® SSPEC ZMEMFILE - The dataresidesin xmem and is compressed

e SSPEC ROOTFILE - The dataresidesin root memory

® SSPEC FSFILE - Thedataresidesinan FS2file.

e SSPEC FATFILE - Thedataresidesin aDOS FAT file.

® SSPEC FILE - Thedataresidesinafile- generic typereturned by sspec gettype ().
® SSPEC ROOTVAR - Thedataisavariable in root memory (for HTTP)

38 rabbit.com Server Utility Library

http://www.rabbit.com

e SSPEC XMEMVAR - Thedataisavariablein xmem (for HTTP)

e SSPEC VARIABLE Thedataisavariable (for HTTP) - generic type returned by
sspec_gettype ().

e SSPEC FUNCTION - Thedataisafunction (for HTTR)

® SSPEC FORM - A set of modifiable variables.

® SSPEC CGI - ThedataisaCGl function (for HTTP) - new style CGls with better interface.

e SSPEC LINK - Symboliclink ("alias") to another resource name.

e SSPEC HARDLINK - Symbolic link ("alias") to another resource table entry.

3.2.2 ServerSpec Vartype Field
If the object isavariable, then thisfield will tell you what type of variableit is:

INT8, INT16, INT32, PTR16, FLOAT32

3.2.3 ServerPermissions Servermask Field

The type of server (HTTP and/or FTP) that has access to a particular resource is determined by the
servermask fidddinthe ServerPermissions sructure.

e SERVER HTTP - Web server

e SERVER FTP - Filetransfer server

® SERVER SMTP - Mail server

e SERVER HTTPS - Secure web server

e SERVER SNMP - SNMP agent

e SERVER USER - Placeholder for first user-defined server

e SERVER USER?2 - Placeholder for second user-defined server (etc.) - grow down.

e SERVER ANY - Any server. May be passed in most cases when any server will do.

3.2.4 Configuration Macros

There are several configuration macros that may be set up by the application to control the memory usage
and behavior of Zserver. These should be defined before #use Zserver.1ib, unlessotherwise noted.

HTTP NO FLASHSPEC

SSPEC_NO STATIC
When defined, these macros save space by not compiling in code that supports a static resource
table. Presumably the application is using only the dynamic resource table, or filesystemsarein
use.

Historical note: the name of HTTP _NO FLASHSPEC impliesHTTP; however, it actually ap-
pliesto Zserver as awhole, not any specific server. Dynamic C 8.50 introduces
SSPEC_NO_STATIC,andiasfor HTTP NO FLASHSPEC.

TCP/IP Manual, Vol. 2 rabbit.com 39

http://www.rabbit.com

SAUTH MAXNAME
M aximum length of the name and password stringsinthe ServerAuth structure. Defaultis 20.
Strings must include aNULL character, so with its default value of 20, stringsin this structure
may be at most 19 characterslong.

SAUTH MAXUSERS
Define the maximum number of unique users. Defaultsto 4. Thisdeterminesthe size of the userid
table. Each table entry takes up 2* SAUTH _MAXNAME + 8 bytes of root storage.

SERVER PASSWORD ONLY
Thisis set to abitmask of the server mask bitsfor each server that supports the concept of a pass-
word-only user, that is, no user name. Defaultsto zero since currently no serversareimplemented
that use thisfacility.

SSPEC_DEFAULT READGROUPS

SSPEC_ DEFAULT WRITEGROUPS

SSPEC_DEFAULT SERVERMASK

SSPEC_DEFAULT REALM

SSPEC_DEFAULT METHOD
This group of macros establishes global default permissions for resourcesthat do not have arule
associated. SSPEC_DEFAULT READGROUPS is“OxFFFF” which means*“all users.” For
writegroups, thisis“0” meaning “no users.” The servermask defaultsto SERVER ANY (all serv-
ers can access). realm defaultsto “” that is, an empty string, or no realm.
SSPEC_DEFAULT METHOD defaults to no authentication method required.

SSPEC_MAX FATDRIVES
Determine the maximum number of independent FAT filesystem “drives.” Defaultsto 1. Each
drive takes 8 bytes of root storage (plus whatever isrequired by thefilesystem itself). Each drive
can have up to 4 partitions. This macro isonly relevant if you use the FAT library.

SSPEC_MAXNAME
Define the maximum name length of each dynamic or static resource. Defaultsto 20. You can
minimize memory usage by choosing short namesfor all resources, and reducing the value of this
macro.

SSPEC_MAXRULES
Define the maximum number of dynamically added “rules.” Defaultsto 10, but you can explicitly
defineitto zeroif al theruletableentriesare static (see SSPEC_ RULETABLE_* macros). Each
rule takes up 13 bytes of root storage, plus whatever storageis required for the realm and prefix
strings (which must be null-terminated, and in static storage, since pointers to these are stored in
theruletable).

40 rabbit.com Server Utility Library

http://www.rabbit.com

SSPEC_MAXSPEC
Define to the number of dynamic (RAM) resource table entries to allocate for the global array,
server_spec. Eachentry takesSSPEC MAXNAME + 23 bytes of root memory (or
SSPEC_MAXNAME + 33if FORM ERROR_BUF isdefined).

Defaultsto 10 entries (approximately 530 bytes). Do not set higher than 511.

SSPEC_MAX OPEN
Determine the maximum number of simultaneously open resources. Defaults to 4. Choose this
number carefully, since each entry can take up afairly large amount of root storage, depending on
the mix of filesystemsin use. Unless you are anticipating avery busy server, 4 should be enough.

If you increase the default value of HTTP_MAXSERVERS from 4, you may experience 404 or
503 messages. The solution isto increase SSPEC_MAX OPEN. Ideally, this value should be
HTTP MAXSERVERS + FTP_MAXSERVERS + any specid useof zserver.1ib that you
Cregte.

SSPEC_XMEMVARLEN
Defines the size of the stack-allocated buffer used by sspec _readvariable () whenread-
ing avariablein xmem. It defaultsto 20.

3.2.5 Macros for Control Data Initialization

Asof Dynamic C 8.50, the following macros are available for building the static tables used by the servers.

3.2.5.1 Static Rule Table

Resource rules are used to associate access information with resource names. The following macros define
and initialize a static rule table. If using a static rule table, the dynamically added entries will be searched

before the static ones.

SSPEC_FLASHRULES
Definethisif your application is using static rules. You must define this if you want to use the
macro SSPEC_RULETABLE START. If you define SSPEC_ FLASHRULES, and you do not
need dynamic rules, you can define the macro SSPEC_ MAXRULES to zero to recover the root
memory that would be wasted otherwise.

SSPEC_RULETABLE START

SSPEC RULE (prefix, realm, rg, wg, sm)

SSPEC MM RULE (prefix, realm, rg, wg, sm, method, mimetype)

SSPEC_RULETABLE_ END
This sequence of macros s used to define static rules. See the documentation with the
sspec_addrule () functionfor moreinformation. You must define SSPEC_ FLASHRULES
to use these macros.

TCP/IP Manual, Vol. 2 rabbit.com

41

http://www.rabbit.com

3.2.5.2 Static MIME Type Table

This table maps file extensions and MIME types. You only need such atableif using a server that requires
MIME types. Currently, only the HTTP server needsthis.

SSPEC_MIMETABLE START

SSPEC_MIME (extension, type)

SSPEC_MIME FUNC (extension, type, function)

SSPEC_MIMETABLE END
This sequence sets up the MIME type mapping table. Currently only a static MIME tableis sup-
ported. Though you cannot dynamically add new MIME typesto thistable, it ispossibleto alo-
cate new MIMETypeMap structuresin RAM and assign them to specific resources using
sspec_addrule () or sspec_setpermissions (). Such entrieswill not be accessed
using the default resource name extension method.

3.2.5.3 Static Resource Table

The static resource table associates the names of web server resources (files, functions, and variables) to
references to memory objects.

HTTP_NO FLASHSPEC
Defineif thereisto be NO static resource table, that is, al resources arein the dynamic (RAM)
table or in the filesystem(s). If you define this, then thereisno point in using the
SSPEC_RESOURCE_ * series of macros below.

SSPEC_RESOURCETABLE START

SSPEC RESOURCE ROOTFILE (name, addr, len)

SSPEC_RESOURCE XMEMFILE (name, addr)

SSPEC_RESOURCE ZMEMFILE (name, addr)

SSPEC_RESOURCE_ FSFILE (name, fnum)

SSPEC_RESOURCE_ ROOTVAR (name, addr, type, format)
SSPEC_RESOURCE XMEMVAR (name, addr, type, format)

SSPEC RESOURCE FUNCTION (name, addr)

SSPEC RESOURCE CGI (name, addr)

SSPEC_RESOURCE P ROOTFILE (name, addr, len, realm, rg, wg, sm, meth)
SSPEC_RESOURCE P XMEMFILE (name, addr, realm, rg, wg, sm, meth)
SSPEC_RESOURCE P ZMEMFILE (name, addr, realm, rg, wg, sm, meth)
SSPEC_RESOURCE P FSFILE (name, fnum, realm, rg, wg, sm, meth)
SSPEC_RESOURCE P ROOTVAR (name, addr, type, format, realm, rg, wg, sm, meth)
SSPEC_RESOURCE P XMEMVAR (name, addr, type, format, realm, rg, wg, sm, meth)
SSPEC_RESOURCE P FUNCTION (name, addr, realm, rg, wg, sm, meth)
SSPEC_RESOURCE P CGI (name, addr, realm, rg, wg, sm, meth)
SSPEC_RESOURCETABLE END

These macros are used to initialize the static resource table. Prior to Dynamic C 8.50 this had to
be done by explicitly using C language initialization of atable declared as:

const HttpSpec http spec|]
These macros perform the same function. It is recommended to use them instead of static initial-
izersin order to maintain forward compatibility.

Themacroswith P inthe name are the same as the others, except that they explicitly allow all

42 rabbit.com Server Utility Library

http://www.rabbit.com

the server permissions information (except for the MIME type mapping) to be initialized. See
sspec _addrule () for moreinformation on the parameters.

Thename parameter to all these macrosisthe resource name. This usualy startswith a*“ /” for
files, but not for variables. The string length should be less than or equal to SSPEC_MAXNAME.

The other parameters depend on the resource type being created:
ROOTFILE: addr = root memory address of first byte of file, 1en = length of file (0..32767).

XMEMFILE: addr =longword (physical address) of thelengthword of thefile. Thelengthword
(4 bytes) isfollowed by the first byte of data.

ZMEMFILE: asfor XMEMFILE, except thefileis compressed and imported using #zimport
instead of #ximport.

FSFILE: fnum = FS2 file number of file (1..255)

ROOTVAR: addr =root memory address of data, type = type of data, as documented with
sspec_addvariable (), format = char * format, asused by print£ () . For example,
“%od” for adecima number.

XMEMVAR: asfor ROOTVAR except the addressis alongword physical address.
FUNCTION or CGI: addr = addressof C function.

Note that a maximum of 511 static resource table entries can be defined.

3.3 File Compression Support

Dynamic C 8.50 introduces file compression support. The sample program
/samples/tcpip/http/zimport . c demonstrates how to use this functionality. This sampleisori-
ented towards the HTTP server; however, under the covers, HTTP isrelying on Zserver to perform the
compressed file handling.

In the sample program, notice that the statement “#use zimport.lib” comes before the statement
“#use http.lib” inthecode. Thisisrequired to have file compression support in Zserver and the
web server. The next thing to notice is the use of the compiler directive #zimport instead of
#ximport. #zimport performsastandard #ximport, but compressesthe file by invoking acom-
pression utility before emitting the file to the target.

When adding a compressed file to the static resource table, use the macro

SSPEC_RESOURCE_ ZMEMFILE instead of SSPEC_RESOURCE XMEMFILE. When you add a com-
pressed file to the dynamic resource table using the sspec_addxmemfile () function, it will be recog-
nized as a compressed file automatically. sspec_addxmemfile () isthusused for both compressed
and uncompressed imported files.

Each instance of a server will use a buffer for decompression—thisis necessary since multiple server
instances can be decompressing files at the same time. Make sure that the buffer macro

INPUT COMPRESSION BUFFERS isat least aslarge as the number of servers which may need concur-
rently to decompress a compressed resource. The buffer macro describes the number of 4KB xmem RAM
buffers used for decompression. This definition is used by the zimport . 11ib library.

TCP/IP Manual, Vol. 2 rabbit.com 43

http://www.rabbit.com

For details on compression ratios, memory usage and performance, please see Technical Note 234, “File
Compression.” For more information on using #zimport and the support libraries, please see the
Dynamic C User’s Manual and the Dynamic C Function Reference Manual.

All of these documents are available on our website: www.rabbit.com.

3.4 HTML Forms

Thisfacility is oriented towardsthe HTTP server, however it is Zserver that actually handles the form data
(as a special resource type in the dynamic resource table only).

Defining FORM _ERROR_BUF isrequired to usethe HTML form functionality in ZSERVER . LIB. The
value assigned to this macro is the number of bytes to reserve in root memory for the buffer used for form pro-
cessing. This buffer must be large enough to hold the name and value for each variable, plus four bytes for
each variable.

An array of type Formvar must be declared to hold information about the form variables. Be sure to allocate
enough entriesin the array to hold all of the variables that will go in the form. If more forms are needed, then
more of these arrays can be allocated. Please see Section 4.5.4 on page 159 for an example program.

Starting with Dynamic C 8.50, a more flexible way of supporting form generation is available with Rabbit-
Web. See Chapter 5 for more information on this enhanced HTTP server.

44 rabbit.com Server Utility Library

http://www.rabbit.com
http://www.rabbit.com/docs/

3.5 API Functions

The resource manager API functions are described in this section. These functions give servers a consis-
tent interface to files, variables and client information.

sauth adduser
sauth authenticate
sauth getpassword
sauth getserver
sauth getuserid
sauth getusermask
sauth getusername
sauth getwriteaccess
sauth removeuser
sauth setpassword
sauth setserver
sauth setusermask
sauth setwriteaccess
sspec_access
sspec_addCGI
sspec_addform
sspec_addfsfile
sspec_addfunction
sspec_addfv
sspec_addrootfile
sspec_addrule
sspec_adduser
sspec_addvariable
sspec_addxmemfile
sspec_addxmemvar
sspec_aliasspec
sspec_automount
sspec_cd
sspec_checkaccess
sspec_ checkpermissions
sspec_close
sspec_delete
sspec_dirlist
sspec_ fatregister

sspec_ fatregistered
sspec_findfv
sspec_findname
sspec_findfsname
sspec_findnextfile
sspec_getfileloc
sspec_getfiletype
sspec_getformtitle
sspec_getfunction
sspec_getfvdesc
sspec_getfventrytype
sspec_getfvlen
sspec_getfvname
sspec_getfvnum
sspec_getfvopt
sspec_getfvoptlistlen
sspec_getfvreadonly
sspec_getfvspec
sspec_getlength
sspec_getMIMEtype
Sspec_getname

sspec _getpermissions
sspec_getpreformfuncti
on

sspec_getrealm
sspec_getservermask
sspec_gettype
sspec_getuserid
sspec_getusername
sspec_getvaraddr
sspec_getvarkind
sspec_getvartype
sspec_getxvaraddr
sspec_mkdir
sspec_needsauthenticat
ion

sspec_open
sspec_pwd

sspec_read
sspec_readfile
sspec_readvariable
sspec_remove
sspec_removerule
sspec_removeuser
sspec_resizerootfile
sspec_restore
sspec_rmdir
sspec_save

sspec_seek
sspec_setformepilog
sspec_setformfunction
sspec_setformprolog
sspec_setformtitle
sspec_setfvcheck
sspec_setfvdesc
sspec_setfventrytype
sspec_setfvfloatrange
sspec_setfvlen
sspec_setfvname
sspec_setfvoptlist
sspec_setfvrange
sspec_setfvreadonly
sspec_setpermissions
sspec_setpreformfuncti
on

sspec_setrealm
sspec_setsavedata
sspec_setuser
sspec_stat

sspec_tell
sspec_write

TCP/IP Manual, Vol. 2

rabbit.com

45

http://www.rabbit.com

sauth adduser

int sauth adduser(char *username, char *password, word servermask);

DESCRIPTION

This function adds a user to the user table. It fillsin thefields of the ServerAuth structure as-
sociated with thisuser. Three of thefields are specified by the parameters passed into the function.
Two other fields, one for the user group mask and the other for the write access mask, are given
default values.

The default for the user group mask is the assigned index number (0 to SAUTH MAXNAME-1)
asabit number; that is, 1<<index. Thiseffectively creates each user in aunique (single) group.
Sincethisdoes not offer any real control over the assigned group mask, it isrecommended to use
sauth setusermask () after thisto assign the correct access masks.

The default for the write access mask isthe user has no write access to any server. To assign this
permission, call thefunction sauth_setwriteaccess () withtheuser tableindex returned
by sauth adduser ().

PARAMETERS
username Name of the user, a character string up to SAUTH MAXNAME characters.
password Password for the user, another character string up to SAUTH MAXNAME

characters.

servermask Bitmask representing valid servers(e.g., SERVER HTTP, SERVER _FTP).

RETURN VALUE

-1: Failure.
20: Success, index into user table (id passed to sauth_getusername ()).

SEE ALSO

sauth authenticate, sauth getwriteaccess, sauth setusermask,
sauth setwriteaccess, sauth removeuser

46 rabbit.com Server Utility Library

http://www.rabbit.com

sauth authenticate

int sauth authenticate(char *username, char *password, word server
)

DESCRIPTION

Authenticate user and return the user index representing the authenticated user, that is, the user
table index. This performs only a plaintext comparison of the userid and password. Servers prob-
ably will have their own, more sophisticated, checks.

If username isNULL, or empty string, then password-only matching is attempted for servers
who allow thistype of authentication (as defined by the SERVER PASSWORD _ONLY macro).

PARAMETERS
username Name of user.
password Password for the user.
server The server for which thisfunction is authenticating (e.g., SERVER_HTTP,

SERVER_FTP).

RETURN VALUE

- 1: Failure or user not authorized.
=>0: Success, array index of the serverAuth sructure for authenticated user.

SEE ALSO

sauth adduser

TCP/IP Manual, Vol. 2 rabbit.com 47

http://www.rabbit.com

sauth getpassword

sauth getpassword(int userid);

DESCRIPTION
Get the password for a user.

PARAMETER

userid user index

RETURN VALUE

! =NULL: password string
NULL: Failure

SEE ALSO

sauth setpassword

sauth getserver

int sauth getserver(int sauth);

DESCRIPTION
Returns whether or not auser isvisible to particular server(s).

PARAMETER
sauth user index

RETURN VALUE

0: Thisuser isvisibleto all servers
>0: Visbleto sdect servers. Onebit is set for each server that knows about this user.
-1: Failure; for example, sauth isaninvalid index into the user table.

SEE ALSO

sauth setserver

48 rabbit.com Server Utility Library

http://www.rabbit.com

sauth getuserid

int sauth getuserid(char *username, word server);

DESCRIPTION
Gets the user index for a user.

PARAMETERS
username User'sname. If this nameisnot found, then thelist isre-scanned looking for
an entry with an empty user name (") and a password that matches
username. The second passis only done for serversthat allow password-
only matching. Such servers must be specified by defining a symbol
SERVER_PASSWORD_ONLY to be abitmask of such servers.
server Server(s) for whichwearelooking up. Use SERVER _ANY if not concerned

with the server mask.

RETURN VALUE

>0: Success, index of user in the user table.
-1: Failure.

TCP/IP Manual, Vol. 2 rabbit.com

49

http://www.rabbit.com

sauth getusermask

int sauth getusermask(int userid, word *groupbits, void **authdata);

DESCRIPTION
Get the group access bit(s) and/or authorization data for a given user ID.

PARAMETERS
userid User index
groupbits Pointer to bitmask that will be set to group(s) of which thisuser isamember.
If NULL, thisinformation is not retrieved.
authdata Pointer to void* that is set to arbitrary server data. If NULL, thisinforma-

tion is not retrieved.

RETURN VALUE
0: OK
-1: Failed: userid not valid.

50 rabbit.com Server Utility Library

http://www.rabbit.com

sauth getusername

char *sauth getusername(int userid);

DESCRIPTION
Returnsthe name of the user, acharacter string fromthe ServeraAuth structure associated with
userid.

PARAMETERS
userid Theuser’sid, that is, the index into the user table.

RETURN VALUE

NULL: Failure.
I NULL: Success, pointer to the user’s name string.

SEE ALSO

sspec_getusername

TCP/IP Manual, Vol. 2 rabbit.com

51

http://www.rabbit.com

sauth getwriteaccess

int sauth getwriteaccess(int sauth);

DESCRIPTION

Checkswhether or not a user has write access to any server'sresources. Thisisan “in principle’
test. Each resourceisindividually protected from write access: thisisnot checked. In other words,
this function may return TRUE even when none of the resources are writable to this user.

PARAMETERS

sauth Index into the user table.

RETURN VALUE

0: User does not have write access.
1: User haswrite access.
-1: Failure.

SEE ALSO

sauth setwriteaccess

52 rabbit.com Server Utility Library

http://www.rabbit.com

sauth removeuser

int sauth removeuser (int userid);

DESCRIPTION
Remove the given user from the user list.

IMPORTANT: Any associations of the given user with web pages should be changed. Other-
wise, no one will have access to the unchanged web pages. Authentication can be turned off for a
pagewith sspec_setrealm(sspec, "").

PARAMETERS
userid Index in user table.

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sauth adduser

TCP/IP Manual, Vol. 2 rabbit.com

53

http://www.rabbit.com

sauth setpassword

int sauth setpassword(int userid, char *password);

DESCRIPTION
Sets the password for auser.

PARAMETERS
userid Index of user in user table.
password User's new password.

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sauth getpassword

54 rabbit.com Server Utility Library

http://www.rabbit.com

sauth setserver

int sauth setserver(int sauth, int server);

DESCRIPTION
Sets whether auser isvisible to the specified server(s).

PARAMETERS
sauth User index
server Server bitmask, with bit set to 1 to make this user “known” to the server. If

this parameter is zero, then the user isvisibleto ALL servers, however itis
recommended to pass the value SERVER _ANY in this case.

RETURN VALUE

0: Success
-1: Failure

SEE ALSO

sauth getserver

TCP/IP Manual, Vol. 2 rabbit.com

55

http://www.rabbit.com

sauth setusermask

int sauth setusermask(int userid, word userid, wvoid * authdata):;

DESCRIPTION
Set the group access hit(s) and authorization data for agiven user 1D.

PARAMETERS
userid User index
userid Bitmask of group(s) of whichthisuser isamember. Thisshould be non-zero,
otherwise the user will not have access to any resources.
authdata Arbitrary data that can be used by specific servers.

RETURN VALUE

0: OK
-1: Failed: userid not vaid.

56 rabbit.com Server Utility Library

http://www.rabbit.com

sauth setwriteaccess

int sauth setwriteaccess(int sauth, int writeaccess);

DESCRIPTION
Set whether or not a user has write access with the specified server(s).

PARAMETERS
sauth Index of the user in the user table.
writeaccess Server bitmask, with bit set to 1 for write access, O for nowriteaccess. This

isabitwise OR of the server macros, SERVER _HTTP, €tc., that you want
the user to have write access to.

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sauth getwriteaccess

TCP/IP Manual, Vol. 2 rabbit.com

57

http://www.rabbit.com

Sspec_access

int sspec_access(char * name, ServerContext * context);

DESCRIPTION
Test accessto agiven resource by a specified user. Theuseridissetin
context-s>userid, or -1 for testing access by the server in general.

NOTE: sspec_checkpermissions () performsasimilar function, except on a
resource handle rather than a resource name.

PARAMETERS
name Resource name, as a null-terminated string. This nameis assumed to be rel-
ativeto context ->cwd if it doesnot beginwitha“ /" character. Other-
wise, the nameis assumed to berelativeto context - srootdir.
context Additional context information. The ServerContext structureisset up

by the caller. See sspec_open () for documentation on this structure.
For thisfunction, context - >userid should be set to the current user
whose accessis being tested, or may be set to -1 to test access by the server
in general.

RETURN VALUE

=>0: Success. The return value is a bitmask of the following values:
e O READ - user+server hasread access
® O WRITE - user+server haswrite access
e ((zero) - no access

Thefollowing return values are negatives of the values definedin errno . 1ib.
e -ENOENT - The resource was not found.
e -EINVAL - The resource name was malformed (e.g., too long), or context was

NULL, or the resource was not afile type.
SEE ALSO

sspec_read, sspec write, sspec seek, sspec tell, sspec close,
sspec_checkpermissions

58 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_addCGI

int sspec_addCGI(char* name, void (*fptr) (), word servermask);

DESCRIPTION

Add aCaGl function to the RAM resourcelist. Thisfunctionis currently only useful for the HTTP
server, in which case the function is registered as a CGI processor. Make sure that
SSPEC MAXSPEC islarge enough to hold this new entry.

PARAMETERS
name URL name of the new function, for example, myCGI . cgi
fptr Pointer to the function. The prototype for thisfunction is:

int (*fptr) (HttpState * state);
Thereisaspecific documented interface that must be used when specifying
thistype of CGI handler function. See the manual for details.

servermask Bitmask representing valid servers (currently only useful with
SERVER_HTTP)

RETURN VALUE

2>0: Successfully added spec index
- 1: Failed to add function.

SEE ALSO

sspec_addfsfile, sspec_addfunction, sspec_addrootfile,
sspec_addvariable, sspec addxmemvar, sspec_ addxmemfile
sspec_aliasspec, sspec_addform

TCP/IP Manual, Vol. 2 rabbit.com

59

http://www.rabbit.com

sspec_addform

int sspec_addform(char *name, FormVar *form, int formsize,
word servermask);

DESCRIPTION

Adds aform (set of modifiable variables) to the TCP/IP servers object list. Make sure that
SSPEC MAXSPEC islarge enough to hold thisnew entry. Thisfunction is currently only useful

for the HTTP server.
PARAMETERS
name Name of the new form.
form Pointer to the form array. Thisis auser-defined array to hold information
about form variables.
formsize Size of theform array

servermask Bitmask representing valid servers (currently only useful with
SERVER_HTTP)

RETURN VALUE

2>0: Success; location of form in server spec list.
-1: Failed to add form.

SEE ALSO

sspec_addfsfile, sspec_addfunction, sspec_addrootfile,
sspec_addvariable, sspec addxmemvar, sspec_ addxmemfile,
sspec_aliasspec, sspec_addfv

60 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_addfsfile

int sspec _addfsfile(char *name, byte filenum, word servermask);

DESCRIPTION

Addsafile, located in the FS2 filesystem, to the RAM resource list. Make sure that
SSPEC_MAXSPEC islarge enough to hold this new entry. This function associates a name with
thefile.

Thiscreatesan dliasentry for /fs2/file<n>.

Notethat all FS2 files are automatically accessible. Thereis no need to call thisfunction unlessit
is desired to assign anameto an FS2 file other than the default, whichis filel, file2 etc.

For more information regarding the FS2 filesystem, please see the Dynamic C User’s Manual.

PARAMETERS
name Name of the new file.
filenum Number of thefilein thefile system (1-255). Thisisthe number passed in as

the second parameter to fcreate () or thereturn value from
fcreate unused().

servermask Bitmask representing servers for which this entry will bevdid (eg.,
SERVER_HTTP, SERVER FTP).

RETURN VALUE

-1: Failure.
=>0: Success, location of filein TCP/IP servers' object list.

SEE ALSO

sspec_addrootfile, sspec addfunction, sspec addvariable,
sspec_addxmemfile, sspec addform, sspec aliasspec

TCP/IP Manual, Vol. 2 rabbit.com 61

http://www.rabbit.com

sspec_addfunction

int sspec_addfunction(char *name, void (*fptr) (), word servermask);

DESCRIPTION
Adds afunction to the RAM resource list. Make surethat SSPEC_ MAXSPEC islarge enough to
hold this new entry. Thisfunction is currently only useful for HTTP servers.

NOTE: If using HTTP upload facility and/or the new CGI interface, use
sspec_addCGI () instead.

PARAMETERS
name Name of the function.
(*£tpr) () Painter to the function.

servermask Bitmask representing serversfor which thisfunction will be valid (currently
only useful with SERVER_HTTP).
RETURN VALUE

-1: Failure.
=>0: Success, location of the function in the TCP/IP servers' object list.

SEE ALSO

sspec_addform, sspec addfsfile, sspec addrootfile,
sspec_addvariable, sspec addxmemvar, sspec addxmemfile,
sspec_aliasspec

62 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_addfv

int sspec_addfv(int form, int var);

DESCRIPTION
Adds avariable to aform.

PARAMETERS
form spec index of the form (previously returned by sspec _addform()).
var spec index of the variable to add (which must have been previoudly created

using sspec_addvariable())

RETURN VALUE

-1: Failure.
=>0: Success; next availableindex into the Formvar array.

SEE ALSO

sspec_addform

TCP/IP Manual, Vol. 2 rabbit.com

63

http://www.rabbit.com

sspec _addrootfile

int sspec_addrootfile(char *name, char *fileloc, int len, word
servermask) ;

DESCRIPTION

Adds afilethat islocated in root memory to the dynamic resource table. Make sure that
SSPEC MAXSPEC islarge enough to hold this new entry.

PARAMETERS
name Name of the new file. Thismust be unique, but this function does not check.
The name should not conflict with the virtual filesystem hierarchy. That is,
it should not start with /£s2/, /A/, /B/ €ic.
fileloc Pointer to the beginning of thefile.
len Length of the filein bytes.

servermask Bitmask representing servers for which this entry will be valid (eg.,
SERVER_HTTP, SERVER FTP).

RETURN VALUE

-1: Failure.
>0: Success; fileindex into the resource list.

SEE ALSO

sspec_addfsfile, sspec addxmemfile, sspec addxmemvar,
sspec_addvariable, sspec addfunction, sspec_addform,
sspec_aliasspec, sspec resizerootfile

64 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_addrule

int sspec_addrule(char * pfx, char * realm, word readgroups, word
writegroups, word servermask, word method, MIMETypeMap *
mimetype) ;

DESCRIPTION

Add arule to the dynamic resource rule table. Resource rules are used to associate access infor-
mation with resource names matching the specified prefix string. The most specific, that is, the
longest, matching string is used.

Normally, the ruletableis consulted only for resource namesthat belong in afile system (FS2 or
FAT). You can dso causetheruletableto be consulted for flash- or RAM-table entriesif you leave
therealmfieldasNULL intheentry. If therealm fieldisnot NULL, then therule tableisnot
consulted for that entry. If the rea1m field was NULL, and there was no applicable entry in the
rule table, then the resource table permissions are used (with NULL realm).

Do not attempt to use a very large number of rule table entries, since the table must be searched
exhaustively for eachinitial resource access. There should be no need for alarge number of entries
provided that the resource name hierarchy is organized in areasonably efficient manner. For ex-
ample, keep the resources for a particular user or realm in one directory, and just add an entry for
that directory instead of an entry for each resource. This works because the full path nameisal-
ways used for matching, and the directory will always be a prefix string of the filesthat residein

that directory.
Asan dternativeto thisfunction, you can statically initialize arul e table using the following mac-
ros.

#define SSPEC FLASHRULES // Required.

#use "zserver.lib" // thislibrary

SSPEC RULETABLE START

SSPEC RULE ("prefix", realm, rg, wg, sm)

SSPEC RULE ("prefix", realm, rg, wg, sm)

SSPEC_ MM RULE ("prefix", realm, rg, wg, sm, meth, mime)
SSPEC MM RULE ("prefix", realm, rg, wg, sm, meth, mime)

SSPEC_RULETABLE END

TheSSPEC MM RULE macro parametersare bas cally the same parameters aswould be passed
to this function. These macros define and initialize a constant rule table named
f rule table. SSPEC_RULE just omitsthe (rarely used) method andmimetype fields.

When using a static rule table, the dynamically added entries are searched before the static ones.

TCP/IP Manual, Vol. 2 rabbit.com

http://www.rabbit.com

sspec_addrule (cont.)

PARAMETER

pEx Prefix of resource name. Thismust includetheinitial “ /” character, sinceall
matching is done using absolute path names. If this prefix string exactly
matches an existing entry in the table, that entry is replaced. Otherwise, a
new entry is created (if possible). This string is not copied, only the pointer
isstored. Thus, pfx must point to static storage, that is, astring constant or
aglobal variable. Initial characters other than“ /" arereserved for future use.

realm If not NULL, isan arbitrary null-terminated string that may be used by the
server. For HTTP, thisis used asthe “realm” of the resource. Thisstringis
not copied, only thepointer isstored. Thus, the parameter must point to static
storage.

readgroups A word with abit set for each group that can accessthisresourcefor reading.
A maximum of 16 different user groups can exist.

writegroups A wordwithabit set for each group that can accessthisresourcefor writing.
The user must also be given write permission to resourcesin theuserid
table entry for the appropriate server(s).

servermask The server(s) that are allowed to access this resource. Servers have pre-
defined bits. This parameter should be a combination of

SERVER_HTTP: web server
SERVER_FTP: filetransfer protocol server
SERVER_SMTP: emall

SERVER_HTTPS: Secure web server
SERVER_SNMP: SNMP agent
SERVER_USER: user-defined server
SERVER_ANY: for all servers.

method Allowable authentication method(s) to be used when accessing thisresource.
If zero, then the resource has no particular authentication method require-
ments. Thisis a bitwise combination of:

e SERVER AUTH BASIC: plaintext userid/password
e SERVER AUTH DIGEST: challenge-response protocol
e SERVER AUTH PK: public key (such asSSL/TLS)

mimetype An appropriate MIME typeto use. If NULL, then the default table (called
http types) will be consulted.

RETURN VALUE

20: 0K
- 1: Error. For example, out of space inrule table; increase SSPEC_ MAXRULES.

SEE ALSO

sspec_removerule, sspec getMIMEtype

66 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_adduser

int sspec_adduser(int sspec, int userid);

DESCRIPTION

Add to the read permission mask for the given resource. The groupsthat userid isamember

of are ORed into the existing permission mask for the resource. The write permissions are not
modified.

NOTE: Thisis not used to create new userids. For that, see sauth_adduser ().

Adds auser to thelist of usersthat have accessto the given spec entry. Up to

SSPEC_USERSPERRESOURCE userscan be added. Any more than that will result in thisfunc-
tion returning -1.

Thisfunction is deprecated as of Dynamic C 8.50. Use the more general
sspec_setpermissions () functioninstead.

PARAMETERS
sspec Spec index.
userid User index.

RETURN VALUE
2>0: Success, index of userid added for given spec entry.
-1: Failure.

SEE ALSO

sspec_setuser, sspec_getusername, sspec getuserid,
sspec_removeuser, sspec_setpermissions

TCP/IP Manual, Vol. 2 rabbit.com

67

http://www.rabbit.com

sspec addvariable

int sspec_addvariable(char *name, void *variable, word type, char
*format, word servermask);

DESCRIPTION

Adds avariable to the dynamic resource table (aka, the RAM resource list). Make sure that
SSPEC MAXSPEC islarge enough to hold this new spec entry. Thisfunction is currently only
useful for the HTTP server.

PARAMETERS

name Name of the new variable. This must be unique, but this function does not
check. The name should not conflict with the virtual filesystem hierarchy.
That is, it should not start with /fs2/, /A/, /B/ etc. Variables appear
in adirectory listing of the root directory “ /” however, they cannot be
opened using sspec_open ().

variable Address of actua variable.

type Variable type, one of:

INTS8 - single character

INT16 - 2-byte integer

PTR16 - string in root memory
INT32 - 4-byte (long) integer
FLOAT32 - floating point variable

format Output format of the variableasaprintf () conversion specifier, e.g.,
13 ()/(ﬂ."

servermask Bitmask representing serversfor which thisfunction will be valid (currently
only useful with SERVER_HTTP).

RETURN VALUE

-1: Failure.
>0: Success, the index of the variable in the resourcelist.

SEE ALSO

sspec_addfsfile, sspec _addrootfile, sspec addxmemfile,
sspec_addxmemvar, sspec_addfunction sspec_ addform,
sspec_aliasspec

68 rabbit.com Server Utility Library

http://www.rabbit.com

sspec _addxmemfile

int sspec_addxmemfile(char *name, long fileloc,
word servermask);

DESCRIPTION

Addsafile, located in extended memory, to the RAM resource list. Make sure that
SSPEC MAXSPEC islarge enough to hold this new entry.

PARAMETERS
name Name of the new file. Thismust be unique, but this function does not check.
The name should not conflict with the virtual filesystem hierarchy. That is,
it should not start with /£s2/, /A/, /B/ €tc.
fileloc Location of the beginning of the file. The first 4 bytes of the file must repre-

sent the length of the file (#ximport doesthisautomatically).

servermask Bitmask representing servers for which this entry will bevaid (eg.,
SERVER_HTTP, SERVER FTP).

RETURN VALUE

-1: Failure.
=>0: Success, the location of the file in the dynamic resource list.

SEE ALSO

sspec_addfsfile, sspec addrootfile, sspec addvariable,
sspec_addxmemvar, sspec addfunction, sspec addform,
sspec_aliasspec

TCP/IP Manual, Vol. 2 rabbit.com

69

http://www.rabbit.com

sspec_addxmemvar

int sspec_addxmemvar (char *name, long variable, word type,
char *format, word servermask);

DESCRIPTION

Add avariable located in extended memory to the RAM resource list. Make sure that
SSPEC MAXSPEC islarge enough to hold this new entry. Currently, thisfunction is useful only
for the HTTP server.

PARAMETERS

name Name of the new variable. This must be unique, but this function does not
check. The name should not conflict with the virtual filesystem hierarchy.
That is, it should not start with /fs2/, /A/, /B/ etc. Variables appear
in directory listing of theroot directory “/” however, they cannot be opened
using sspec_open ().

variable Address of the variable in extended memory.

type Variable type, one of:

INTS8 - single character

INT16 - 2-byte integer

PTR16 - string in root memory
INT32 - 4-byte (long) integer
FLOAT32 - floating point variable

format Output format of the variableasaprintf () conversion specifier e.g.,
13 ()/(ﬂ."

servermask Bitmask representing valid servers (currently only useful with
SERVER_HTTP).

RETURN VALUE

-1: Failure.
>0: Success, the index of the variable in the resourcelist.

SEE ALSO

sspec_addfsfile, sspec _addrootfile, sspec addvariable,
sspec_addfunction, sspec_addform, sspec addxmemfile,
sspec_aliasspec

70 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_aliasspec

int sspec_aliasspec(int sspec, char *name);

DESCRIPTION

Creates an dliasto an existing ServerSpec structure. Make surethat SSPEC_ MAXSPEC iS
large enough to hold this new entry.

ThisisNOT adeep copy. That is, any file, variable, or form that the alias (the new spec entry)
references will be the same copy of thefile, variable, or form that dready existsin the old spec
entry. This should be called only when the original entry has been completely set up.

NOTE: do not attempt to alias a sspec handle that was returned by sspec open (), because
the handle may be dynamically allocated. In such acase, the aliaswill not work once the original
handleis closed. You can test whether such a“virtual” handle has been returned using the macro
SSPEC IS VIRT (sspec).

PARAMETERS
sspec sspec index that this function will dias.
name Alias name.

RETURN VALUE

-1: Failure.
>0: Success; return location of alias, i.e., new index.

SEE ALSO

sspec_addform, sspec addfsfile, sspec addfunction,
sspec_addrootfile, sspec addvariable, sspec addxmemfile

TCP/IP Manual, Vol. 2 rabbit.com

71

http://www.rabbit.com

sspec_automount

int sspec_automount (word which, void ** fatstuff, void ** fs2stuff,

void ** reserved);

DESCRIPTION

This function automatically initializes and mounts the specified filesystem(s) for use by Zserver.
Mounting afilesystem creates an entry point to that filesystem for the server.

You must #use the appropriate filesystem library (for example, FS2 . LIB) otherwise the file-
system will not be mountable.

If using the FAT library, you must include one or more “driver libraries’ (such as

sflash fat.lib)before#use fat.lib. Only thedefault devicefrom thefirst driver li-
brary will be initialized and used by this routine. If you need to use any other devices, you will
need to initialize them individually and call the sspec fatregister () function.
SSPEC_MAX FATDRIVES will also need to beincreased from its default value of one.

For the FAT library, thisroutinecallsfat Init () and mountsthefirst available FAT partition
onthat drive (if any). If thefirst available partition isthe first partition on the drive, then it will be
mounted at mount point “ /A", If it isthe second partition, it will be mounted at “ /B” etc. Upto
four partitions are scanned. If none are found (or none are FAT12 or FAT 16 partitions) then an er-
ror is returned.

For FS2, al logical extentswill beinitialized viathe £s_init () function.

PARAMETERS
which Thefilesystem(s) to mount. Thisisabitwise OR of the following constants:
® SSPEC MOUNT FS - FSor FS2 flash filesystem
® SSPEC MOUNT FAT - FAT filesystem (1st drive).
You can also pass SSPEC_MOUNT ANY to mount all known filesystems.
72 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_automount (cont.)

fatstuff Either NULL (no info return) or must point to a struct of type
sspec_fatinfo. Thisstructure (defined in zserver. 1ib) consists
of the following fields:

typedef struct ({
dos ctrl * ctrl;
mbr drive * drive;
fat part * part[4];
} sspec_fatinfo;

When calling this function, you should NULL out all these pointers using
memset (..., 0, ...).Youcanthenoptionaly set someof the point-
ersto valid non-NULL valuesin order to override the defaults supplied by
thisfunction. If you setthect r1 pointer, thenitisassumed by thisfunction
that you have already called the controller initiaization function. If the
pointer isNULL on entry, then thisfunction will call the default controller
initialization viathe DOS _CONTROLLER_INIT macro.

Onreturn, pointersthat were NUL L on entry may be changed to point to val-
id default information. In particular, thectr1 and drive fieldswill point
to defaults. One (and only one) of the NULL part pointersmay be setto a
default partition structure if adefault partition could be located on the drive.

If fat . 1libisnotincluded, the abovestructureisstill defined, but contains
6 void pointers. Thisisjust to avoid compilation problems, since no infor-
mation will be used or returned.

fs2stuff Thisparameter iscurrently reserved for returning FS2 information. For now,
passasNULL.
reserved Reserved for other filesystems. For now, passasNULL.

RETURN VALUE
0: OK
Otherwisg, if afilesystem failsto mount, the return code is the bitwise OR of the
SSPEC_MOUNT _* constants of those filesystem(s) that failed to initialize.

SEE ALSO

sspec_fatregister, sspec fatregistered

TCP/IP Manual, Vol. 2 rabbit.com

http://www.rabbit.com

sspec_cd

int sspec_cd(char * path, ServerContext * context, int check);

DESCRIPTION
Change the current working directory inthe ServerContext structure. Thisfunction may be
used by serversthat support the concept of a current directory, such as FTP (but not
HTTP). Standard Unix-like path names are used, including support for “ .” and “ . .” directory
components.

The resulting directory nameis not allowed to be closer to the root directory than context -
>rootdir. If thereisany specification error, then the current directory is not changed. There-
sulting absolute directory name cannot be longer than SSPEC_ MAXNAME, including aleading
andtrailing“ /" character.

PARAMETERS

path New directory path string, as a null-terminated string. If this startswith “ /”
itismerely appended tothe context - >rootdir string. Otherwise, itis
appended to the current directory (in context - >cwd). Directory compo-
nents are separated by “ /" characters. A trailing dash is optional. A directo-
ry component “ . ” means “ no change to this level,” and a component of
“.." means“up onelevel” (towardstheroot).

context Server context structure. Two fieldsinthisare of interest: rootdir points
to avirtual root directory for this server. For example, if the FTP server is
only allowed to accessfilesunder the /2 / directory, then rootdir points
toastring“/a/". If the user entered adirectory nameof “ /ftpfiles/”
the full directory wouldbe“/A/ftpfiles/”

The other field that is updated by this function, is cwd. Thisisan array of
charactersof length SSPEC_MAXNAME. |t contains the absol ute path of the
current directory, with leading and trailing dash, including the rootdir
part (if any).

check If TRUE, check theresulting directory nameto seeif it exists. Otherwise, no
check is made.

RETURN VALUE
0: OK.

Any other negative valuesindicate an error:

-E2BIG: Resulting directory name too long

-EACCES: Attempt to change above root directory

-ENOENT: 3rd parameter was TRUE, and the directory did not exist.

SEE ALSO

sspec_pwd

74 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_checkaccess

int sspec_checkaccess(int sspec, int userid);

DESCRIPTION

This function checks whether or not the specified user has permission to access the specified re-
source in the resource table. Only read accessis checked.

Thisfunction is deprecated as of Dynamic C 8.50. Use the function
sspec_checkpermissions () instead.

PARAMETERS
sspec spec index
userid user index

RETURN VALUE

0: User does not have access.
1: User has access.
-1: Failure.

SEE ALSO

sspec_needsauthentication, sspec_ checkpermissions

TCP/IP Manual, Vol. 2 rabbit.com

75

http://www.rabbit.com

sspec_checkpermissions

int sspec checkpermissions(int sspec, ServerContext * context);

DESCRIPTION
Returns the access permissions for the given server and user, for the given resource.

sspec_access () peformsthe samefunction, except that aresource name can be given (rath-
er than an open resource handle).

PARAMETERS
sspec spec index
context Server context. Therelevant fidds are:

context->server: thecurrent server (SERVER_HTTP €tc.)
context->userid: current user, or -1 for testing the server in general.

When testing the server in general, both0_READ and O WRITE will bere-
turned.

RETURN VALUE
>0: Bitwise combination of:

e O READ: resourceisreadable

® O WRITE: resource haswrite permission. Thisdoes NOT necessarily mean that the
resource can actually be written, only that the permission bits allow it.

<0: Error. For example, no permissions can be located or the sspec handleisinvalid.

SEE ALSO

sspec_ setpermissions, sspec getpermissions, sspec access

76 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_close

int sspec_close(int sspec);

DESCRIPTION

Close afile resource. This function must be called by servers when they have completed opera-
tions on the file, otherwise there will be aresource leak and future open calls will fail.

PARAMETER
sspec Open file handle. This must be a handle that was returned by
sspec_open().
RETURN VALUE
20: Success.
Thefollowing return values are negatives of the values definedin errno . 1ib.

e -EBADF: The specified handle was not open or invalid.
e Other negative valuesindicate an error in closing the file resource.

SEE ALSO:

sspec_read, sspec write, sspec seek, sspec tell, sspec open

TCP/IP Manual, Vol. 2 rabbit.com

7

http://www.rabbit.com

sspec_delete

int sspec_delete(char * name, ServerContext * context);

DESCRIPTION
Delete aresource by name. See sspec_open () for adetailed description of parameters.

PARAMETERS
name Name of resource.
context Current server context.

RETURN VALUE
0: OK.

Thefollowing return value is a negative of the values defined in errno . 1ib. Any other nega-
tive values indicate an error.

e -ENOENT: The specified resource did not exist.

SEE ALSO

sspec _mkdir, sspec rmdir, sspec open

78 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_dirlist

int sspec_dirlist(int item, char *line, int linelen, ServerContext

* context, word options);

DESCRIPTION

Return formatted directory listing line. To use thisfunction, call it with i tem =0 thefirst time,
then keep calling it with i tem = <previous return value> until it returns negative. This allows
you to iterate through al entriesin a directory.

TheServerContext structure containsthe current user ID, server, and the name of the direc-
tory to list.

Note: For agiven directory, you should call thisfunction with i tem = 0, followed by more calls
until it returns-1. If you want to terminate the directory listing without iterating through every en-
try, passtheSSPEC LIST END optionflag (seebelow). ThisallowsZserver to release any tem-
porary resources acquired for the purpose of iterating through the directory. Thisis especidly
important for FAT filesystem listings. After thisfunction returns negative, you must start the next
directory listing from thetop, that is, item = 0.

If you do not completethelisting, then your application may not be ableto perform further listings
owing to interna resource leakage. Thisis similar to the need to close file resources that are
opened. See the second example below.

Passthe same ServerContext structure for the entire directory list sequence, since Zserver
keepstrack of state information in this structure.

EXAMPLE
To iterate through all resources under “/A/”:

ServerContext ctx;
int item;

char buf[80] ;
word opts;

word n;

ctx.rootdir = "/";

ctx.server = SERVER FTP;

ctx.userid = sauth getuserid("foo", SERVER FTP) ;
sspec_cd("/A", &ctx);

for (item = 0; item >= 0;) {
item = sspec dirlist(item, buf, sizeof (buf), &ctx,
SSPEC_LIST_LONG);

if (item >= 0)
printf (buf) ;
} // finished now, can re-use ctx.

TCP/IP Manual, Vol. 2 rabbit.com

79

http://www.rabbit.com

sspec _dirlist (cont.)

To iterate through the first 5 resources only:

opts = SSPEC_LIST LONG;

for (item = 0, n = 0; item >= 0; ++n) {
if (n >= 4)
opts |= SSPEC_LIST END;

item=sspec dirlist (item, buf, sizeof (buf), &ctx, opts) ;

if (item >= 0)
printf (buf) ;

}

PARAMETERS

item Directory entry tolist. If zero, thisaways returnsthefirst entry in the direc-
tory. Thereafter, passthe return va ue from the previous cal to this function
to get the next item(s). NOTE: the return value does not necessarily count up
1, 2, 3 etc. Apart from 0O, the only values you should passin this parameter
are previous return values, otherwise the results will be undefined.

line Pointsto buffer that isfilled with resulting string. The string will be termi-
nated with \r\n (CRLF) thenaNULL.

linelen Length of the above buffer. If it is not long enough, then thelinewill be trun-
cated (however it will still havetheterminating CRLF + null). Theminimum
reasonable value is about 15 for format O, and 80 for format 1.
context Server context. This structure will have the following fields initialized:
userid: current user who isdoing thelisting, or -1 if no specific user.
server: mask bit of the server who is performing the ligting.

cwd []: settothedirectory tolist. Thesspec cd () functioncanbe
used to set thisfield correctly.

Thisstruct must bethe sameinstancefor dl callsinasingledirectory listing
sequence.

80 rabbit.com Server Utility Library

http://www.rabbit.com

sspec _dirlist (cont.)

options Listing options. Thisisahit field that should have a combination of the fol-
lowing flags:
e SSPEC LIST LONG: Longformat listing (elsejust names)
e SSPEC LIST END: Closethe current directory listing.
For the long format, the templateis:
<permissions> 1 <user> <group> <length> <date> <name>

Where

e permissionsisastring of 10 charactersin 3 sets of 3, plusone.
Each set of 3 indicates read, write or execute permissions for the
user, group, and “world” respectively. The 1st char is“d” if the
entry isadirectory, or “ -" otherwise. Since Zserver doesnot realy
support file owners or groups, or execute permissions, the 3 sets
will be either “rw-" or “r--" or sometimes* -w-". The user bits
are set according to the current user's access. The group bits are set
if any other user has access, and the “world” bits are set if any
other server has access.

e “1" isaconstant for Unix compatibility.

e user isthe username who “owns’ thefile resource. Since
Zserver does not have the concept of resource ownership, thisis
set to the user ID of the context ->userid fied. If
context->useridis-1, thisisset to anon.

e group istheresource“group name.” Zserver does not support
this Unix concept either, so thisfield is set to the ream of thefile
resource (if it has one) otherwiseit is set to anon.

e length isset to the current length of thefile resource, or O if not
known.

e date isset to the modification date of the file resourcein Mon dd
yyyy format.
e name isthe name of thefile resource in this directory.

Example:
dr--r--r-- 1 foo admin 0 Jan 1 1980 ftpfiles

-rw-rw-rw- 1 foo admin 1250 Mar 6 2003 index.htm

RETURN VALUE

-EEOF: there were no (more) entries in this directory.

Any other negative value: parameter or 1/0 error.

Otherwise (non-negative): the return value should be passed back to thisfunction asthe i tem
parameter value, to retrieve the next entry.

SEE ALSO

sspec_cd

TCP/IP Manual, Vol. 2 rabbit.com

81

http://www.rabbit.com

sspec fatregister

int sspec_ fatregister(int partno, fat part * pt);

DESCRIPTION

This function must be used to register all FAT partitions that will be accessible to
Zserver.1ib. Partitions are numbered consecutively from O, and they correspond to mount
points/A, /B, IC etc.

It is assumed that by the time this function is called the required drives and partitions have been

mounted. For example, cal fat EnumDrive () followed by asmany

fat MountPartition () calsasrequired. The fat part pointer returned by

fat MountPartition () should be passed to thisfunction. Up to

SSPEC_MAX PARTITIONS can beregistered. This number can be changed indirectly by de-

fining SSPEC_MAX FATDRIVES before#use zserver.lib. Thisdefaultstoonedrive,
and the number of partitionsis set to 4 times this number (hence the default allows up to four par-
titions).

NOTE: ItisNOT necessary to call thisfunction if you called sspec_automount
(SSPEC_MOUNT FAT, ...) sincethat function does all the necessary initializations for a
single “drive.”

PARAMETERS

partno Partition number to register. This starts at 0, corresponding to the* /A"
mount point; 1 for “/B” etc.

pt Pointer to fat part datastructure returned by
fat MountPartition etc. To unregister apartition, pass NULL for
this parameter. Note: attempted accessto an unregistered partition generally
resultsin an error code of -ENXIO.

RETURN VALUE

20: Success.
-ENXIO: partno outsidetheallowablerangeof 0..SSPEC _MAX PARTITIONS-1.

SEE ALSO

fat EnumDrive, fat EnumPartition, fat MountPartition,
sspec_automount, sspec fatregistered

82 rabbit.com Server Utility Library

http://www.rabbit.com

sspec fatregistered

fat part * sspec fatregistered(int partno);

DESCRIPTION
Test whether a FAT partition has been registered with Zserver.

PARAMETER

partno Partition number to test. This starts at O, corresponding to the“ /A" mount
point; 1 for “ /B"€etc.

RETURN VALUE

NULL: Not registered.
Otherwise: Registered, and thisisthe fat_part pointer.

SEE ALSO

fat EnumDrive, fat EnumPartition, fat MountPartition,
sspec_automount, sspec fatregister

TCP/IP Manual, Vol. 2 rabbit.com

83

http://www.rabbit.com

sspec_findfv

int sspec_findfv(int form, char *varname);

DESCRIPTION
Finds the index of aform variable in agiven form.

PARAMETERS
form spec index of the form in which to search.
varname Name of the variable to find.

RETURN VALUE

-1: Failure.
2>0: Success, theindex of the form variable in the array of type Formvar.

SEE ALSO

sspec_addfv

84 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_findname

int sspec_findname(char *name, word server);

DESCRIPTION

Find the spec entry with aname field that matches the given name and is allowed with the spec-
ified server(s). Note that aleading slash in the given name and/or in the resource nameisignored
for backwards compatibility.

PARAMETERS
name Name to search for in the resource lit.
server The server making the request (e.g., SERVER_HTTP).

RETURN VALUE

-1: Failure.

20: Success, spec index. The special value SSPEC_VIRTUAL isreturned if the name refersto
part of the virtual filesystem hierarchy. In this case, the server mask is not consulted.
SSPEC_VIRTUAL isnot avalid handle for other functions.

SEE ALSO

sspec_findnextfile

TCP/IP Manual, Vol. 2 rabbit.com

85

http://www.rabbit.com

sspec_findfsname

int sspec findfsname(byte filenum, word server);

DESCRIPTION

Find the server spec entry for £i1enum. The entry must be of type SSPEC_FSFILE andbe
allowed with the specified server.

PARAMETERS
filenum Fileto searchfor. Thisvalueisthenumber passed in asthe second parameter
to fcreate () orthereturnvaluefrom fcreate unused ().
server The server making the request (e.g., SERVER_HTTP).

RETURN VALUE

-1: Failure.
>0: Success, index into resource list.

SEE ALSO

sspec_findname

86 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_ findnextfile

int sspec_ findnextfile(int start, word servermask);

DESCRIPTION

Find thefirst specfileentry at or following the st art specthat isaccessible by the given server.
When the end of the RAM entriesisreached, the flash entries are searched. Virtua filesystem en-
tries are not considered. Only entriesfor which sspec_gettype () would return
SSPEC_FILE areconsidered.

If you are using this function to iterate through the available resources, then the caller is respon-
sible for incrementing the starting point. To do this, you can call the function
sspec_nexthandle () whichwill return the next valid handle after the given one (or -1 if
no more handles).

PARAMETERS

start The array index at which to begin the search. -1 starts searching the RAM
entries.

servermask The server making the request (e.g., SERVER _HTTP).

RETURN VALUE

-1: Failure.
=>0: Success, index of requested ServerSpec structure.

SEE ALSO

sspec_findname, sspec gettype

TCP/IP Manual, Vol. 2 rabbit.com

87

http://www.rabbit.com

sspec _getfileloc

long sspec getfileloc(int sspec);
DESCRIPTION
Getsthelocation in memory or in thefile system of afile represented by a ServerSpec struc-
ture. The location of the fileisreturned as along, even if the file location should be represented

by achar* (for aroot file) or aFi1leNum (for the filesystem). The return value should be cast
to the appropriate type by the user.

sspec_getfiletype () canbeusedto findthefiletype.
PARAMETERS
sspec spec index of the file in the resource list

RETURN VALUE
>0: Success, location of thefile.
-1: Failure.

SEE ALSO

sspec_getfiletype, sspec getlength

88 rabbit.com Server Utility Library

http://www.rabbit.com

sspec _getfiletype

word sspec _getfiletype(int sspec);

DESCRIPTION
Get the type of afile represented by the given spec index.

PARAMETERS

sspec spec index of thefilein the resource list, that is, the index into the array of
ServerSpec structures.

RETURN VALUE

SSPEC_ROOTFILE: root memory data
SSPEC_XMEMFILE: xmem data
SSPEC_ZMEMFILE: compressed xmem data
SSPEC_FSFILE: FS2file

SSPEC_ERROR: failure - not afile, or invalid handle

SEE ALSO
sspec _getfileloc, sspec gettype

sspec _getformtitle

char *sspec getformtitle(int form);

DESCRIPTION
Getsthetitle for an automatically generated form.
PARAMETERS
form server_spec index of theform.

RETURN VALUE

NULL: Failure.
I NULL: Success, title string.

SEE ALSO

sspec_setformtitle

TCP/IP Manual, Vol. 2 rabbit.com

http://www.rabbit.com

sspec _getfunction

void *sspec _getfunction(int sspec);

DESCRIPTION

Returns apointer to the function represented by the sspec index. The entry must have been created
asaSSPEC_FUNCTION or asaSSPEC CGI.

PARAMETERS
sspec spec index

RETURN VALUE

NULL: Failure.
I NULL: Success, pointer to requested function.

SEE ALSO

sspec_addfunction

sspec _getfvdesc

char *sspec getfvdesc(int form, int wvar);

DESCRIPTION
Gets the description of avariable that is displayed in the HTML form table.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.

RETURN VALUE

NULL: Failure.
I NULL: Success, description string.

SEE ALSO

sspec_setfvdesc

90 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_getfventrytype

int sspec_getfventrytype(int form, int wvar);

DESCRIPTION

Gets the type of form entry element that should be used for the given variable.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.

RETURN VALUE

-1: Failure;
Type of form entry element on success:
HTML FORM TEXT isatext box.
HTML FORM PULLDOWN isa pull-down menu.

SEE ALSO
sspec_setfventrytype

TCP/IP Manual, Vol. 2 rabbit.com

91

http://www.rabbit.com

sspec_getfvlen

int sspec _getfvlen(int form, int var);

DESCRIPTION
Gets the length of aform variable (the maximum length of the string representation of the vari-
able).
PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.

RETURN VALUE

-1: Failure.
=>0: Success, length of the variable.

SEE ALSO

sspec_setfvlen

sspec_getfvname

char *sspec getfvname(int form, int wvar);

DESCRIPTION
Gets the name of avariablethat is displayed in the HTML form table.

PARAMETERS
form spec index of the form.
var Index into the array of Formvar structures of the variable.

RETURN VALUE

NULL: Failure,
I NULL, name of the form variable.

SEE ALSO

sspec_setfvname

92 rabbit.com

Server Utility Library

http://www.rabbit.com

sspec_getfvnum

int sspec _getfvnum(int form);

DESCRIPTION
Gets the number of variablesin aform.
PARAMETERS

form spec index of the form.

RETURN VALUE

-1: Failure.
>0: Success, number of form variables.

sspec _getfvopt

char *sspec getfvopt(int form, int wvar, int option);

DESCRIPTION
Getsthe numbered option (starting from 0) of theform variable. Thisfunctionisonly valid if the
form variable hasthe option list set.

PARAMETERS
form spec index of the form.
var Index into the array of Formvar structures of the variable.
option Index of the form variable option.

RETURN VALUE

NULL: Failure.
I NULL: Success, form variable option.

SEE ALSO
sspec_setfvoptlist, sspec getfvoptlistlen

TCP/IP Manual, Vol. 2 rabbit.com 93

http://www.rabbit.com

sspec_getfvoptlistlen

int sspec_getfvoptlistlen(int form, int wvar);

DESCRIPTION

Getsthe length of the optionslist of theform variable. Thisfunctionisonly valid if the form vari-

able hasthe option list set.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.

RETURN VALUE

-1: Failure.
>0: Success, length of the optionslist.

SEE ALSO
sspec_getfvopt, sspec_setfvoptlist

sspec_getfvreadonly

int sspec getfvreadonly(int form, int wvar);

DESCRIPTION
Checksif aform variableis read-only.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.

RETURN VALUE
0: Not read-only.
1: Read-only.
-1: Failure.
SEE ALSO

sspec_setfvreadonly

94 rabbit.com

Server Utility Library

http://www.rabbit.com

sspec_getfvspec

int sspec _getfvspec(int form, int var);

DESCRIPTION
Getsthe server spec index of avariablein aform.

PARAMETERS
form server_spec index of theform.
var Index into the array of Formvar structures of the variable.

RETURN VALUE

-1: Failure.
>0: Success, index of the form variable in the resource list.

SEE ALSO

sspec_addfv

sspec_getlength

long sspec _getlength(int sspec);

DESCRIPTION

Gets the length of the file associated with the specified ServerSpec structure. Get the length
of thefile specified by the sspecindex. Notethat compressedfiles(#z import) return -1 because
their expanded length is not known until they are processed.

PARAMETERS
sspec spec index of filein resource list

RETURN VALUE

- 1: Failure (compressed file, or other type whose effective length is not known).
=>0: Success, length of the filein bytes.

SEE ALSO

sspec_readfile, sspec_getfileloc

TCP/IP Manual, Vol. 2 rabbit.com 95

http://www.rabbit.com

sspec _getMIMEtype

MIMETypeMap *sspec getMIMEtype(char* name, ServerContext *context);

DESCRIPTION
Return the MIME type information for a specified resource name, in the given server context.

Note that the available MIME types are set up by defining aglobal variable (or constant) table
using the definition (for example),

const MIMETypeMap http typesl[] =

{

{ ".html", "text/html", NULL},
{ ".gif", "image/gif", NULL}

Vi
Thenamehttp types isrequired for backward compatibility even though servers other than
HTTP can make use of MIME types.

When searching for the appropriate type, the rule tableis consulted first. Only if thisresultsin a
NULL MIME type pointer isthehttp_ types table consulted.

Seesspec_open () for adetailed description of the parameters.

PARAMETER
name Name of the resource.
context Current server context.

RETURN VALUE
Pointer to the appropriate table entry. MIMETypeMap is defined as:

typedef struct ({

char extension[10]; / / File extension or suffix.
char type[SSPEC MAXNAME]; // MIMEtypeeg., "text/html"
int (*fptr) () ; / / Server-specific processing, e.g., SSI.

} MIMETypeMap;

A valid pointer is aways returned. |f the appropriate table entry cannot be located by the re-
source'sextension (or using arule (see sspec _addrule)) then thefirst table entry isreturned.

SEE ALSO

sspec_addrule

96 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_getname

char * sspec getname(int sspec);

DESCRIPTION
Returnsthe name of the spec entry represented by the sspec index. Thisonly worksfor RAM and
flash table entries.

PARAMETERS
sspec spec index

RETURN VALUE

NULL: Failure.
INULL: Success, pointer to name string.

TCP/IP Manual, Vol. 2 rabbit.com

http://www.rabbit.com

sspec _getpermissions

int sspec getpermissions(int sspec, char ** realm, word *
readgroups, word * writegroups, word * servermask, word * method,
MIMETypeMap ** mimetype);

DESCRIPTION
Get the permission (access control) attributes of aresource.

Except for sspec, dl parametersare pointersto variablesthat will be set to the appropriate return
value. If the parameter isNULL, then that information is not retrieved.

NOTE: Thedataat **realm and **mimetype should not be altered by the caller. The

datais read-only.
PARAMETERS
sspec spec index
realm Pointer to pointer to realm string

readgroups Pointer to mask of user groups who have read access
writegroups Pointer to mask of user groups who have write access
servermask Pointer to servers allowed to access this resource.
method Pointer to required authentication method.
mimetype Pointer to pointer to MIME table entry.

RETURN VALUE

0: Success.
<0: Failure. For example, an invalid sspec handle

SEE ALSO

sspec_setpermissions, sspec checkpermissions, sspec access

98 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_getpreformfunction

void *sspec getpreformfunction(int form);

DESCRIPTION

Getsthe user function that will be called just before HTML form generation. Thisfunction isuse-
ful mainly for custom form generation functions.

PARAMETERS
form spec index of the form

RETURN VALUE

NULL: No user function.
I NULL: Pointer to user function.

SEE ALSO

sspec_setpreformfunction, sspec setformfunction

sspec_getrealm

char *sspec getrealm(int sspec);

DESCRIPTION
Returns the realm of the spec entry represented by sspec.
PARAMETERS
sspec spec index

RETURN VALUE

NULL: Failure.
I NULL: Success, pointer to the reallm string.

SEE ALSO

sspec_setrealm

TCP/IP Manual, Vol. 2 rabbit.com

99

http://www.rabbit.com

sspec_getservermask

int sspec _getservermask(int sspec, word *servermask);

DESCRIPTION

Getsthe server mask for the given spec entry. Thisisthe bitmask passed in when the entry is cre-
ated withthe sspec_addx* () functions.

This function only works for RAM and flash table entries.
PARAMETERS
sspec spec index of the variable

servermask Addressin which the servermask will be returned

RETURN VALUE

0: Success
-1: Failure

sspec gettype

word sspec gettype(int sspec);

DESCRIPTION

Returnsthetype (SSPEC FILE, SSPEC VARIABLE, efc.) of the spec entry represented by
sspec. Thisisageneric type, inthat, SSPEC FILE isreturned for any type
(SSPEC_ROOTFILE, SSPEC_ FSFILE €ic.) that hasfilepropertiesand SSPEC_ VARIABLE
isreturned for SSPEC_ROOTVAR Or SSPEC_XMEMVAR. Other types are returned without
tranglation.

PARAMETERS
sspec spec index

RETURN VALUE

SSPEC_ERROR: Failure.
I SSPEC_ERROR: Success, type as described above.

SEE ALSO
sspec _getfiletype, sspec getvartype

100 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_getuserid

int sspec getuserid(int sspec, int index);

DESCRIPTION
Returns a userid for the given sspec resource. Since aresource can have multiple userids asso-
ciated withit, i ndex indicateswhich userid should be returned. Note that i ndex should follow
therelation 0 < index < SSPEC_USERSPERRESOURCE.

If thereis no userid for agivenindex, -1 will bereturned. If -1isreturned for an index, then -1
will also be returned for al higher indices.

Thisfunction may be used to iteratethrough all usersthat have read accessto aparticul ar resource.

This only works for RAM and flash table entries.

Sarting with Dynamic C 8.50, access control is done by user groups rather than individual users;
therefore, sspec _getuserid () may not work as expected.

PARAMETERS
sspec spec index
index index of userid for this sspec resourcetoreturn: 0, 1, 2 ...

RETURN VALUE

-1: Error, or no such userid.
= 0: Success, userid is returned.

SEE ALSO

sspec_getusername, sauth getusername

TCP/IP Manual, Vol. 2 rabbit.com

101

http://www.rabbit.com

sspec_getusername

char *sspec getusername(int sspec);

DESCRIPTION

Getstheusername field of thefirst user in the user table that has read access to the resource
indexed by sspec. If multiple usersare associated with this resource, the first user's username will
bereturned. See sspec_getuserid () togetal useridsfor aresource, and

sauth getusername () to convert the userids to usernames.

Starting with Dynamic C 8.50, access control is done by groupsrather thanindividual users, there-
fore, sspec _getusername () may not work as expected.

This only works for RAM and flash table entries.
PARAMETERS
sspec spec index

RETURN VALUE

NULL: Failure, or no user has read access to this resource.
| =NULL: Success, pointer to username.

SEE ALSO

sauth adduser, sspec setuser, sauth getuserid, sauth getusername

sspec getvaraddr

void *sspec getvaraddr(int sspec);

DESCRIPTION
Returns a pointer to the requested variable in the resource list.

PARAMETERS
sspec spec index

RETURN VALUE

NULL: Failure.
I NULL: Success, pointer to variable.

SEE ALSO

sspec_readvariable

102 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_getvarkind

word sspec_getvarkind(int sspec);

DESCRIPTION
Returns the kind of variable represented by sspec.

PARAMETERS

sspec spec index

RETURN VALUE
0: Failure.
On success, returns one of:
e |NT8 - single character
e [NT16 - 2-byte integer
e PTRI16 - string in root memory
e [NT32 - 4-byte (long) integer
e FLOAT32 - floating point variable

SEE ALSO

sspec_getvaraddr, sspec _getvartype, sspec_gettype

sspec_getvartype

word sspec _getvartype(int sspec);

DESCRIPTION
Gets the type of variable represented by the spec index.

PARAMETERS
sspec spec index.

RETURN VALUE

SSPEC_ERROR: Failure.
SSPEC_ROOTVAR Of SSPEC_XMEMVAR: SUCCESS.

SEE ALSO

sspec_getvaraddr, sspec getvarkind, sspec gettype

TCP/IP Manual, Vol. 2 rabbit.com 103

http://www.rabbit.com

sspec_getxvaraddr

long sspec _getxvaraddr(int sspec);

DESCRIPTION
Returns a pointer to the variable in xmem represented by the sspec index.

PARAMETER
sspec spec index

RETURN VALUE

2 0: Variable pointer.
-1: Failure.

SEE ALSO

sspec_readvariable

sspec mkdir

int sspec mkdir(char * name, ServerContext * context);

DESCRIPTION
Create anamed directory in the FAT filesystem.

PARAMETERS
name Name of new directory.
context Current server context.

RETURN VALUE

0: OK.

-EPERM: Not afilesystem that supports creation of new directories.
-EACCES: Not authorized

Any other negative valuesindicate an error.

SEE ALSO

sspec_delete, sspec rmdir, sspec_open

104 rabbit.com Server Utility Library

http://www.rabbit.com

sspec _needsauthentication

int sspec needsauthentication(int sspec);

DESCRIPTION

Checksif the item represented by the spec entry needs authentication for access. Thisis defined
by having anon-NULL “realm” string for the resource.

Thisfunction is deprecated starting with Dynamic C 8.50 in favor of
sspec_checkpermissions (). Itisretained for cases where the permissions structure for
aresource contains an authentication method of SERVER AUTH DEFAULT.

PARAMETERS
sspec spec index

RETURN VALUE

0: Does NOT need authentication.
1: Does need authentication.
- 1: Failure, no permissions struct assigned or invalid sspec handle.

SEE ALSO

sspec_getrealm, sspec_ checkpermissions

TCP/IP Manual, Vol. 2 rabbit.com

105

http://www.rabbit.com

sspec_open

int sspec _open(char * name, ServerContext * context, word mode) ;

DESCRIPTION

Open afile resource by name. The name may refer to aflash- or RAM-spec entry, or may bethe
name of afilein afilesystem.

The resource namespace is specified as adirectory hierarchy, similar to a Unix-like filesystem.
Theroot directory, “ /", isthe base for al named resources.

If fs2 . libisincluded, thenfilesstoredinthe FS2 filesystem are accessible under amount point
cdled“/£s2.” FS2 filesdo not have native names. | nstead, each fileis numbered from 1 to 255.
Zserver assigns namesto FS2 files by appending the file number (in decimal) to the string “file.”
For example, FS2 file number 99 has a complete resource name of “/fs2/file99.”

If fat.lib isincluded, thenall DOS FAT files are mounted under adrive letter. Thefirst par-
tition of thefirst DOS FAT filesystemiscalled “/A” and the second partition (if any) iscalled“/B”
etc. For example, if the FAT filesystem has afile cdled “/system/admin.htm” then the complete
resource name will be “/A/system/admin.htm”.

NOTE: Forward slashes are required. Do not use backslashes as is customary with DOS file-
systems.

If the resource name does not begin with “/f2” or “/A” etc., then the resource islocated in the
static resourcetable (“flashspec” thatis, theht tp flashspec global table) or inthedynamic
(RAM) table.

To access thefile resource, the return value from this function must be passed to other functions,
suchassspec_read () . A few functionsdo not work with resources opened with thisfunction.
These cases are documented with the function.

NOTE: When the application has finished accessing the resource, it must be closed using
sspec_close (). Thismust be done because thereis alimited amount of storage for main-
taining the necessary file handles.

PARAMETERS

name Resource name, asaNULL terminated string. This name is assumed to be
relativeto context - >cwd if it does not begin witha* /” character. Oth-
erwise, thenameisassumed to berelativeto context - >rootdir. Note
that the name string can contain“ .” and“ . . ” directory components. These
will beinterpreted as* samedirectory” and “ onelevel up” asiscustomary. If
“. ." components are included, the resulting name cannot be above or out-
side the root directory specifiedin context - >rootdir.

106

rabbit.com Server Utility Library

http://www.rabbit.com

sspec _open (cont.)

context

mode

Additional context information. The ServerContext structureisset up
by the caller. It has the following fidds:

typedef struct ({

}

int userid; //
//
word server; //

User ID of the current user, or
-1if not applicable.
Server id (e.g. SERVER _HTTP)

char * rootdir; // Root directory. Usually "/"
// if the whole namespace isto
// be accessible. Otherwise, may
// beeg,. "IA" to restrict accessto
// just first DOS FAT partition.
// First and last char must be “/".

char cwdl]; //
//
//
//
char * dfltname; //
//
//
//

ServerContext;

Current working directory.
Normally includes rootdir as
aprefix. First and last char

must be “/”.

A filenameto be used asa
resource name suffix in the case
that the first parameter refers

to adirectory name.

Resource opening mode. Bitwise OR of the following macros:

O_READ: open for reading

O_WRITE: open for writing (implies reading as well)

O_CREAT: withO_WRITE, if file does not exist then create it
with zero length and allocation.

O_TRUNC: withO_ WRITE, if file already exists, truncateit to

zero length.

O_APPEND: withO WRITE, if file aready exists, position at end
of file so asto append new data. You can later seek to the existing

portion of thefile.

TCP/IP Manual, Vol. 2

rabbit.com

107

http://www.rabbit.com

sspec _open (cont.)

RETURN VALUE

20: Success. Thereturned value should be passed to other functions that require ageneral han-
dle, suchassspec_read(),sspec_seek(),sspec_write(),sspec_tell(),and
sspec_close().

Thefollowing return values are negatives of the values definedinerrno . 11ib.

e -ENOENT: The resource was not found when it was expected to exist.

® -EACCES: Thecontext->userid fieldwasnot -1, and the specified user is not
allowed to access the resource using the specified mode.

e -EINVAL: Theresource name was maformed (e.g., too long), or context was NULL,
or the resource was not afiletype, or O CREAT, O _TRUNC or O APPEND were Speci-
fied without O WRITE.

e -ENOMEM: Insufficient storage for handle or buffers. Increase definition of
SSPEC_MAX OPEN.

e -EPERM: Operation not permitted, for example., opening an xmem file for writing.

SEE ALSO

sspec_read, sspec write, sspec seek, sspec tell, sspec close

108 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_pwd

char * sspec pwd(ServerContext * context, char * buf);

DESCRIPTION

Print the current working directory inthe ServerContext gructure to the specified buffer.
Thecontext - >cwd fidld containsthe CWD. Thisfunction removes the root directory compo-
nent (context->rootdir) and copiestheresult. Thismakesrootdir invisibleto theend
user.

Theleading dash isincluded, but the trailing slash is omitted from the result (unlesstheresultis
just* /).

For example, if

context->rootdir pointsto“/A/" and

context->cwd[] contans"/A/ftpfiles/”

“/ftpfiles” will betheresult returned in buf.

PARAMETERS
context Server context structure. Two fieldsin thisare of interest: rootdir points
to avirtual root directory for this server, and cwd is acharacter array con-
taining the CWD.
buf Paoints to buffer that is filled with resulting string. This buffer is assumed to

be dimensioned at least SSPEC_ MAXNAME charslong, and it will be null
terminated on return.

RETURN VALUE
Thebuf parameter isreturned.

SEE ALSO

sspec_cd

TCP/IP Manual, Vol. 2 rabbit.com 109

http://www.rabbit.com

sspec_read

int sspec_read(int sspec, char * buf, int len);

DESCRIPTION
Read the next byte(s) from the given file resource.

PARAMETERS
sspec Open file handle. This must be a handle that was returned by
sspec_open().
buf Buffer into which dataiis copied.
len Length of the above buffer. If 1en is zero, then the return value will be the

minimum number of characters that could be read at the current position,
whichisusudly at least 1 except at EOF (0). Thus, thisfunction can be used
to test for end-of-file (EOF), that is, if

(sspec_read(sspec, NULL, 0) == 0)
is TRUE, then EOF has been reached in the file identified by sspec.

RETURN VALUE
0: No dataiscurrently available. If the 1en parameter was zero, then areturn value of zero def-
initely means end-of-file has been reached. If 1en > 0, there may be dataavailablein the future,
e.g., because the underlying filesystem is socket-based and this host has read all available data,
but the socket is till open to receive more data.

1. . len: the specified number of characters has been copied to the supplied buffer, and the cur-
rent file position has been advanced by that many bytes. Possibly lessthan 1en bytes may be
read, in which case the server should test for EOF.

>1len: no datawas copied, because the underlying filesystem isunableto return apartial record
and maintain its current position. The return value isthe minimum sized buffer that should be
passed on the next call. Note: this sort of return is not currently implemented by any of thefile
systems, however servers should be coded to handlethis casefor future anticipated systemswhich
have record-level access rather than byte-level.

Thefollowing return values are negatives of the values definedin errno . 1ib.

e -EINVA: len parameter was< 0.
e -EBADF: The specified handle was not open or invalid.
e Any other negative values indicate an error.

SEE ALSO

sspec_close, sspec write, sspec seek, sspec _tell, sspec_ open,
sspec_readchr

110 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_readchr

int sspec_readchr(int sspec, char far * buf, int len, char delim);

DESCRIPTION
Read the next byte(s) from the given resource, until specified delimiter isread and transferred to
buffer. If EOF isencountered before reading a delimiter char, then the buffer may not be terminat-
ed with the delimiter char. Similarly if the delimiter was not found before the given buffer was
full. The buffer is not null terminated.

PARAMETERS
sspec Open file handle. Thismust be ahandle returned by sspec_open () .
buf Buffer into which dataiis copied.
len Length of the above buffer.
delim Delimiter character.

RETURN VALUE

0: No datais currently available.

1. .1len: Thespecified number of characters has been copied to the supplied buffer, and the cur-
rent file position has been advanced by that many bytes. Lessthan “len” bytes may beread, in
which case the server should test for EOF.

>1en: No datawas copied because the underlying filesystem is unable to return a partial record
and maintain its current position. The return value is the minimum sized buffer which should be
passed on the next call. Note: this sort of return isnot currently implemented by any of thefile
systems, however serversshould be coded to handlethis casefor future anticipated systemswhich
have record-level access rather than byte-level.

The following return values are negatives of the values defined in "errno.lib":
-EINVAL: len parameter was < 0.

-EBADF: The specified handle was not open or invalid.

Any other negative valuesindicate an error.

SEE ALSO

sspec_close, sspec read, sspec_seek, sspec tell, sspec open

TCP/IP Manual, Vol. 2 rabbit.com 111

http://www.rabbit.com

sspec_readfile

int sspec readfile(int sspec, char *buffer, long offset, int len);

DESCRIPTION

Read afile (represented by the sspec index) intobuf fer, starting at of £set, and only copy-
ing 1en bytes. For xmemfiles, thisfunction automatically skipsthefirst 4 bytes. Hence, an offset
of 0 marks the beginning of the file contents, not the file length.

Thisfunction isintended for file typesthat do not require explicit open or close cals, that is, root
or xmem files. It can also be called for FS2 files, but this is not recommended since each call re-
quiresthefile to be opened, seeked, read then closed. Instead, use sspec_open (),
sspec_read () andsspec_close () calswhich arethe most efficient.

sspec_readfile () hastheadvantage of being “stateless,” but the price to pay is grest |oss
of efficiency (especially when sequential accessisall that is required).

This function will NOT work for compressed xmem files or DOS FAT files.

PARAMETERS
sspec spec index
buffer The buffer to put the file contents into.
offset The offset from the start of thefile, in bytes, at which copying should begin.
len The number of bytes to copy.

RETURN VALUE

-1: Failure.
=>0: Success, number of bytes copied.

SEE ALSO
sspec_getlength, sspec getfileloc

112 rabbit.com Server Utility Library

http://www.rabbit.com

sspec readvariable

int sspec readvariable(int sspec, char *buffer);

DESCRIPTION

Formatsthe variable associated with the specified ServersSpec structure, and putsaNULL-ter-
minated string representation of it in buf fer. Themacro SSPEC_XMEMVARLEN (default is
20) defines the size of the stack-allocated buffer when reading a variable in xmem.

PARAMETERS
sspec spec index
buffer The buffer in which to put the variable.

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sspec_getvaraddr

sspec_remove

int sspec remove(int sspec);

DESCRIPTION

Removes a spec entry (by marking it unused). In the case of files, note that this function does not
actually remove thefile, only the reference to the file in the spec structure.

This only works for RAM table entries.
PARAMETERS
sspec spec index

RETURN VALUE

0: Success.
-1: Failure (i.e, theindex is aready unused).

TCP/IP Manual, Vol. 2 rabbit.com 113

http://www.rabbit.com

sspec_removerule

int sspec_removerule(char * pfx);

DESCRIPTION
Remove arule from the dynamic resource rule table.

PARAMETER

pfx Prefix of resource name. This must be an exact match to one of therules pre-
viously added using sspec_addrule ().

RETURN VALUE

>0: OK
- 1: Error. For example, the rule was not found, or maybe the rule was in the flash table
(f_rule table).

SEE ALSO

sspec_addrule

114 rabbit.com Server Utility Library

http://www.rabbit.com

Sspec_removeuser

int sspec_removeuser(int sspec, int userid);

DESCRIPTION
Removesthe user group(s) that userid belongsto from the read and write access masksfor the
specified resource. Thiswill deny accessto other users who have the same group(s) asthe current

user.

Thisfunction is deprecated as of Dynamic C 8.50. Use the more general
sspec_setpermissions () functioninstead.

PARAMETERS
sspec spec index
userid user index

RETURN VALUE

0: Success, user was removed.
-1: Failure, no suchuserid found.

SEE ALSO

sspec_setuser, sspec_adduser, sspec_getusername, sspec_getuserid,

sspec_setpermissions

TCP/IP Manual, Vol. 2 rabbit.com

115

http://www.rabbit.com

sspec _resizerootfile

int sspec_resizerootfile(int spec_index, int new size);

DESCRIPTION

Change the byte size of a SSPEC item stored in root memory. Item must be aROOTFILE, thus
the item must have been crested with sspec_addrootfile ().

PARAMETERS
spec_index spec index of theitem
new size New size to assign to item.

RETURN VALUE

2>0: Successfully adjust size of item.
-1: Failed to adjust size.

SEE ALSO

sspec_addrootfile

sspec restore

int sspec restore(void);

DESCRIPTION

Restoresthe TCP/IP servers' object list and the TCP/IP userslist (and some user-specified dataif
set up with sspec__setsavedata ()) from the file system. This does not restore the actual
filesand variables, but only the structures that reference them. If thefiles are stored in flash, then
thereferenceswill ill bevalid. Filesinvolatile RAM and variables must be rebuilt through other
means.

RETURN VALUE

0: Successfully restored the server_spec and server_auth tables.
-1: Failure.

SEE ALSO

sspec_save, sspec_ setsavedata

116 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_rmdir

int sspec_rmdir(char * name, ServerContext * context);

DESCRIPTION
Delete anamed directory in the FAT filesystem.

PARAMETERS
name Name of directory to delete.
context Current server context.

RETURN VALUE

0: OK.
-EPERM: Not afilesystem that supports deletion of directories.
-EACCES: Not authorized

Any other negative valuesindicate an error.

SEE ALSO

sspec_delete, sspec mkdir, sspec open

sspec_save

int sspec_save(void);

DESCRIPTION

Savesthe servers object list and server authorization list (along with some user-specified data if
set upwith sspec_setsavedata ()) to thefile system. This does not save the actual files
and variables, but only the structures that reference them. If the files are stored in flash, then the
references will still be vadid. Filesin volatile RAM and variables must be rebuilt through other
means.

RETURN VALUE

0: Successfully save the server_spec and server_auth tables.
-1: Failure.

SEE ALSO

sspec_restore, sspec_ setsavedata

TCP/IP Manual, Vol. 2 rabbit.com 117

http://www.rabbit.com

sspec_seek

int sspec_seek(int sspec, long offset, int whence);

DESCRIPTION
Seek to specified offset in the file resource. The next sspec_read () or sspec_write ()
call will start at this position.

Note that offsets that are not in the file are clamped to the start or end of the file as appropriate.

Clamp is terminology meaning that avalue past the end is set to the end, or avalue before the
beginning is set to the beginning. For example, if afileisactualy 10 bytes, then seek to position
20isactually aseek to position 10. Likewise, seek to -20 is set to position O.

PARAMETERS
sspec Open file handle. This must be a handle that was returned by
sspec_open().
offset Byte offset.
whence Reference point for seek. One of the following congtants:

e SEEK SET: start of file, offset should be non-negative.
e SEEK CUR: current position in file, offset may be negative, zero,
or positive.

e SEEK END: end of file, offset should be non-positive to stay
within thefile.

RETURN VALUE
0: OK.

Thefollowing return values are negatives of the values definedin errno . 1ib.

e -EINVAL: whence parameter wasinvalid.
-EBADF: The specified handle was not open or invalid.

-EPERM: Operation not permitted on thisfile resource. Thisis usualy because the
resource is not seekable (such as a compressed file).

Any other negative valuesindicate an error.

SEE ALSO:

sspec_close, sspec write, sspec read, sspec_tell, sspec_open

118 rabbit.com Server Utility Library

http://www.rabbit.com

sspec _setformepilog

int sspec setformepilog(int form, int function);

DESCRIPTION

Setsthe user-specified function that will be called when theform has been successfully submitted.
Thisfunction can, for example, executeacgi redirectto to redirect to aspecific page. It
should accept HttpState *state asanargument, return O when it is not finished, and 1
when it isfinished (i.e., behave like anorma CGI function).

PARAMETERS
form spec index of the form
function spec index of the function to call when the specified form has been success-

fully submitted. Thisisthe return value of the function
sspec_addfunction().

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sspec_setformprolog

TCP/IP Manual, Vol. 2 rabbit.com 119

http://www.rabbit.com

sspec_setformfunction

int sspec_setformfunction(int form, void (*fptr) ());

DESCRIPTION
Sets the function that will generate the form.

PARAMETERS
form spec index of the form.
fptr Form generation function (NULL for the default function).

RETURN VALUE

0: Success.
-1: Failure.

sspec _setformprolog

int sspec setformprolog(int form, int function);

DESCRIPTION

Allowsauser-specified function to be called just beforeform variables are updated. Thisisuseful
for implementing locking on the form variables (which can then be unlocked in the epilog func-
tion), so that other code will not update the variables during form processing. The user-specified
function should accept Ht tpState *state asanargument, return O when it is not finished,
and 1 when it isfinished (i.e., behave like anormal CGlI function).

PARAMETERS
form spec index of the form
function spec index of the function. Thisisthe return value of

sspec_addfunction().

RETURN VALUE
0: Success.
-1: Failure.

SEE ALSO

sspec_setformepilog

120 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_setformtitle

int sspec_setformtitle(int form, char *title);

DESCRIPTION
Setsthetitle for an automatically generated form.

PARAMETERS
form spec index of the form.
title Pointer to thetitle of the HTML page.

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sspec_getformtitle

sspec_setfvcheck

int sspec_setfvcheck(int form, int var, int (*varcheck) ());

DESCRIPTION

Sets afunction that can be used to check the integrity of avariable. The function should return 0
if thereisno error, or 10 if thereis an error.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.
varcheck Pointer to integrity-checking function.

RETURN VALUE
0: Success.
-1: Failure.

SEE ALSO

sspec_setfvfloatrange, sspec setfvoptlist, sspec setfvrange

TCP/IP Manual, Vol. 2 rabbit.com 121

http://www.rabbit.com

sspec_setfvdesc

int sspec_setfvdesc(int form, int var, char *desc);

DESCRIPTION
Sets the description of avariablethat is displayed inthe HTML form table.

PARAMETERS
form server_spec index of theform.
var Index (into the Formvar array) of the variable.
desc Description of the variable. This text will display onthe HTML page.

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sspec_getfvdesc

sspec_setfventrytype

int sspec setfventrytype(int form, int wvar, int entrytype):;

DESCRIPTION
Sets the type of form entry element that should be used for the given variable.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.
entrytype HTML FORM TEXT for atext box, H-TML FORM PULLDOWN for apull-

down menu. The default iISHTML_ FORM_TEXT.

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO
sspec_getfventrytype

122 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_setfvfloatrange

int sspec setfvfloatrange(int form, int var, float low, float high);

DESCRIPTION
Setstherange of afloat variable.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.
low Minimum value of the variable.
high Maximum value of the variable.

RETURN VALUE
0: Success.
-1: Failure.
SEE ALSO

sspec_setfvrange, sspec setfvoptlist

TCP/IP Manual, Vol. 2 rabbit.com 123

http://www.rabbit.com

sspec_setfvlen

int (int form, int wvar, int len);

DESCRIPTION

Setsthe length of aform variable (the maximum length of the string representation of the vari-
able). Note that for string variables, 1 en should include the NULL terminator.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.
len Length of the variable.

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sspec_getfvlen

sspec_setfvname

int sspec_setfvname(int form, int var, char *name);

DESCRIPTION
Setsthe name of avariable that is displayed in the HTML form.

PARAMETERS
form spec index of the form
var Index (into the Formvar array) of the variable.
name Display name of the variable.

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sspec_getfvname

124 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_setfvoptlist

int sspec _setfvoptlist(int form, int var, char *list[], int listlen
) ;

DESCRIPTION
Sets an enumerated list of possible vaues for astring variable.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.
list[] Array of string values that the variable can assume.
listlen Length of the array.

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sspec_getfvopt, sspec getfvoptlistlen, sspec setfvfloatrange,
sspec_setfvrange

TCP/IP Manual, Vol. 2 rabbit.com 125

http://www.rabbit.com

sspec_setfvrange

int sspec_setfvrange(int form, int var, long low, long high);

DESCRIPTION
Setstherange of an integer variable.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.
low Minimum value of the variable.
high Maximum value of the variable.

RETURN VALUE
0: Success.
-1: Failure.

SEE ALSO

sspec_setfvfloatrange, sspec setfvoptlist

126 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_setfvreadonly

int sspec_setfvreadonly(int form, int wvar, int readonly):

DESCRIPTION

Sets the form variable to be read-only.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.
readonly 0 for read/write (thisisthe default);
1 for read-only.
RETURN VALUE
0: Success.
-1: Failure.
SEE ALSO

sspec_getfvreadonly

TCP/IP Manual, Vol. 2 rabbit.com 127

http://www.rabbit.com

sspec setpermissions

int sspec setpermissions(int sspec, char * realm, word readgroups,

word writegroups, word servermask, word method, MIMETypeMap *

mimetype) ;

DESCRIPTION

Set the permission (access control) attributes of aresource.

Thisonly works for RAM table entries. For entriesin afilesystem, use sspec_addrule ().

PARAMETERS
sspec
realm
readgroups
writegroups
servermask
method

mimetype

RETURN VALUE
0: Success.

spec index

Ream string, or NULL

Mask of user groups who have read access

Mask of user groups who have write access

Serversthat can accessthisresource (or SERVER _ANY for all servers).
Required authentication method (0, SERVER_AUTH BASIC efc.)

MIME table entry, or NULL.

<0: Failure. For example, not aRAM spec handle.

SEE ALSO

sspec_checkpermissions, sspec getpermissions, sspec access

128

rabbit.com Server Utility Library

http://www.rabbit.com

sspec_setpreformfunction

int sspec_setpreformfunction(int form, void (*fptr) ());

DESCRIPTION

Setsauser function that will be called just before form generation. The user function is not called
when theformisbeing generated because of errorsin theforminput. The user function must have
the following prototype:

volid userfunction(int form) ;

The function may not use the form parameter, but it is useful if the same user function is used
for multiple forms.

PARAMETERS
form spec index of the form.
fptr Pointer to user function to be called just before form generation

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sspec_getpreformfunction

TCP/IP Manual, Vol. 2 rabbit.com

129

http://www.rabbit.com

sspec_setrealm

int sspec_setrealm(int sspec, char *realm);

DESCRIPTION

Setsthereadmfied of aserverSpec structure for HT TP authenti cation purposes. Setting this
field enables authentication for the given spec entry. Authentication can be turned off again by
passing"" astherealm parameter to thisfunction.

Note: realm must NOT point to an auto variable, since only the pointer is stored. The stringis

NOT copied.

PARAMETERS
sspec spec index - this must refer to the RAM resource table
realm Name of the realm.

RETURN VALUE
0: Success.
-1: Failure.
SEE ALSO

sspec_getrealm

130 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_setsavedata

int sspec setsavedata(char *data, unsigned long len, void *fptr);

DESCRIPTION

Sets user-supplied data that will be saved in addition to the spec and user authentication tables
when sspec_save () iscaled.

PARAMETERS
data Pointer to location of user-supplied data.
len Length of the user-supplied datain bytes.
fptr Pointer to afunction that will be called when the user-supplied data hasbeen

restored.

RETURN VALUE

0: Successfully set up the user-supplied data.
-1: Failure.

SEE ALSO

sspec_save, sspec_restore

TCP/IP Manual, Vol. 2 rabbit.com 131

http://www.rabbit.com

sspec_setuser

int sspec_setuser(int sspec, int userid);

DESCRIPTION

Set the read permission mask of aspec entry (usually afile). The permissionsfor thisresource are
set to readable only by the group(s) which this user is a member of. Write accessis set to “none.”

Thisfunction is deprecated in Dynamic C 8.50. Use sspec_setpermissions () instead.

PARAMETERS
sspec spec index - this must refer to aRAM resource
userid user index

RETURN VALUE

0: Success.
-1: Failure.

SEE ALSO

sauth adduser, sspec getusername, sspec setpermissions

132 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_stat

int sspec stat(char * name, ServerContext * context, SSpecStat * s);

DESCRIPTION

Get information about a resource by name. The name may refer to aflash- or ram-spec entry, or
may be the name of afilein afilesystem. See sspec_open () for amore detailed description
of the name and context parameters.

PARAMETERS
name Resource name, as a null-terminated string. This name is assumed to berel-
ativeto context - >cwd if it doesnot begin witha* /” character. Other-
wise, the name is assumed to berelativeto context - >rootdir.
context Additional context information. The ServerContext structureisset up
by the caller.
s Returned data. Thisisa pointer to the following structure, which will be

filled in on return.

typedef struct(

word flags; // See below.

long mdtm; // Dateltime-SEC_TIMER format
long length; // Current filesize

long maxlength; // Max allowablefile size

ServerPermissions *perm; // Seebelow.
} SSpecStat;

The £1ags field can be one of the following:
e SSPEC ATTR_MDTM - Modification date/time
e SSPEC ATTR_LENGTH - Current length
e SSPEC ATTR WRITE - Fileiswritable
e SSPEC ATTR_EXEC - Fileisexecutable
e SSPEC ATTR_HIDDEN - “Hidden” attribute bit
e SSPEC ATTR_SYSTEM - “System” attribute bit
e SSPEC ATTR_ARCHIVE - “Archive” attribute bit
® SSPEC ATTR_DIR - Thisisdirectory name
® SSPEC_ATTR COMPRESSED - Compressed format
e SPEC ATTR_MAXLENGTH - Have maximum length
® SSPEC ATTR_ SEEKABLE - Randomly accessible
e SSPEC ATTR_EXTENSIBLE - File may be expanded at end

TCP/IP Manual, Vol. 2 rabbit.com 133

http://www.rabbit.com

sspec_stat (cont.)

The ServerPermissions structureisdefined asfollows;

typedef struct ({

word readgroups;

word writegroups;

word servermask;

char * realm;

char method;

} ServerPermissions;

Read (or write) permission is granted for readgroups (or writegroups) if
current ServerAuth.mask (i.e., userid entry group mask) matchesin at |least
one bit position.

Bit isset in servermask field for each server that can access the resource.

Ream string of the resource (only used by HT TP server, but can be used for
other purposes).

Authenti cation method(s) allowed: combination of SERVER AUTH_ * bits.

RETURN VALUE

>0: Success.
Thefollowing return values are negatives of the values definedin errno . 1ib.
e _ENOENT: The resource was not found.

e -EINVAL: Theresource name was malformed (for example, too long), or context was
NULL, or the resource was not afile type.

SEE ALSO

sspec_open, sspec_delete, sspec_ close

134 rabbit.com Server Utility Library

http://www.rabbit.com

sspec_tell

long sspec_tell(int sspec);

DESCRIPTION

Return the current read/write offset in the file resource. Thiswill be a non-negative value unless
there was an error.

PARAMETER
sspec Open file handle. This must be a handle that was returned by
sspec_open().
RETURN VALUE:
>0: Offset in thefile resource.

Thefollowing return valueisanegative of thevaluedefinedinerrno . 1ib. Any other negative
valuesindicate an error.
-EBADF: The specified handle was not open or invalid.

SEE ALSO:

sspec _close, sspec write, sspec read, sspec tell, sspec open

TCP/IP Manual, Vol. 2 rabbit.com

135

http://www.rabbit.com

sspec _write

int sspec write(int sspec, char * buf, int len);

DESCRIPTION

Write byte(s) to the givenfileresource. The dataiswritten to the current position, then the current
position is advanced by the number of bytes written.

PARAMETERS
sspec Open file handle. This must be a handle that was returned by
sspec_open().
buf Buffer from which datais copied.
len Length of the above buffer.

RETURN VALUE

0: No datawas written because 1 en was zero or because alocal buffer isfull (e.g., when writing
to an underlying filesystem that streams data to a peer).

1. .1len: The specified number of characters has been copied from the supplied buffer, and the
current file position has been advanced by that many bytes. Possibly lessthan 1en bytesmay be
written, in which case the server should attempt to write the remaining data later.

Thefollowing return values are negatives of the values definedinerrno . 11ib.

e -EINVAL: len parameter was< 0.
-EBADF: The specified handle was not open or invalid.

e -ENOSPC: Thereisinsufficient spacein the underlying filesystem, or the file cannot
be extended.

-EPERM: Thefile resource does not support writing (e.g. xmem files, or aread-only
filesystem).
Any other negative valuesindicate an error.

SEE ALSO

sspec_close, sspec read, sspec_seek, sspec tell, sspec open

136 rabbit.com Server Utility Library

http://www.rabbit.com

PRODUCT MANUAL

4. HTTP SERVER

This chapter isintended to be a detailed description of the HTTP server, and how it interfaces to other
libraries, such as Zserver and TCP/IP. For an overview of how these libraries interface with one another
and with your application, please see Chapter 2. “Web-Enabling Your Application.”

An HTTP (Hypertext Transfer Protocol) server makes HTML (Hypertext Markup Language) pages and
other resources available to clients (that is, web browsers). HTTPisimplemented by HTTP . L.IB, thusyou
need to write #use “http.lib” near thetop of your program. HT TP depends on the Dynamic C net-
working suite, which isincluded in your program by writing #use “dcrtcp.lib”.

Setting up the network subsystem is a necessary pre-requisite for use of HTTP. Thisis described in the
Dynamic C TCP/IP User’s Manual, Vol. 1. However, it can be quite simple for test applications and sam-
plestoinitialize the network subsystem. Inthefiletcp config.1lib are predefined configurations that
may be accessed by a#define of the macro TCPCONF IG. For instructions on how to set up different con-
figurations, please see the Dynamic C TCP/IP User’s Manual, Vol. 1 or ook in thefile
\LIB\TCPIP\TCP CONFIG.LIB.

HTTP makes use of the Zserver library to manage resources and access control. The previous chapter dis-
cusses Zserver. When reading this chapter onthe HTTP server, it will help if you are familiar with Zserver,
its interfaces and capabilities.

Much of this chapter contains material that could be considered advanced usage. There is also some mate-
rial of ahistorical nature, with relevant sections marked as such.

TCP/IP Manual, Vol. 2 rabbit.com 137

http://www.rabbit.com

4.1 HTTP Server Data Structures

The single data structure in HTTP . LIB of interest to developers of CGI functionsis discussed in this sec-
tion.

4.1.1 HttpState

Useof theHt tpState structureis necessary for CGI functions (whether or not they were written prior to
Dynamic C 8.50). Some of the fields are off-limits to developers. The field that are available for use are
described in the next section.

Historical note: prior to Dynamic C 8.50, it was sometimes necessary for CGI functions to access directly
the fields of this structure. New programs should not directly access the fields, since it reduces the chance
of upward compatibility. Thereisanew suite of macros (seehttp getAction () and related macros)
that should be used instead. Where applicable, the equivalent macro is documented with the field. Some
fields do not have an equivalent macro (such as the cookie field); for now, use read-only access to such
fields.

A pointer to Ht tpState isthefirst (and only) parameter to all CGI functions. Most of the time, this
pointer should be passed on to other HTTP library functions.

Note that the Ht tpState structureisonly valid within a CGI function that has been called from the
HTTP server. Outside of this (for example, in your main () function) none of the fields are guaranteed to
be meaningful or consistent.

4.1.1.1 HttpState Fields
The fields discussed here are available for developersto use in their CGI functions.

s Thisis the socket associated with the given HTTP server. A developer can
usethisin a CGl function to output dynamic data (although there are better,
safer ways of doing this: see the section on "Writing aCGI Function™). Any
of the TCP functions can be used; however, you should not use any functions
that may wait for long periods, or may change the state or mode of the socket
(sincethe HTTP server dependsonit being anormal ASCII mode TCP sock-
et).

It isrecommended that you usethehttp getSocket () macro instead
of directly accessing thisfield.

substate

subsubstate Intended for holding the current state of a state machine for a CGI function.
That is, if aCGlI function relinquishes control back to the HTTP server, then
the values in these variables will be preserved for the next
http handler () cal, in whichthe CGI function will be called again.
These variables are initialized to O before the CGI function is called for the
first time. Hence, thefirst state of a state machine using substate should be 0.

It isrecommended that you usethemacroshttp getState () and
http setState () tomanipulatethe substate fieldinstead of direct-
ly accessingit. subsubstate isnot accessible viathese macros, but there
are better alternatives.

138 rabbit.com HTTP Server

http://www.rabbit.com

timeout

main_ timeout

buffer|]

p

method

url[]

version

This value can be used by the CGlI function to implement an internal time-
out.

Thisvalue holds the timeout that is used by the web server. The web server
checksagainst thistimeout on every call of http handler (). Whenthe
web server changes states, it resetsmain_ timeout. Whenit hasstayedin
one state for too long, it cancels the current processing for the server and
goes back to the initial state. Hence, a CGI function may want to reset this
timeout if it needs more processing time (but care should be taken to make
sure that the server is not locked up forever). This can be achieved like this:

state->main timeout=set timeout (HTTP_TIMEOUT) ;

HTTP_TIMEOUT isthe number of seconds until the web server will time
out. It is 16 seconds by defaullt.

A buffer that the developer can use to put data to be transmitted over the
socket. Itisof Sze HTTP MAXBUFFER (defaults to 256 bytes).

Note: It isnot recommended to directly access“buffer” or “p” (below). Use
the new-style CGI functionsand thehttp write (),

http getData () andhttp getDataLength () functionsinstead.
These create a much easier-to-use and safer method of reading/writing data
to the client.

Pointer into the buffer given above. See above note.

This should be treated as read-only. It holds the method by which the web
request was submitted. The valueis either HTTP_METHOD GET or
HTTP_ METHOD_ POST, for the GET and POST request methods, respec-
tively.

Usehttp getHTTPMethod () for new code.

This should be treated as read-only. It holds the URL by which the current
web request was submitted. If thereis GET-style form information, then that
information will follow the first NULL byte in the url array. The form infor-
mation will itself be NULL-terminated. If the information in the url array is
truncated to HTTP_MAXURL bytes, the truncated information isalso NULL-
terminated.

Usehttp getURL () for new code.
This should be treated as read-only. This holds the version of the HTTP re-

quest that was made. It can be HTTP VER_ 09, HTTP_VER 10, Or
HTTP_VER_ 11 for 0.9, 1.0, or 1.1 requests, respectively.

Usehttp getHTTPVersion () for new code.

TCP/IP Manual, Vol. 2

rabbit.com

139

http://www.rabbit.com

content typell

content length

has form

abort notify

cancel

username []

password[]

cookiell

This should be treated as read-only. This buffer holds the value from the
Content-Type header sent by the client.

Usehttp getContentType () for new code.

This should be treated as read-only. This variable holds the length of the
content sent by the client. It matches the val ue of the Content-L ength head-
er sent by the client.

Usehttp getContentLength () for new code.

This should be treated as read-only. If the valueis 1 thereisa GET style
form, after the\O byteinurl [].

Set to ! 0 in user-defined formprolog () function to indicate that the
formepilog () function needsto be caled on an abort condition. If the
epilog function isreached normally, thisfield must be set to zero. This pre-
vents the formepilog function from being called one more time on a con-
nection abort.

Thisshould betreated asread-only. It isintended for when the user-defined
functions, which may be called before and after an HTML form is submit-
ted, are used for locking resources.

If the formprol og function was called and then the connection is aborted
before the formepilog function can be called, cancel isset to 1 and the
formepilog function is called exactly once. If the epilog function was al-
ready called but returned zero (not finished yet), then it iscalled again if
the connection is aborted, except if cgi _redirectto () hasbeen
called from the epilog function. In that casethe epilog functionisnot called
after an abort.

Read-only buffer has username of the user making the request, if authenti-
cation took place.

Note: New code should usethehttp getContext () macro, then use
the resultsto look up the user detailsusing the sauth_* functions. See
the documentation for the ServerContext Structure in the previous chapter.

Read-only buffer has password of the user making the request, if authenti-
cation took place. See the above note.

Read-only buffer contains the value of the cookie “DCRABBIT” (see
http setcookie () for moreinformation).

140

rabbit.com HTTP Server

http://www.rabbit.com

headerlen

headeroff These variables can be used together to cause the web server to flush data
fromthebuffer [] array intheHttpState structure. headerlen
should be set to the amount of datainbuffer [], and headeroff
should be set to O (to indicate the offset into the array). The next time the
CGl functioniscalledthedatainbuf fer [1 will beflushed to the socket.

For new code, consider writing a new-style CGI function, which obviates
the need to manipulate these fields.

cond[] Support for conditional SSI (error feedback etc.).

New code should use the macroshttp getCond () and
http setCond().

userdatal] Thisfieldisincluded if HTTP_USERDATA SIZE isdefined. It isan op-
tional user data area. The areais cleared to zero when the structure isini-
tidized, otherwise it is not touched. Its size must be greater than zero.

New code should usethehttp getUserData () macroto obtain a
pointer to user-defined storage in this structure.

4.2 Configuration Macros

The following macros are specified in HTTP . LIB. Unless otherwise noted, you can override the default
values by defining the macro (same name, different value) before you #use “http.lib”.

HTTP HOMEDIR
Specify the “home directory” for the server. Thisisthe root directory to which all URLs are ap-
pended. Thedefaultis® /", which meansthat al resourcesare accessible. If thisisset to, say, “/ht-
docs’, then an incoming URL of “foo/bar.html” gets turned into “/htdocs/foo/bar.html”. You can
usethisto restrict the HTTP server’s access to al but a specific “branch” of resources.

Note: the string vaue for this macro must start and end witha* /” character.

HTTP DFLTFILE
Specify the default file name to append to the URL if the URL refersto adirectory. Thisis only

applicableif theURL is“ /", or isin afilesystem (not the static or dynamic resource tables). The
default setting is “index.html”. The value must not start or end witha*® /” character.

HTTP_ SOCK BUF_ SIZE
Thismacro is not defined by default. If you define it, then it specifies the amount of extended

memory to allocate (xalloc ()) for each HTTP server instance. If you do not defineit, then
socket buffers are allocated from the usual pool. See tcp extopen () for more details.

HTTP DIGEST NONCE TIMEOUT
ThismacroisusedwhenUSE_HTTP DIGEST AUTHENTICATION issettoone Noncesthat
are generated by the server arevalid for this many seconds (900 by default). If set to 0, noncesare
good forever. Setting thisto asmaller value can possibly result in higher security, although inter-
nal use of the nonce-count facility offsetsthis. Setting it to alarger value reduces the negotiation

TCP/IP Manual, Vol. 2 rabbit.com 141

http://www.rabbit.com

between the browser and the server, since when anonce times out, the browser must be told that
it isusing a stale nonce value and provided with anew one. Since Mozilla and Netscape ignore
the stale parameter, the user must reenter the username and password when a nonce times out. In-
ternet Explorer and Operarespect the stale parameter, so they automatically try the username and
password with the new nonce without asking the user.

HTTP MAXBUFFER

Thisisthe size of the buffer accessiblethroughthe Ht t pSpec structure. It defaultsto 256 bytes.
The size of this buffer affects the speed of the HTTP server; the larger the buffer (up to apoint),
the faster the server will run. The buffer sizeisalso important for usein CGI functions because it
isawork spacethe programmer canuse. HTTP_MAXBUFFER must be at |east 180 bytesfor CGlI
functionality.

HTTP MAX COND

Support for conditional SSI (error feedback etc.). It defaultsto 4. Thisisthe maximum number of
state variables that may be accessed usingthehttp getCond () orhttp setCond ()
macros.

HTTP MAX NONCES

ThismacroisusedwhenUSE_ HTTP_DIGEST AUTHENTICATION isset to one. Defined to
5 by default, it specifiesthe number of noncesthe HTTP server will allow asvalid a any onetime.
Thisvalue should be somewhat larger than the maximum number of clients expected to be access-
ing the server simultaneously. Otherwise performance could suffer as clients are forced to retry
authorization in order to acquire a fresh nonce.

HTTP MAXSERVERS

Thisis the maximum number of HTTP serverslistening on port 80. The default is 2. You may
increase this value to the maximum number of independent entities on your page. For example,
for aWeb pagewith four pictures, two of which arethesame, set HTTP_ MAXSERVERS to4: one
for the page, one for the duplicate images, and one for each of the other two images. By defaullt,
each server takes 2500 bytes of RAM. This RAM usage can be changed by the macro
SOCK_BUF SIZE (or tcp MaxBufSize whichisdeprecated asof Dynamic C ver. 6.57).
Another optionistousethetcp reserveport () function and asmaller number of sockets.

HTTP MAXURL

Thismacro definesthe maximum incoming URL . Thiscould beimportant if someoneisalowing
GET requests with alarge number of parameters.

HTTP PORT

This macro allows the user to override the default port of 80.

HTTP IFACE

This macro alows the user to override the default listening network interface. The default is

IF ANY, meaning that the HTTP server(s) will listen for incoming network connections on all
interfaceswhich are up. You can restrict the HTTP serversto asingleinterface by overriding this
macro to the specific interface number (for example, IF_ETHO).

142

rabbit.com HTTP Server

http://www.rabbit.com

HTTP TIMEOUT
Definesthe number of seconds of no activity that can elapse beforethe HT TP server closesacon-
nection. The default is 16 seconds.

HTTP USERDATA SIZE
Thismacro causes* char userdata]” to beadded tothe Ht t pState sructure. Define your struc-
ture before the statement #use HTTP.LIB.

struct UserStateData {char name[50]; int floor; int model;};
#define HTTP USERDATA SIZE (sizeof (struct UserStateData))
#use http.lib

In your own CGl function code, accessit using:

mystate = (struct UserStateData *)http getUserData(state);

USE HTTP DIGEST AUTHENTICATION
Set to 1 to enable digest authentication, 0 to disable digest authentication. Set to 0 by default.

USE HTTP BASIC AUTHENTICATION
Set to 1 to enable basic authentication, 0 to disable basic authentication. Set to 1 by default.

4.2.1 Sending Customized HTTP Headers to the Client

The callback macro, HTTP _CUSTOM_HEADERS, will be called whenever HTTP headers are being sent.
It must be defined as a function with the following prototype:

void my headers (HttpState *state, char *buffer, int bytes);

state Pointer to the state structure for the calling web server.
buffer The buffer in which the header(s) can be written.
bytes The number of bytes available in the buffer.

Typically, the macro would be defined by the user before the #use “http.lib” statement, likein the
following:

#define HTTP CUSTOM HEADERS (state, buffer, bytes) \
my headers (state, buffer, bytes)

Then, for the above to work, my headers () must be defined by the user, like so:
void my headers (HttpState *state, char *buffer, int bytes)

{

strepy (buffer, Hello Rabbit!\r\n");
printf ("bytes: %d\n", bytes);

}

In the real world, the user may need to check the number of bytes available to be sure they don't overwrite
the buffer. The buffer must end with "\r\n" and be NUL L -terminated.

TCP/IP Manual, Vol. 2 rabbit.com 143

http://www.rabbit.com

4.2.2 Saving Custom Headers from the Client

Customers may want to save some specific headers that aweb client sends to the server as part of a
reguest. One possibility for thisisto check the browser version of the client and display a different page
depending on that value. Thisis mostly useful for CGI functions.

The user can create a structure like the following to indicate to the web server that it should save the speci-
fied tags.

const HttpHeader http headers[] = {
"Host" ,
"Content-Length",
"User-Agent",
END HTTP HEADERS
}i
END HTTP HEADERS issimply amacro (NULL) that indicates the end of the structure. These headers
will be saved in an internal buffer of a user-specified size:

#define HTTP CUSTOM HEADERS SIZE 1024

By default, H-TTP CUSTOM_HEADERS SIZE isundefined, which disables the custom header function-
ality (since, in most cases, it will not need to be used). This buffer will be located in xmem, and there will
be one per HTTP server. A define will also be provided to limit the maximum size of a single header (to
keep one very long header from monopolizing all of the buffer space):

#define HTTP CUSTOM HEADER MAX SIZE 128
By default, thisis undefined and there is no limit.
The user will also need functions that look up the data:

int http getheader (HttpState *state, char *header, char
*dest, int destlen);

int http xgetheader (HttpState *state, char *header, long
*destptr) ;

The first function requires the user to provide aroot buffer to place the header. The HttpState State
structure must be passed so that the server knows which set of headers to access. The header parameter is,
of course, the name of the header the user wantsto retrieve. dest isapointer to the destination buffer.
destlen isthelength of the destination buffer (provided by the user). The function returns-1 on error,
and the number of bytesin the header on success.

The second function, http xgetheader (), simply returns along pointer into the internal header
buffer for the given header. It returns -1 on error, and the number of bytes in the header on success.

Note that some headers are saved by the HTTP server by default into the HTTP state structure, such as
“Content-Length.” We will also begin saving the “Host” header, which is useful in performing CGlI redi-
rection. Hence, we can change the semantics of the cgi redirectto () function:

int cgi_redirectto(HttpState *state, char *url);

such that the ur1 parameter no longer needs to be an absolute URL.

144 rabbit.com HTTP Server

http://www.rabbit.com

4.3 Authentication Methods

HTTP/1.0 Basic Authentication is used by default. This scheme is not a secure method of user authentica-
tion across an insecure network (e.g., the Internet). HTTP/1.0 does not, however, prevent additional
authentication schemes and encryption mechanisms from being employed to increase security.

Starting with Dynamic C version 8.01, HTTP Digest Authentication as specified in RFC 2617 is sup-
ported. Instead of sending the password in cleartext as is done using Basic Authentication, MD5 is used to
perform a cryptographic hash.

In general, adding a query string to the end of a GET request is poorly supported by digest authentication.
Users should be aware that older browsers (e.g., |E6 and earlier) do not consider the query string to be part
of the URL that isincluded in the cryptographic hash, whereas newer browsers (e.g., |[E7 and later) are just
the opposite. This means that digest authentication can work with one or the other, but not both. Therefore,
itisonly “safe” to use digest authentication without a query string at the end of the URL.

To use HTTP Digest Authentication, define USE_ HTTP_DIGEST AUTHENTICATION asl1. When this
USE_* macro is defined, the macrosHTTP_ MAX NONCES and HTTP _DIGEST NONCE TIMEOUT
are available; they affect negotiation time between server and client. For more detail s see Section 4.2
"Configuration Macros."

In either case (basic or digest), you will need to add the appropriate rules and/or permissions to the appro-
priate tables. See the previous chapter for details on protecting resources. The HTTP server appliesthe
strongest applicable authentication mechanism depending on the information it retrieves from the resource
manager. Typically, in addition to defining user IDs and groups, you also need to associate an authentica-
tion mechanism with the resource using e.g. the SSPEC_MM_RULE macro, or the
sspec_setpermissions () function.

Starting with Dynamic C 8.50, Secure Socket Layer (SSL) as specified in RFC 2818, is supported. Itis
also known by its newer official name, TLS (Transport Layer Security). To use SSL, you must create a
secure HTTP server, known as an HTTPS server. To do this you must define some macros and import the
SSL certificate.

#define USE HTTP SSL
#define HTTP_SSL_SOCKETS 1

#ximport "cert\mycert.dcc" SSL _CERTIFICATE

For complete documentation on the Dynamic C implementation of SSL, see the Dynamic C Module docu-
ment entitled, “ Rabbit Embedded Security Pack.” Another good source of information are the sample pro-
grams that demonstrate using SSL. They are located inthe /Samples/tcpip/ss1 folder that will be
created when the Rabbit Embedded Security Pack isinstalled.

TCP/IP Manual, Vol. 2 rabbit.com 145

http://www.rabbit.com

4.4 Setting the Time Zone

The HTTP specification requires the server to indicate its current clock time in the response to any request.
The HTTP implementation performs this function by consulting the rtc_timezone () library function
(in RTCLOCK. LIB). The server uses the returned time zone to adjust the local real-time clock (RTC)
value so that it is always returned to the client in UTC (Co-ordinated Universal Time).

There are several macros which you can set to define
e TIMEZONE: Thelocal timezone offset from UTC.

e RTC IS UTC: Whether the RTCisalready running on UTC.

The local timezone offset may be defined using the TIMEZONE macro, or it may be obtained automati-
cally from a DHCP server if you are using DHCP to configure the network interface. Failing that, it
defaultsto zero.

If the RTCisaready setto UTC (not local time), then you must definethemacroRTC_ IS UTC, inwhich
case the local timezone offset will be ignored.

For many reasons, including the fact that daylight savings transitions are more manageable, it is better to
set the RTC to UTC, however some users prefer the clock to runin local time.

See the documentation for rtc_timezone () for more details. To do this, use the function lookup fea-
ture in Dynamic C or refer to the Dynamic C Function Reference Manual.

4.5 Sample Programs

Sample programs demonstrating HTTP arein the Samples\Tcpip\Ht tp directory. Thereisaconfig-
uration block at the beginning of each sample program. The macrosin this block need to be changed to
reflect your network settings.

Starting with Dynamic C 7.30, setting up the network addresses is both more complex and more ssimple.
The complexity liesin the added support for multiple interfaces. Luckily for us, the simplicity isin the
interface to this more intricate implementation. Inthefiletcp config.1lib are predefined configura-
tions that may be accessed by a #define of the macro TCPCONF IG. For instructions on how to set the con-
figuration, please see volume 1 of the manual or LIB\TCPIP\TCP_CONFIG.LIB.

4.5.1 Serving Static Web Pages

The sample program, Static.c,initializesHTTP . LIB and then sets up abasic static web page. Itis
assumed you are on the same subnet as the controller. The codefor Static. c isexplained in the foll ow-
ing pages.

From Dynamic C, compile and run the program. You will see the LNK light on the board come on after a

couple of seconds. Point your internet browser at the controller (e.g., http://10.10.6.100/). The ACT light
will flash a couple of times and your browser will display the page.

146 rabbit.com HTTP Server

http://www.rabbit.com

Program Name: \Samples\tcpip\http\Static.c

#define TCPCONFIG 1
#define TIMEZONE -8

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

#ximport "samples/tcpip/http/pages/static.html" index html
#ximport "samples/tcpip/http/pages/rabbitl.gif" rabbitl gif

SSPEC MIMETABLE START
SSPEC MIME (".html", "text/html"),
SSPEC MIME(".gif", "image/gif")
SSPEC MIMETABLE END

SSPEC_RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE ("/index.html", index html),
SSPEC_RESOURCE XMEMFILE ("/rabbitl.gif", rabbitl gif)
SSPEC_RESOURCETABLE END

main ()

{
sock_init () ; // Initializesthe TCP/IP stack
http _init () ; // Initializes the web server

tcp_reserveport (80) ;

while (1) {
http handler() ;

The program servesthe static.html fileand the rabbit1.gif fileto any user contacting the con-
troller. If you want to change the file that is served by the controller, find and modify thislinein
Static.c:

#ximport "samples/tcpip/http/pages/static.html" index html

Replace static.html with the name of the file you want the controller to serve.

TCP/IP Manual, Vol. 2 rabbit.com 147

http://www.rabbit.com

4.5.1.1 Adding Files to Display

Adding additional files to the controller to serve asweb pagesis dightly more complicated. First, add an
#ximport linewith the filename as the first parameter, and a symbol that referencesit in Dynamic C as
the second parameter.

#ximport "samples/tcpip/http/pages/static.html" index html
#ximport "samples/tcpip/http/pages/newfile.html" newfile html

Next, find theselinesin Static.c:

SSPEC_ RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE ("/index.html", index html),
SSPEC_ RESOURCE XMEMFILE ("/rabbitl.gif", rabbitl gif)
SSPEC RESOURCETABLE END

Insert the name of your new file, preceded by “ /", into this structure, using the same format as the other
lines.

SSPEC_RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE("/index.html", index html),
SSPEC RESOURCE XMEMFILE ("/newfile.html", newfile html),
SSPEC_RESOURCE_XMEMFILE("/rabbitl.gif", rabbitl gif)

SSPEC_RESOURCETABLE END

Compile and run the program. Open up your browser to the new page (for example,
“http://10.10.6.100/newfile.ntml™), and your new page will be displayed by the browser.

4.5.1.2 Adding Files with Different Extensions

If you are adding afile with an extension that is not html or gif, you need to use the appropriate macros to
make an entry in the MIMETypeMap structure for the new extension. Thefirst field is the extension and
the second field describes the MIME type for that extension. You can find alist of MIME types at:

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types
In the media-types document located there, the text in the type column would precede the“ /", and the

subtype column would directly follow. Find the type subtype entry that matches your extension and add it
tothehttp types table.

SSPEC_MIMETABLE START

SSPEC_MIME (".html", "text/html"),
SSPEC_MIME (".pdf", "application/pdf"), //addedthisone
SSPEC MIME (".gif", "image/gif")

SSPEC_MIMETABLE END

148 rabbit.com HTTP Server

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types
http://www.rabbit.com

4.5.1.3 Handling of Files With No Extension

Theentry “ /” and files without an extension are dealt with by the handler specified in the first entry in the
MIME table. If you use the SSPEC_MIME macro, the default handler is used. It passes the information
verbatim. You can aso use the macro SSPEC_MIME FUNC to specify anon-default text processor; thisis
necessary for SSI and RabbitWeb scripts (described later).

4.5.2 Dynamic Web Pages Without HTML Forms

Serving a dynamic web page without the use of HTML formsis done by sample program ssi . c. This
program displays four “lights’ and four buttons to toggle them. Users can browse to the device and change
the status of the lights.

The sample code follows, but it has been edited for brevity. Open ss1i . ¢ in Dynamic C to seethe fully-
commented source.

#define TCPCONFIG 1
#define HTTP MAXSERVERS 1
#define MAX TCP_SOCKET BUFFERS 1

// Thisisthe address that the browser uses to access your server
#define REDIRECTHOST _PRIMARY STATIC IP

// Used by the cgi of each ledxtoggle function to tell the browser which page to hit next.
#define REDIRECTTO "http://" REDIRECTHOST "/index.shtml"

#memmap xmem

#use "dcrtcp.lib"
#use "http.lib"

#ximport "samples/tcpip/http/pages/ssi.shtml" index html
#ximport "samples/tcpip/http/pages/rabbitl.gif" rabbitl gif
#ximport "samples/tcpip/http/pages/ledon.gif" ledon gif
#ximport "samples/tcpip/http/pages/ledoff.gif" ledoff gif
#ximport "samples/tcpip/http/pages/button.gif" button gif
#ximport "samples/tcpip/http/pages/showsrc.shtml" showsrc shtml
#ximport "samples/tcpip/http/ssi.c" ssi c

SSPEC MIMETABLE START

SSPEC_MIME FUNC (".shtml", "text/html", shtml handler),
SSPEC MIME (".html", "text/html"),

SSPEC MIME(".gif", "image/gif"),

SSPEC_MIME (".cgi", "")

SSPEC MIMETABLE END

TCP/IP Manual, Vol. 2 rabbit.com 149

http://www.rabbit.com

I

char ledl[15
led2[15
led3[15

led4 [15

I

char

I

char

[S S T |

I

char

int ledltoggle (HttpState* state) {
if (strcmp(ledl,"ledon.gif")==0)
strcpy(ledl, "ledoff.gif") ;
else
strcpy (ledl,"ledon.gif") ;
cgi redirectto(state, REDIRECTTO) ;
return O0;
}
int led2toggle (HttpState* state) {
// Entirely analogousto led1toggle
}
int led3toggle (HttpState* state) {
// Entirely analogousto led1toggle
}
int led4toggle (HttpState* state) {
// Entirely analogousto led1toggle

}

SSPEC_RESOURCETABLE START
SSPEC RESOURCE XMEMFILE
SSPEC_RESOURCE XMEMFILE
SSPEC_RESOURCE XMEMFILE
SSPEC RESOURCE XMEMFILE
SSPEC_RESOURCE XMEMFILE
SSPEC_RESOURCE XMEMFILE
SSPEC RESOURCE XMEMFILE

m/", index html),
"/index.shtml", index html),
"/showsrc.shtml", showsrc shtml)
"/rabbitl.gif", rabbitl gif),
"/ledon.gif", ledon gif),
"/ledoff.gif", ledoff gif),
"/button.gif", button gif),

N

SSPEC_RESOURCE XMEMFILE "/ssi.c", ssi c),
SSPEC_RESOURCE ROOTVAR("ledl", ledl, PTR16, "%s"),
SSPEC RESOURCE ROOTVAR("led2", led2, PTR1l6, "%s"),
SSPEC_RESOURCE ROOTVAR ("led3", led3, PTR16, "%s'"),
SSPEC_RESOURCE ROOTVAR ("led4", led4, PTR16, "%s"),
SSPEC_RESOURCE FUNCTION ("/ledltog.cgi", ledltoggle),
SSPEC_RESOURCE_FUNCTION("/led2tog.cgi", led2toggle) ,
SSPEC RESOURCE FUNCTION ("/led3tog.cgi", led3toggle),
SSPEC RESOURCE FUNCTION ("/led4tog.cgi", led4toggle)

SSPEC_RESOURCETABLE END

14

150

rabbit.com

HTTP Server

http://www.rabbit.com

void main () {

strcpy (ledl,"ledon.gif") ;
strcpy (led2,"ledon.gif") ;
strcpy (led3,"ledoff.gif") ;
strcpy (led4,"ledon.gif") ;
sock init () ;

http init () ;

tcp reserveport (80) ;

while (1) http handler() ;

When you compile and run ssi . ¢, you see the LNK light on the board come on. Point your browser at
the controller (e.g., http://10.10.6.100/). The ACT light will flash a couple of times and your browser will

display the page.

This program displays pictures of LEDs. Their state istoggled by pressing the image of a button. This pro-
gram uses Server Side Includes (SSI) and the old style of CGI (SSPEC_RESOURCE_FUNCTION). Use
of SSl isexplained in greater detail below.

45.2.1 SSI Feature

SSI commands are an extension of the HTML comment command (<!--Thisis a comment -->). They
allow dynamic changesto HTML files and are resolved at the server side, so the client never sees them.
HTML files that need to be parsed because they contain SSI commands, are conventionally recognized by

the HTTP server by the resource name extension .shtml 1

The supported SSI commands are:
e #echo var

® f#exec cmd

e #include file

They are used by inserting the command into an HTML file:
<!--#include file=“anyfile” -->
The server replaces the command, #include file, withthecontentsof anyfile.

#exec cmd executes acommand i.e. and old-style CGI and replaces the SSI command with the output.

1. Thisisjust aconvention. If you add a MIMETypeMap entry SSPEC_MIME_FUNC(“.shtml”,
“text/html”, shtml_handler) then you are following this convention.

TCP/IP Manual, Vol. 2 rabbit.com 151

http://www.rabbit.com

Dynamically Changing the Display of a Variable on a Web Page
Thessi.shtml file locatedin \Samples\Tcpip\Http\Pages, gives an example of dynamically
changing a variable on aweb page using #echo var.

<img SRC="<!--#echo var="ledl" -->">

Inan shtml file, the“< ! --#echo var="1ledl" -->"isreplaced by thevaue of thevariable led1
from the static resource table.

SSPEC_RESOURCETABLE START

SSPEC_RESOURCE_ROOTVAR ("ledl", ledl, PTR16, "
SSPEC_RESOURCE_ROOTVAR ("led2", led2, PTR16, "
SSPEC_RESOURCE_ROOTVAR ("led3", led3, PTR16, "
SSPEC_RESOURCE_ROOTVAR ("led4", led4, PTR16, "

~ ~ ~

n 0 0

o o o° o

~

SSPEC RESOURCETABLE END

shtml handler (whichisthe built-in script processor for SSI) looks up 1ed1 and replaces it with the
text output from:

printf ("%$s", (char*)ledl) ;

The 1ed1 variableiseither ledon.gif or ledoff.gif. When the browser |oads the page, it
replaces

<img SRC="<!--#echo var="ledl"-->">

with

or

This causes the browser to load the appropriate imagefile.

SSI string variables are only appropriate for relatively short strings. (In the above example, the SSI string
variables are “ledon.gif” and “ledoff.gif.”) The size that can be output islimited to the size

HTTP_ MAXBUFFER. If you need larger strings, you should either increase HTTP_MAXBUFFER (which
will use more root RAM) or switch to using a CGI function.

152 rabbit.com HTTP Server

http://www.rabbit.com

45.2.2 CGI Feature

Ssi.c aso demonstrates the Common Gateway Interface. CGl is a standard for interfacing external
applications with HTTP servers. Each time a client requests an URL corresponding to a CGI program, the
server will execute the CGI program in real-time.

For increased flexibility, a CGI function is responsible for outputting its own HTTP headers. Information
about HTTP headers can be found at:

http://deesse.univ-lemans.fr:8003/Connected/RFC/1945/

and many other web sites and books. Inthe Ss1i . shtml file, the following line creates the clickable but-
ton viewable from the browser.

<TD> </TD>

When the user clicks on the button, the browser will request the /1edltog. cgi entity. Thiscausesthe
HTTP server to examine the contents of thehttp flashspec structurelooking for /ledltog. cgi.
It findsit and noticesthat 1edl1toggle () needsto be called.

The 1ed1toggle function changes the value of the 1ed1 variable, then redirects the browser back to
the original page. When the original page is reloaded by the browser, the LED image will have changed
states to reflect the user’s action.

This sample demonstrates the so-called “old-style” CGIl. New-style CGls are easier to write (especialy
when they are doing something non-trivial). They are described in Section 4.6 "HTTP File Upload."

Connection Abort Condition

There aretwo fiddsinthe Ht tpState structure that allow a CGI function to appropriately respond to a
connection abort condition. The user may set thefield abort notify toanon-zerovauein aCGl
function to request that the CGI function be called one more time with the cancel field set to oneif a
connection abort occurs.

4.5.3 Web Pages With HTML Forms

With aweb browser, HTML forms enable users to input values. With a CGI program, those values can be
sent back to the server and processed. The FORM and INPUT tags are used to create formsin HTML.

The FORM tag specifies which elements constitute a single form and what CGI program to call when the
formis submitted. The FORM tag has an option called ACTION. This option defineswhat CGI programis
called when the form is submitted (when the “Submit” button is pressed). The FORM tag also has an
option called METHOD that defines the method used to return the form information to the web server. In
Section 4.5.3.1, the POST method is used, which will be described later. All of the HTML between the
<FORM> and </FORM > tags define what is contained within aform.

Starting with Dynamic C 8.50, you can a so use the enctype option inside the FORM tag. This specifiesa
return encoding type for the form’s information. If you did not specify this option, then you can use old-
style CGls (as described in this section). If you specify enctype="multipart/form-data’ then you should
specify a new-style CGI instead. See Section 4.6 describing the HT TP upload feature for more details on
writing a new-style CGlI.

TCP/IP Manual, Vol. 2 rabbit.com 153

http://deesse.univ-lemans.fr:8003/Connected/RFC/1945/
http://www.rabbit.com

The INPUT tag defines a specific form element, the individua input fieldsin aform. For example, atext
box in which the user may type in avalue, or a pull-down menu from which the user may choose an item.
The TY PE parameter defines what type of input field is being used. In the following example, in the first
two cases, it isthe text input field, which is a single-line text entry box. The NAME parameter defines
what the name of that particular input variable is, so that when the information is returned to the server,
then the server can associate it with a particular variable. The VALUE parameter defines the current value
of the parameter. The SIZE parameter defines how long the text entry box is (in characters).

At the end of the HTML pagein our example, the Submit and Reset buttons are defined with the INPUT
tag. These use the special types “submit” and “reset,” since these buttons have special purposes. When the
submit button is pressed, the form is submitted by calling the CGI program “myform.”

4,5.3.1 Sample HTML Page
An HTML page that includes a form may look like the following:

<HTML><HEAD><TITLE>ACME Thermostat Settings</TITLE></HEAD>
<BODY >
<H1>ACME Thermostat Settings</H1l>
<FORM ACTION="myform.html" METHOD="POST">
<TABLE BORDER>
<TR>
<TD>Name</TD> <TD>Value</TD> <TD>Description</TD></TR>
<TR>
<TD>High Temp</TD>
<TD><INPUT TYPE="text" NAME="temphi" VALUE="80"

SIZE="5">
</TD>
<TD>Maximum in temperature range (°F)</TD></TR>
<TR>

<TD>Low Temp</TD>
<TD><INPUT TYPE="text" NAME="templo" VALUE="65"

SIZE="5">
</TD>
<TD>Minimum in temperature range (°F)</TD></TR>
</TABLE>

<P>
<INPUT TYPE="gubmit" VALUE="Submit">
<INPUT TYPE="reset" Value="Reset'"s>
</FORM></BODY >
</HTML>

154 rabbit.com HTTP Server

http://www.rabbit.com

The form mlght dlsplay as shown here: i ACME Thermostat Settings - Netscape

File Edit “iew Go Communicator Help
v Back Fopyerd Reload Home Search Metzcape PFrint Sm
w‘ " Bookmarks & Location: Ifi|8:.-".-"-"t|.-"l‘ﬂ_','f0[l‘l‘l.htl‘l‘l| j 17 what's Related

When the form is displayed by a
browser, the user can change valuesin
the form. But how does this changed
dataget back tothe HTTPserver?By | A CME, Thermostat Settings
using the HTTP POST command. When

the user presses the “ Submit” button, the
browser connectsto the HTTP server
and makes the following request: |H13h Temp “80— ‘Mm‘m in temperature range (°F)

|Low Temp ||65 ‘I-«'_[umnmn i temperature range (°F)

|Name |Value |Description

POST myform HTTP/1.0

(some header infor- Smeitl RESE"

mation)

Content-Length: 19

where “myform” isthe CGI program
that was specified in the ACTION
attribute of the FORM tag and pOST is L= -2 Documert: Done = -4
the METHOD attribute of the FORM

tag. “ Content-Length” defines how many bytes of information are being sent to the server (not including
the request line and the headers).

Then, the browser sends a blank line followed by the form information in the following manner:
temphi=80&templo=65

That is, it sends back name and value pairs, separated by the ‘&’ character. (There can be some further
encoding done here to represent special characters, but we will ignore that in this explanation.) The server
must read in the information, decode it, parse it, and then handle it in some fashion. It will examine the
new values, and assign them to the appropriate C variables if they are valid.

45.3.2 POST-Style Form Submission

If an HTML file specifies a POST-style form submission (that is, METHOD="POST"), the form will still
be waiting on the socket when the old-style CGI handler is called. Therefore, it isthe job of the CGI han-
dler to read this data off the socket and parse it in ameaningful way. The sample files Post . ¢ and
Post2.cinthe\Samples\Tcpip\Http folder show how to do this.

The HTTP POST command can put any kind of data onto the network. There are many encoding schemes
currently used, but we will only look at URL-encoded data in this document. Other encoding schemes can
be handled in a similar manner.

TCP/IP Manual, Vol. 2 rabbit.com 155

http://www.rabbit.com

4.5.3.3 URL-Encoded Data

URL-encoded datais of the form "namel=vauel& name2=value2," and is similar to the CGI form submis-
sion type passed in normal URLs. This has to be parsed to name=value pairs. Therest of this section
details an extensible way to do this.

Thisinitializes two possible HTML form entries to be received, and a place to store the results.

#define MAX FORMSIZE 64

typedef struct

char *name;

char value [MAX FORMSIZE] ;
} FORMType;

FORMType FORMSpec [2] ;

void init forms (void)
FORMSpec [0] .name = "user name";
FORMSpec [1] .name = "user email";

Reading & Storing URL-encoded Data

parse_ post () iscaled from the CGI function (submit ()) to read URL-encoded data off the net-
work. It callshttp scanpost () to store the datain FORMSpec [] . These code snippets are from
Samples\tcpip\http\post.c.

int parse post (HttpState *state) {
auto int retval;
auto int 1i;

retval = sock aread(&state->s, state->p,\
(state->content length < HTTP_ MAXBUFFER-1) ?\
(int) state->content length:HTTP MAXBUFFER-1) ;

if (retval < 0)
return 1;

state->subsubstate += retval;

if (state-s>subsubstate >= state->content length) {
state->buffer|[(int) state->content length] = '\0';
for(i=0; i<(sizeof (FORMSpec)/sizeof (FORMType)); i++) {
http scanpost (FORMSpec [i] .name, state->buffer,\
FORMSpec [i] .value, MAX FORMSIZE) ;

}

return 1;

}

return O0;

156 rabbit.com HTTP Server

http://www.rabbit.com

45.3.4 Sample of a CGl Handler

This next function isthe CGI handler that callsparse post (). It isastate machine-based handler that
generatesthe page. It callsparse post () and references the structure that is now filled with the parsed
data we wanted.

Thisfunctionisfrom Samples\tcpip\http\post.c.

int submit (HttpState *state) {
auto int 1i;

if (state->length) { // buffer to write out
if (state->offset < state->length) {

state->offset += sock fastwrite(&state->s, state->buffer +
(int) state->offset, (int)state->length -
(int) state->offset) ;

} else {
state->offset = 0;
state->length = 0;

}

} else {
switch(state->substate) {

case O0:
strecpy (state->buffer, "HTTP/1.0 200 OK\r\n\r\n");
state->length = strlen(state->buffer);
state->offset = 0;
state->substate++;
break;

case 1:

strecpy (state->buffer, "<html><head><title>Results</title>
</head><body>\r\n") ;

state->length = strlen(state-sbuffer);
state->substate++;

break;

case 2: // initialize the FORM Spec data
FORMSpec [0] .value[0] = '\0';
FORMSpec[1] .value[0] = '"\0';

state->p = state->buffer;
state->substate++;
break;

TCP/IP Manual, Vol. 2 rabbit.com 157

http://www.rabbit.com

case 3: // parsethe POST information
if (parse post (state)) {

sprintf (state->buffer, "<p>Username: %$s<p>\r\n<p>Email:
$s<p>\r\n", FORMSpec[0].value, FORMSpec[1l].value) ;

state->length = strlen(state-s>buffer);
state->substate++;

}

break;

case 4:

strcpy (state->buffer, "<p>Go home</body>
</htmls\r\n") ;

state->length = strlen(state->buffer);
state->substate++;
break;

default:
state->substate = 0;
return 1;

}

return O0;

158 rabbit.com HTTP Server

http://www.rabbit.com

4.5.4 HTML Forms Using Zserver.lib

In this section, we will step through a sample program, Samples\tcpip\http\forml. c, that uses
HTML forms. Through this step-by-step explanation, the method of using the functionsin
zserver.1lib will become clear. (As of Dynamic C 8.50, you have the option of using the RabbitWeb
server, with its easier-to-use interface and completely flexible ZHTML page layout capabilities.

Defining FORM_ERROR_BUF isrequired in order to use the HTML form functionality in
Zserver.1ib. The value represents the number of bytesthat will be reserved in root memory for the
buffer that will be used for form processing. This buffer must be large enough to hold the name and value
for each variable, plus four bytes for each variable. Since we are building a small form, 256 bytes is suffi-
cient.

#define FORM_ERROR BUF 256

Since we will not be using the static resource table, we can define the following macro, to remove some
code for handling this table from Zserver.

#define HTTP NO FLASHSPEC

These lines are part of the standard TCP/IP and MIME table configuration.

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

SSPEC_MIMETABLE START
SSPEC_MIME (".html", "text/html")
SSPEC_MIMETABLE END

These are the declarations of the variables that will be included in the form.

int temphi;
int tempnow;
int templo;
float humidity;
char fail[21];

void main (void)

{

An array of type Formvar must be declared to hold information about the form variables. Be sureto alo-
cate enough entriesin the array to hold all of the variables that will go in the form. If more forms are
needed, then more of these arrays can be alocated.

FormVar myform[5] ;

TCP/IP Manual, Vol. 2 rabbit.com 159

http://www.rabbit.com

These variables will hold the indices in the TCP/IP servers’ object list for the form and the form variables.

int wvar;
int form;

Thisarray holds the possible values for the fail variable. Thefail variable will be used to make a pulldown
menu in the HTML form.

const char *const fail options[] = {
"Email",
"Page",
"Email and page",
"Nothing"

};
These lines initialize the form variables.

temphi = 80;

tempnow = 72;

templo = 65;

humidity = 0.3;
strcpy (fail, "Page") ;

The next line adds a form to the dynamic resource table. The first parameter gives the name of the form.
When a browser requests the page “myform. html” the HTML form is generated and presented to the
browser. The second parameter gives the developer-declared array in which form information will be
saved. The third parameter gives the number of entriesin the my form array (this number should match
the one given in themy f orm declaration above). The fourth parameter indicates that this form should only
be accessible to the HTTP server, and not the FTP server. SERVER _HTTP should aways be given for
HTML forms. The return value isthe index of the newly created form in the dynamic resource table.

form = sspec addform("myform.html", myform, 5, SERVER HTTP) ;

Thisline setsthetitle of the form. The first parameter is the form index (the return value of
sspec_addform ()), and the second parameter isthe form title. Thistitle will be displayed asthetitle
of the HTML page and as alarge heading in the HTML page.

sspec_setformtitle (form, "ACME Thermostat Settings") ;

The following line adds a variable to the resource table. It must be added to this table before being added
to the form. The first parameter is the name to be given to the variable, the second is the address of the
variable, the third is the type of variable (thiscan be INT8, INT16, INT32, FLOAT32, or PTR16), the
fourth isaprintf-style format specifier that indicates how the variable should be printed, and the fifth isthe
server for which this variable is accessible. The return value is the handle of the variable in the resource
table.

160 rabbit.com HTTP Server

http://www.rabbit.com

var = sspec_addvariable ("temphi", &temphi, INT16, "%d",
SERVER_HTTP);

The following line adds a variable to aform. The first parameter isthe index of the form to add the vari-
ableto (thereturn value of sspec_addform ()), and the second parameter istheindex of the variable
(thereturn value of sspec_addvariable ()). Thereturn valueisthe index of the variable within the
devel oper-declared Formvar array, myform.

var = sspec_addfv(form, var);

This function sets the name of aform variable that will be displayed in the first column of the form table.

If thisnameis not set, it defaults to the name for the variable in the resource table (“temphi”, in this case).
The first parameter is the form in which the variable is located, the second parameter is the variable index
within the form, and the third parameter is the name for the form variable.

sspec_setfvname (form, var, "High Temp") ;

This function sets the description of the form variable, which is displayed in the third column of the form
table.

sspec_setfvdesc (form, var, "Maximum in temperature range
(60 - 90 °F)");

This function sets the length of the string representation of the form variable. In this case, the text box for
the form variablein the HTML form will be 5 characterslong. If the user enters avalue longer than 5 char-

acters, the extra characters will be ignored.

sspec_setfvlen(form, var, 5);

Thisfunction sets the range of values for the given form variable. The variable must be within the range of
60 to 90, inclusive, or an error will be generated when the form is submitted.

sspec_setfvrange (form, var, 60, 90);

This concludes setting up thefirst variable. The next five lines set up the second variable, which represents
the current temperature.

var = sspec addvariable ("tempnow", &tempnow, INT16, "%d4d",
SERVER_HTTP) ;

var = sspec addfv(form, var);

sspec_setfvname (form, var, "Current Temp") ;

sspec_setfvdesc (form, var, "Current temperature in °F") ;
sspec_setfvlen(form, var, 5);

TCP/IP Manual, Vol. 2 rabbit.com 161

http://www.rabbit.com

Since the value of the second variable should not be modifiable viathe HTML form (by default variables
are modifiable,) the following line is hecessary and makes the given form variable read-only when the
third parameter is 1. The variable will be displayed in the form table, but can not be modified within the
form.

sspec_setfvreadonly (form, wvar, 1);

These lines set up the low temperature variable. It is set up in much the same way as the high temperature
variable.

var = sspec addvariable ("templo", &templo, INT1le6, "%d",
SERVER_HTTP);

var = sspec_addfv(form, var);
sspec_setfvname (form, var, "Low Temp") ;
sspec_setfvdesc (form, var, "Minimum in temperature range

(50 - 80 °F)");
sspec_setfvlen(form, var, 5);
sspec_setfvrange (form, var, 50, 80);

This code begins setting up the string variable that specifies what to do in case of air conditioning failure.
Note that the variable is of type PTR16, and that the address of the variable is not given to
sspec_addvariable (), sincethevariable fail already represents an address.

var = sspec_addvariable("failure", fail, PTR16, "%s",
SERVER_HTTP);

var = sspec addfv(form, var);

sspec_setfvname (form, var, "Failure Action") ;

sspec_setfvdesc (form, var,
"Action to take in case of air-conditioning failure") ;
sspec_setfvlen(form, var, 20);

Thisline associates an option list with aform variable. The third parameter gives the devel oper-defined
option array, and the fourth parameter gives the length of the array. The form variable can now only take
on valueslisted in the option list.

sspec_setfvoptlist (form, var, fail options, 4);
This function sets the type of form element that is used to represent the variable. The default is
HTML_ FORM TEXT, which isastandard text entry box. Thisline sets the type to

HTML FORM PULLDOWN, which isa pull-down menu.

sspec_setfventrytype (form, var, HTML FORM PULLDOWN) ;

Finally, this code sets up the last variable. Notethat it isafloat, so FLOAT32 isgivenin the
sspec_addvariable () cal. Thelast function cal issspec _setfvfloatrange () instead of
sspec_setfvrange (), sincethisisafloating point variable.

162 rabbit.com HTTP Server

http://www.rabbit.com

var = sspec_addvariable ("humidity", &humidity, FLOAT32,
"$.2f", SERVER HTTP) ;

var = sspec_addfv(form, var);

sspec_setfvname (form, var, "Humidity") ;

sspec_setfvdesc (form, var, "Target humidity (between0.0and 1.0)") ;
sspec_setfvlen(form, var, 8);
sspec_setfvfloatrange (form, var, 0.0, 1.0);

These calls create aiases in the dynamic resource table for the HTML form. That is, the same form can
now be generated by requesting “index.html” or “/”. Notethat sspec _aliasspec () should be
called after the form has already been set up. The aliasing is done by creating a new entry in the resource
table and copying the original entry into the new entry. Note that aliasing can also be done for files and
other types of server objects.

sspec_aliasspec(form, "index.html");
sspec_aliasspec (form, "/");

These lines complete the sample program. They initialize the TCP/IP stack and web server, and run the
web server.

sock init () ;
http init () ;
while (1) {

http handler () ;
}

}

Thisisthe form that is generated:

¥~ ACME Thermostat Settings - Netscape

File Edit “iew Go Communicator Help

=

Back Fonward Reload Home Search Metscape Frint Security Shop Stnpm

§ " Bookmarks Goto:l =l 201" what's Related
ACME Thermostat Settings

=

|Name |Value |Desc:ription

|High Temp “80— ‘Ma}mnum m temperature range (60 - 90 °F)
|Cu:rrent Temp |72 |Current temperature n “F

|LOW Temp “55— ‘Iv.[lmmmnm temperature range (50 - 280 °F)
|Pajlure Arction ‘l Page j ‘Action to take m caze of ar-conditiomng fathure
|Humidity “F ‘Target humidity (between 0.0 and 1.0Y

Submit | Reset |

=P == |Documert: Done

TCP/IP Manual, Vol. 2 rabbit.com 163

http://www.rabbit.com

4.6 HTTP File Upload

This section describes the HTTP file upload feature available starting with Dynamic C 8.50. The enhanced
CGil capabilities of thisversion of Dynamic C alow files of unlimited size to be uploaded using a web
interface. It has always been possible to upload files using FTP; however, it is usually more convenient to
use a browser-based upload.

4.6.1 What is a CGI Function and Why is It Useful?

The HTTP library provided with Dynamic C allows the association of C functions with web page URLSs.
When the user, viatheir web browser, retrieves a specified resource, the C function may be called from the
HTTP server. Such afunction is called a Common Gateway Interface (CGlI) function, and it is responsible
for generating a response to the user’s request.

The advantage of using a CGl isthat it can generate web page content on-the-fly, and cause the browser to
display or do anything that it is capable of. In addition, the CGlI is able to read data that was sent by the
browser.

Previousto this release of Dynamic C, the CGIl was limited to handling relatively small amounts of data
sent from the browser. Thisis satisfactory for processing simple forms, but does not allow large data sets
to be uploaded. This release of Dynamic C supports upload of one or more files from the browser. The
files can be of unlimited size. In conjunction with the latest Zserver (resource manager) enhancements
introduced in Dynamic C 8.50, the uploaded files may be stored in the FS2 or FAT file systems, or even
processed dynamically.

The new CGil file upload facility enables arange of convenient firmware features. Possibilities include:

e Remote firmware updates.

e \Web page content updates (i.e. “publishing”).

e Executable (interpreter) scripts.

e Remote hardware updates (if using an FPGA or other configurable logic device).
e Firmware configuration.

NOTE: Throughout this document the FAT file system isthe destination for the
uploaded file. The FAT uses avariety of storage media, from the onboard serial
flash, to NAND flash or SD cards.

164 rabbit.com HTTP Server

http://www.rabbit.com

4.6.2 How Do | Use the New CGI Facility?

There are anumber of steps, some of which will be familiar to users of CGlsin previousreleases. They are
listed here and described in more detail in the following pages. The steps, if coding from scratch, are:

1. #use “dcrtep.lib”, and specify network configuration options.

2. #use <filesystem(s) of choice>, and specify the file system configuration.

3. #define USE_HTTP_UPLOAD

4. #use " http.lib”

5. Create an initial web page with aform asking for the file(s) to be uploaded. The main requirement isthat
you specify enctype="multipart/form-data" inside the <FORM> tag(s).

6. Write a CGlI function (if not using the default one provided).

7. Create an initial resource table containing at least an entry for each of the above two resources (the web
page and the CGlI).

8. Create alist of content type mappings, i.e., the MIME table.

9. Create rules which limit the upload facility to select user groups.
10. Create a set of user IDs

11. In the main program, call http handler () inaloop.

Step 1. Specify Network Configuration

To make use of HTTP upload, you need to perform the usual inclusion and configuration of the network-
ing library, dertcp.lib. Atitssimplest, it istwo lines of code at the top of your main program:

#define TCPCONFIG 1
#use “dcrtcp.lib”

This specifies that the default TCP (networking) configuration is to be used. If you want to change the
default networking configuration, first read the comments at thetop of tcp config.lib.

HTTP upload usually requires at least two additional libraries to be included: afile system library, and
http.lib itself. A file system isrequired, otherwise the uploaded file has nowhere to go (although you
can write a CGI which processesthe file asit is uploaded, in which case you do not need to store it perma-
nently, and thus you do not need to include afile system; the following discussion assumes that you are
using afile system).

TCP/IP Manual, Vol. 2 rabbit.com 165

http://www.rabbit.com

Steps 2, 3 and 4: Specify File system and Web Server

You need to include the file system library (or libraries) before including http . 1ib. Thisis because the
HTTP library needs to know about the filesystem(s) it is going to support. In addition, you need to tell the
HTTP library to use the upload facility. For example, if you want to use the FAT file system, then you
would write the following:

#define TCPCONFIG 1
#use “dcrtcp.lib”

#use “fat.lib” // Step 2: thefilesystem
#define USE HTTP UPLOAD // Step 3: enable upload feature
#use “http.lib” // Step 4: HTTP server code

The order of the above statements isimportant. A possible exception isthat the order of decrtcp.1ib
and fat . 1ib may beinterchanged, since these libraries are independent. However, it is recommended
you use the given ordering since future releases of the FAT may be able to use networking services.

Step 5: Create a Web Page

When using HTTP upload, there needs to be a way to prompt the user (web browser) to enter afile name
to upload. Thisis done by usingan HTML form. The form specifies input fields that may be filled out by
the user, and one or more “submit” buttons that the user presses to start the upload process.

If you have an existing web-based application to which you want to add afile upload facility, you probably
already have aweb page with aform on it; in this case, you can add an extrainput field to an existing form
on that page, or create a new form on the same page. You may already have a CGI function that processes
the results of the form submission. Thiswill need to be rewritten to process data that is not URL encoded.

If you are creating a new application, you need to construct an initial page to contain the necessary form
dements. As a starting point you can use the sample pagein
samples\tcpip\http\pages\upload.html. Clickonupload.html and the browser will
display something like this:

/R HTTP Upload Form - Microsoft Internet Explorer M= E
J File Edit “iew Favortes Tools Help |
e e TR S BT A T B B
Cut Copy Paste Back Fomyard Stop Refresh Home Search Favaorites
| Address [E:\DCinProgh5 amplesticpipthtp'pagesiUPLOAD HTHML =l |J Links >
Name I
File 1o upload
(1o /A/mew him) I Browse... |
File io upload
(mfmnewz_]lm)l Browse... |
Upload |
H
|@ Done ’_’__n by Carnputer i

The construction of this page is outlined below, but it has been simplified and reformatted dightly. A
blow-by-blow description of each lineisadded in italics.

<html>
This introduces the page as an HTML document.

166 rabbit.com HTTP Server

http://www.rabbit.com

<head><title>HTTP Upload Form</title></head>

This (“HTTP Upload Form”) gets displayed at the top of the browser window. You can change this to what-
ever isappropriate for describing the overall purpose of this page.

<bodys>
Introduce the main content of this page.

<FORM ACTION="upload.cgi" METHOD="POST" enctype="multipart/form-data"s

Sart a form definition. The parameters are

action="upload.cgi” : thisrefersto the CGI function that will process the results of the form submission. This
isa URL name, which is mapped to a C function on the server.

method=post: thisisrequired, since a post-type request must be sent to the server.
enctype="multipart/form-data” : thisis also required, and is the part that is different fromthe old style of
processing. The old style did not specify an encoding type, thus the default of “ URL encoded” was used.

<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=1>

For neatness of screen layout, we put everything in an HTML table. The following <TR>...</TR> sections
delimit each row of the table, and the data for each cell is delimited by <TD>...</TD>.

<TR>
<TD WIDTH=130 ALIGN=RIGHT>Name</TD>
<TD WIDTH=500><INPUT TYPE="TEXT" NAME="user name" SIZE=50></TD>

Thisisthefirst input field. It is not a file to upload, but it is information that the server may nevertheless be
interested in. This shows that not every formfield needs to be a file to upload. The order isimportant. Brows-
erswill send back the formfields in the same order that they are defined in the HTML, however it is probably
best not to rely on thisif you can help it.

</TR>

<TR>
<TD ALIGN=RIGHT>File to upload
(to /A/new.htm)</TD>
<TD><INPUT TYPE="FILE" NAME="/A/new.htm" SIZE=50></TD>

Thisisthefile-to-upload input field. The browser displaysthis as a text input field, with an additional
“browse” button so that the user can easily navigate his local filesystem to find the appropriate file. The crit-
ical distinctionisthat it contains a type=file parameter (as opposed to, for example, type=text in the previous
field). The name="/A/new.htm” parameter specifiesthe name of the input field, not the name of the file on the
user’s system! Asit happens, thislooks like a file name, and indeed the server may use it as the name of a
local file, but thisis a convention only. The size=50 parameter specifies the number of charactersthat the
browser will display for file name selection.

<TR>
</TABLE>
<INPUT TYPE="SUBMIT" VALUE="Upload"s>

It is necessary to supply a type=submit form element. The user presses this button to start to post (upload)
process. Note that this is another input field, however if you leave out the name= parameter (asin this exam-
ple) then the browser will not send the value of this button back with the form submission. If there is only one
submit button, then there is no need to nameit.

</FORM></body></html>
Close and complete the form, body, and entire page.

If you have an existing application, you can take out the relevant parts of the above, and insert them in
your existing web page. The relevant parts are the enctype="multipart/form-data’ parameter in the
<FORM> element, and the <INPUT type=file> element.

TCP/IP Manual, Vol. 2 rabbit.com 167

http://www.rabbit.com

If you have an existing application that processes the form data submission, you will need to rewrite the
CGil function that handles the submitted data. Thisisbecausethe enctype parameter changes the syntax
that the browser uses to encode the data. In short, you will need to rewritethe CGl asa“new-style’ CGl as
described in Step 6: Writing a CGI Function.

Having created the HTML file with the upload form, it is necessary to import it into your main program, so
that the HTTP server can present it to the user. This can be doneusing #ximport, Or you can write it
directly to the filesystem (although, initially at least, this presents a chicken-and-egg type problem since
you might not have established an upload procedure in the first place!)

Step 6: Writing a CGI Function

The CGI function is responsible for processing the form submission data as it comes in from the client
(browser). In addition, it generally needs to write some sort of response back to the client indicating
whether or not the submission was acceptable.

If you start reading the following, and start feding somewhat overwhelmed, please be aware that thereisa
default CGI function inthe HTTP library that is very useful. The default CGl, caled

http defaultCGI (), automatically saves uploaded filesinto the filesystem. If that is al you need to
do, then you do not need to fully comprehend this section on first reading.

Note that all of this section is describing new-style CGls. Old-style CGls are covered in Section 4.5.3.

CGI Syntax
All CGlI functions are C functions with the following prototype:

int my CGI (HttpState * s);

TheHttpState parameter isa pointer to the internal state variables of the HTTP server instance that is
handling the current request. You can have one or more server instances. If thereis more than one, the
same CGI may be invoked at the same time for more than one client (if both happen to press the submit
button at about the same time). Thus, it isimportant to write the CGI function so that it is re-entrant. This
basically means that the function should not update globa or static variables. The CGI should not attempt
to modify directly any of thefieldsinthe Ht t pState structure, otherwise the server may become inop-
erable.

API Functions
The HTTP library provides aset of API functions that can be called safely from the CGI. The list of safe
functionsisin theindex under “Function Reference, CGI.”

It is unwise to make direct callsto TCP/IP functions, especially functions that may not return for along
timesuchassock read().

How to Transfer Form Submission Data

To understand how to write a CGI function, it is necessary to have some understanding of the protocol
used to transfer the form submission data. Since the data can consist of one or more files and/or form
fields, there needsto be away of separating them within the one, sequential, stream of datathat is sent by
the client.

168 rabbit.com HTTP Server

http://www.rabbit.com

The way thisisdoneisthat the client specifies a unique string that separates each item of data. The follow-
ing text is adump of the actual data sent by a client (with some irrelevant details omitted, and with com-
ments added in italics):
POST /upload.cgi HTTP/1.1

Thisindicates that it is POSTed form data, and the target handler is upload.cgi.

Content-length: 277
This givesthe total number of bytes of data following the initial header.

Content-Type: multipart/form-data; boundary=3vAL1QsFOUg2GSY3p6én3YQ

The multipart/form-data type indicates that thisis a multipart form data submission. The boundary parameter
specifies a unique character sequence that separates each part. The boundary is deliberately chosen asa
long, random, string of characters so that it is unlikely to be confused with the actual data content.

The above blank line is significant; it indicates the end of theinitial header lines, and the start of data.
--3VAL1QsFOUg2GsY3p6n3YQ

Thisisthefirst boundary. Boundary strings are always prefixed by an additional -- sequence. The following
lines are header lines for the individual part. The actual data follows the first empty line.
Content-Disposition: form-data; name="/A/new.htm"; filename="test.txt"

The Content-Disposition header indicates the presentation of the data. The only type which isrelevant is
“form-data” . The name= parameter indicates the field name (which was originally part of the name=
parameter of the <input> element). Thefilename= parameter isonly set if thisis an uploaded file. It givesthe
name of the file on the remote (client) side. Thisis not usually relevant to the server. The name of the file as it
is stored on the server is not specified (since the browser does not know it or have control over where thefile
is stored). We are using the convention that the field name indicates the local file name, but thisisjust a con-
vention!

Content-Type: text/plain

Content-Type indicates the type of information. The default is plain (i.e. ascii) text, however it could also be
set to image/gif for a GIF file, text/html for HTML etc. The following blank line indicates the end of headers
for this part.

test file contents, first line
Thisisthe actual file or formfield content.
--3vVAL1QsFOUg2GsY3p6n3YQ
The boundary string terminates the data for the previous part. Headers for the next part immediately follow.
Content-Disposition: form-data; name="submit"
Thisisformfield data, in this case the submit button itself.
upload

--3vAL1QsFOUg2GsY3p6n3YQ- -
The boundary terminates the previous formfield. Snce thisis the last boundary;, it also has a trailing --.

When writing the CGI, you do not have to worry about parsing the headers and boundary separators. This
isaready done by the HTTP server. However, you do need to be aware of the stream-oriented nature of the
incoming data. The HTTP server separates out the parts (and parses the headers). Asit doesthis, it calls
the defined CGI with the data for each section.

TCP/IP Manual, Vol. 2 rabbit.com 169

http://www.rabbit.com

Action Codes Received by a CGI Function

The CGl iscalled in a number of different contexts. It determines the context by calling the
http getAction () function. Thereturnvalue of http getAction () indicatesthe reason that
the CGl isbheing called by the HTTP server.

For a given upload, the CGl is called with atypical sequence of action codes. Thefirst codeis
CGI_ START (for the start of anew part), CGI_DATA (for each chunk of datain that part), then
CGI_ END (for the end of the part). Thus, the typical sequence for asingle part is

CGI_START, CGI _DATA, CGI_DATA, CGI_DATA, CGI_END

Finally, at the end of all the parts, the action code is set to CGlI_EOF.

Most CGls should a'so handle a special action code called CGI_ABORT. This code only occursif the
upload isterminated early by a network problem (or by the user pressing the browser’s cancel or stop but-
ton).

Let’'s examine asimple CGI that handles these five action codes. Thisis the minimum requirement; how-
ever, there are some additional codes that may be used by more advanced CGls. The switch statement
ignores action codes that are not listed. Thisis deliberate, since any other action codes may be safely
ignored.

int my CGI (HttpState * s)
{
switch (http getAction(s)) {
case CGI_START:
break;
case CGI DATA:
break;
case CGI_END:
break;
case CGI_EOF:
break;
case CGI ABORT:
break;

}

return O0;
}

The above code is a skeleton that does nothing! In other words, al incoming datais sent to the bit-bucket.
It isready to fill out with more useful actions. To avoid repeating the code, we just take each case condi-
tion, and fill in the details.

170 rabbit.com HTTP Server

http://www.rabbit.com

Action Code CGI_START

When the action code CGI_START isreceived, all of the part headers have been read, so the server knows
everything relevant about the data that follows. The CGI can access thisinformation using severa of the
HTTP API functions. The most important information is the field name on the form, from the <INPUT
NAME= “fieldname’> element in the HTML form:

case CGI_ START:
if (http getField(s) [0] == /") {
printf (“*Found a file to upload!\n”);

}

break;

http getField () looksat thefirst character of the field name to seeif it is aslash character. We are
using the convention that if the field starts with adlash, it is the name of alocal file to be overwritten with
the following data. Note that the field names are controlled by the server, viathe NAME= parametersin
the INPUT fields. We can choose any naming convention desired; in this case, using an initial slash seems
to make sense for file destinations.

Now let’sfill in what happens when thereis afile to save. In most cases, when writing or reading afile, it
is necessary to “open” thefile. When afileis open, it can be read and/or written. Finally, it is closed. All
thisimplies that some sort of state needs to be maintained so that we can refer to the correct open file. It
would be very easy if al the data was presented at once to the CGl, so that it could open, write, and close
thefilein one fell swoop. Unfortunately, that cannot happen since the datais not yet available on the
CGI_START cdl. The CGI has no choice than to return to the HTTP server after doing whatever it canin
the CGI_START state.

The solution to this problem is that the CGI opensthefile onthe CGI_START call, and stores the open
file handle somewhere where it can be retrieved on the next (CGI_DATA or CGI_END) call. The recom-
mended method for accomplishing this is to save the handle back with the server. You can use the

http setCond() andhttp getCond () functionsto do this.

The HTTP server maintains a set of so-called “cond” variables for each CGI instance. Your application
decides how many cond variables there are by defining the HTTP_MAX COND macro, which defaultsto 4.
Each cond variable is a 16-bit integer.

Thereisalso asingle integer variable accessed using http getState () andhttp setState ().

TCP/IP Manual, Vol. 2 rabbit.com 171

http://www.rabbit.com

Expanding on the above, let’'s add opening of thefile:

#define COND HANDLE 0 // cond variable for storing the handle.
case CGI_ START:
if (http getField(s) [0] == /") {
printf (“Found a file to upload!\n”);
http setCond(s, COND HANDLE,
sspec_open (http getField(s), http getContext (s),
O WRITE|O CREAT|O TRUNC, 0));
if (http getCond(s, COND HANDLE) < 0)
http skipCGI () ;
}
else
http skipCGI(s) ;
break;

The sspec_open () function opens the file (whose name isin the field name) with write access. The
http getcontext () function returns aserver context structure which is required for the
sspec_open () cal. The context structure contains some details, such as the current user 1D, but the
details are usually not relevant to the CGI function itself. The fileis created if it does not exist, and itisini-
tially truncated if it already exists. Thereturn value from sspec_open () isstored in the cond variable
COND_HANDLE, which is amacro we defined to zero so we wouldn’t have to remember hard-coded num-
bers. The return value is either negative (if there was an errar), or not negative in which caseitisavalid
file handle. We check the cond variable just set, to make sure it has avalid value.

The else clauseis added so that if the part is not afile to upload the rest of the data for thispart is
ignored. Thisis convenient, since we don’t want to get called with CGI_DATA or CGI_END if thisis not
afile. If http skipCGI () iscalled, then the next action code will be either CGI _START (if thereis
another part), or CGI_EOF (if there were none). Note that we are also calling http skipCGI () inthe
case that the file could not be opened.

Action Code CGI_DATA
Let’s now turn to saving the data. For this, we make use of the CGI_DATA action code:

int handle;

case CGI_DATA:
handle = http getCond(s, COND HANDLE) ;
sspec_write (handle, http getData(s), http getDataLength(s)) ;

break;

First, the open file handle is retrieved from the cond variable. This works because the HTTP server does
not touch these variables between calls. The only time the server changes the cond variablesis at the start
of acompletely new form submission, in which casethey are usually set to zero. But don’'t depend on them
being zero, since aform submission can sometimes contain syntax that sets them to non-default values.
Youcanrelyonhttp getState () returning zero on the very first call; thereafter, it is not touched,
but can be manipulated by the CGI calling thefunction http setState ().

172 rabbit.com HTTP Server

http://www.rabbit.com

Having retrieved the open file handle (you didn’'t saveit in astatic variable, did you?) it isused in the
sspec_write () cal. http getData () returnsthe available data, and

http getDataLength () returnsitslength (in bytes). The maximum length that

http getDataLength () will returnisSHTTP_ MAXBUFFER, which isamacro controlled by the
application (defaulting to 256). Often, the available data length will be less than this, even in the middle of
along file.

Note that the return code from sspec_write () isnot checked. Thisis ashortcoming that we fix later,
since the solution can be slightly complex. For now, we just hope that it works.

Action Code CGI_END

The next thing to consider is closing the file when the upload is complete. For this, we make use of the
CGI_END action code:

case CGI_END:
handle = http getCond(s, COND HANDLE) ;
sspec_close (handle) ;
break;

Thisis quite simple. We simply retrieve the handle, and close it.

Responseto the Client: Redirection

Finally, we have to consider what to do at the end of all parts (CGI_EOF), or if the connection was can-
celled (CGI_ABORT). You may recall that the CGI hastwo responsibilities: oneisto process the incoming
data, and the other is to write some results back to the client. We have aready done the former, it isonly
left to do the latter.

Writing results to the client means we have to generate the proper HTTP response, including all the neces-
sary headers and web page content. The CGI can do thisitself, by putting strings in the buffer provided by
thehttp getData () cal. Alternatively, the CGI can simply redirect back to another local (or even
remote) web page and not bother writing anything itself.

If the CGI wants to generate the response itself, then this has the advantage of being slightly more effi-
cient, but the disadvantage of requiring more code in the CGI. Usually, the application already has some
sort of web page that can display the necessary results. Thisis often an “SSI” page (that is, dynamically
generated using a specialized function) or may be just a static page (for example, /index.html).

Action Code CGI_EOF
Since referring to another web page is easiest, it is shown first:

case CGI_EOF:
cgl redirectto(s, “/index.html”);
break;

Thecgi redirectto () functiontellsthe HTTP server to stop calling this CGI function, and tell the
client to retrieve its next web page from the specified location (in this case, the index . htm1 pageon the
current server). The onusis on the client (browser) to go and get that page. It will come straight back to
this server, but the CGI does not have to worry about it. Easy!

TCP/IP Manual, Vol. 2 rabbit.com 173

http://www.rabbit.com

Inasimilar vein, you can usethehttp switchCGI () function. Again, the current CGI does not have
to generate aresponse. The difference isthat the HTTP server goes straight to the specified web page and
presentsit to the client on the same connection (rather than requiring the client to come back to the server
with anew request).

http switchCGI () can transfer control to any local web page, asif the client had directly requested
that resource. If the resource happens to be another new-style CGlI (like the one we are describing), then it
gets control with the current action code, which will usually be CGI_EOF. Otherwise, the resourceis pro-
cessed as if it was directly retrieved by the client, by name. Note: the current CGI must not have written
anything back to the client, otherwise the data wil not be intelligible to the client). Hereisan example:

case CGI_EOF:
http switchCGI (s, “/index.html”);
break;

Asyou can seg, itisvery similar tothecgi redirectto () case

Action Code CGlI_ABORT

The conventions for having the CGI generate its own response back to the client are covered in the next
section, titled, Writing Responses to the Client from a CGI Function. First, we look at the proper handling
of aCGI_ABORT action code. This code means that the connection has been lost and there is no point in
handling any more incoming data or generating any response. Thus, processing of CGI_ABORT is neces-
sarily limited to cleaning up any open files or other resources:

case CGI ABORT:
handle = http getCond(s, COND HANDLE) ;
sspec_close (handle) ;
break;

In this example, we simply close the handle, possibly leaving the file with partially written contents. It is
important to do this, sinceif the handle is left open, then that handle is lost forever (or until the next
reboot). The CGI_ABORT code can happen at any time, so the CGI must handle it if it ever uses “leak-
able” resources.

If you are alert, you noticed that CGI_ ABORT may be called when there is no open handle. We must guard
against the possibility of trying to close an “invalid” handle, since it may happen to belong to another
active CGIl. We can do this by ensuring the value in the cond variable is“-1" if the handle is not open.

174 rabbit.com HTTP Server

http://www.rabbit.com

Minimum Required Functionality of CGI
All the above code is pulled together, with the proper tests and comments on the additional code:

#define COND HANDLE 0 // cond variable for storing the handle.

int my CGI (HttpState * s) {
int handle;
// Following block ensures that the first time (http_getState() is zero) we set the handleto -1.
if (http getState(s) == 0) {
http setState(s, 1);
http setCond(s, COND HANDLE, -1);
}
switch (http getAction(s)) {
case CGI START:
if (http getField(s) [0] == /") {
printf (“*Found a file to upload!\n”);
http setCond(s, COND HANDLE,
sspec_open(http getField(s),
O _WRITE|O CREAT|O _TRUNC, 0));
if (http getCond(s, COND HANDLE) < 0)
http skipCGI () ;

http getContext (s),

}

else
http skipCGI(s) ;

break;
case CGI DATA:
handle = http getCond(s, COND HANDLE) ;
sspec_write (handle, http getData(s),
http getDatalLength(s)) ;
break;
case CGI_END:
handle = http getCond(s, COND HANDLE) ;
sspec_close (handle) ;
// Thefollowing statement ensures that the handle is set back to -1 when we know it is closed.
http setCond(s, COND HANDLE, -1);
break;
case CGI_EOF:
http switchCGI (s, “/index.html”);
break;

case CGI_ABORT:
handle = http getCond(s, COND HANDLE) ;

TCP/IP Manual, Vol. 2 rabbit.com 175

http://www.rabbit.com

// Thefollowing test is added so we don’t try to close the handle if it is already closed.
if (handle >= 0)
sspec_close (handle) ;
break;

}

return O0;

}

What Happensif the Write Fails?

Thereisstill one point to cover. That is, the sspec_write () cal isnot guaranteed to swallow all of the
datathat it was told to write. In fact, sspec_write () may completely fail (for example, if thefile sys-
tem runs out of space).

First, let'shandle the case where sspec_write () returnsan error, that is, itsreturn codeis negative. In
this case, we probably want to return an error indication to the client. This can be done using the

http switchCGI () orcgi_ redirectto () functions. A specia page will need to be created for
this purpose. If this pageiscalled “ /upld err.html”, then the following code could be used:

case CGI DATA:
handle = http getCond(s, COND_HANDLE) ;
if (sspec write(handle, http getData(s),
http getDatalLength(s)) < 0)

sspec_close (handle) ;
http switchCGI (s, “/upld err.html”);

}

break;

In the case of an error, the handleis closed, then the HTTP server presentstheupld err.html pageto
the client. The current CGl is abandoned, including any pending datathat is still incoming. Thisiswhy the
handleis explicitly closed (sinceupld err.html probably doesn’'t know anything about it!). Natu-
rally, upld err.html isaweb page that tells the user that something went wrong. In practice, this
would usually be an SSI rather than a static web page, since you would probably want to give the user dif-
ferent feedback depending on the exact type of error.

Thefinal consideration iswhat to do if sspec_write () canonly write some (or perhaps none) of the
data it was given. The normal course of actionisto just retry later, with the data that was not written. You
could just sitin aloop in the CGI function waiting for the data to be written. This may be satisfactory in
some cases, but often this will unnecessarily reduce system performance (since nothing else will get a
chance to run except interrupts). It is preferable to return to the HTTP server, which in turn can return to
the application before coming back into the CGl.

176 rabbit.com HTTP Server

http://www.rabbit.com

CGI Return Codes

Thisis where the CGI return code becomes important. Up to now, the return code has always been zero,
which means “ continue as usual.” (However, some of the APIssuchashttp abortCGI () override
this.)

There are several other legitimate values for the return code:

CGI_MORE: Call back again when free space in transmit buffer.
CGI_DONE: CGI has finished writing data to the client.
CGI_SEND: Send the data (null term string) in the main buffer.
CGI_SEND_DONE: combination of the above two.

Action Code CGI_CONTINUE

In the case we are discussing, the CGI_ MORE return codeis used. This tellsthe server that the CGI func-
tionis busy trying to do something, but it could not complete the task. It wantsto be called back again, but
without any new incoming data.

Thus, if the CGI function returns CGI_MORE, the HTTP server will eventually come back with a special
action code, which has not been mentioned yet, called CGI _CONTINUE. The CGI needs to respond to
this code so that it can continue doing what it was trying before. Thisimplies that the CGI will need to
remember at least a bit of information (like how many bytes of the total it successfully wrote). For this, it
can use the “state’ and “cond” variables.

The following code shows the relevant sections for following this protocol:

int len, newlen;
#define COND LEN 1
case CGI_DATA:
handle = http getCond(s, COND HANDLE) ;
len = sspec write(handle, http getData(s),
http getDatalLength(s)) ;

if (len < 0) { //permanent error
sspec_close (handle) ;
http switchCGI (s, “/upld err.html”);

}

else if (len < http getDataLength(s)) //no error, but not all written
{
http setCond(s, COND_LEN, len); //saveplaceinfile
return CGI MORE; / /tell server we're not done
}
break;

TCP/IP Manual, Vol. 2 rabbit.com 177

http://www.rabbit.com

case CGI_CONTINUE: //CGI_MORE returned last time
handle = http getCond(s, COND HANDLE); //getfilehandle
len = http getCond (s, COND_ LEN) ; / /get placein file

// Try writing the part that wasn't written.

newlen = sspec write(handle, http getData(s)+len,
http getDatalLength(s)-len) ;
if (newlen < 0) { / /permanent error when retrying.

sspec_close (handle) ;
http switchCGI (s, “/upld err.html”);
}
else { / /sum the total written count
len += newlen;
if (len < http getDatalLength(s)) { //stll haven't written all
http setCond(s, COND_LEN, len); / /save new place
return CGI_MORE; / /tell server we' re not done

}

break;

The important point isthat when CGI CONTINUE isthe action code, the CGl retriesthe failed part of the
previous operation, then tests whether it is complete. On completion, the usual “0” return codeis returned,
otherwise the CGI keepsreturning CGI_MORE until the operation either completes or permanently fails.
(The above code does not show the CGI returning zero. Look at the code in the default handler,

http defaultCGI (), to seethisbeing done.)

You may notice the repetition of parts of this code, for examplethecallstohttp switch CGI (). This
isfor clarity; you can condense some of this by factoring out the common parts.

The CGI remembers where it was up to by using another cond variable, COND LEN. Thisisall that is
required, since the contentsof http getData () and itslength are guaranteed not to be changed on the
next call, when the CGI returns CGI_MORE.

Writing Responses to the Client from a CGI Function

A CGI functionis able to generate all or part of the response to the client. To do this, it has to follow the
HTTP specification. That is, it must write the response headers, plusthe HTML content. The HTTP head-
ers must be the first thing written. At a minimum, the header lines |ook like the following:

HTTP/1.0 200 OK
Date: Sun, 20 Jan 1980 23:27:10 GMT
Content-Type: text/html

NOTE: Each line must be terminated with a CRLF (that is, “\ r\n"), and there
must be a blank line after the last header. The date string can be constructed
usingthehttp date stx () function.

178 rabbit.com HTTP Server

http://www.rabbit.com

You can create the headersin one hit using the following code:

char datel[30];
sprintf (http getData(s),

"HTTP/1.0 200 OK\r\nDate: %s\r\nContent-Type: text/html\r\n\r\n",

http date str(date));
Then send it to the client by returning CGI_ SEND straight away. CGI_SEND tellsthe HTTP server that
the CGlI function has put a null-terminated stringintheht tp getData () buffer, and that the server
should not call the CGI again until the string has been sent.

Thisisthe most convenient way of sending relatively small amounts of dataat atime. It relies on the fact
that the CGlI is allowed to write to the buffer returned by http getData (). Since

http getData () isused to passincoming datato the CGl, it isimportant to ensure that the incoming
data has been fully processed before writing over that buffer. In addition, the buffer’'slengthis

HTTP MAXBUFFER which limits the size of the string (including the null terminator).

The CGI can return CGI_ SEND for any action code (except CGI_ABORT). When the action codeis
CGI_EOF, thereisno more incoming data, so strings can be written back to the client indefinitely; the
server keeps calling the CGl at cGI_EOF. When the CGI has finished generating all the content, it must
return CGI_DONE.

When the server getsthe CGI_DONE return code, it closes the client connection normally, and ceases call-
ing the CGl.

If the CGI has one more thing to write beforeit is*“done,” it can return CGI_ SEND DONE which com-
binesthe CGI_SEND and CGI_DONE return codes. This can simplify the CGl if it does not have to do
much when it first gets the CGI_EOF action code.

Using CGI_SEND return code has some limitations. In particular, only alimited size of string may be sent
to the client on any one call. Also, anull character cannot be sent to the client because the null isinter-
preted as the end of the string. The null character problem is not usually important, since nulls are rarely (if
ever) sent in an HTML document. The length limitation is more important, since some HTML constructs
can be very verbose.

Thehttp write () function isdesigned to overcomethese limitations. http write () writesdata
from an arbitrary buffer (with a higher length limit on any one call), and returns either zero meaning that
all data was successfully queued, or it may return CGI_MORE if it could not write the data. Either all or
none of the data will be written, respectively. In the case that none was written, the CGI returns the
CGI_MORE return code to the HTTP server. The CGI will then be called back with an action code of
CGI_CONTINUE, whereit should retry thefailed http write () call.

TCP/IP Manual, Vol. 2 rabbit.com 179

http://www.rabbit.com

Ifhttp write () returnszero, it can be called again immediately with more data, or the CGI can return
zero to the HTTP server. Otherwise, the CGI function will generally need to remember what it was up to,
andretry thehttp write () onthenext call. Thefollowing codeillustratesuse of http write ():

static const char * a very long html fragment = “...."”; //512bytes
case CGI_END:
return http write(s, a very long html fragment,
strlen(a very long html fragment)) ;

case CGI_CONTINUE:
if (was_writing that long fragment)
return http write(s, a very long html fragment,
strlen(a_very long html fragment)) ;
break;

The details of determining which write wasin progress have been glossed over. Basically, you would have
to use a cond variable to keep track of whichhttp write () wasin progress, if thereis more than one
possibility.

Thereisalimit to the amount of datathat http write () can possibly write on any given cal. This
limit is set by the HTTP server socket transmit buffer size. This buffer sizeis given by

TCP_ BUF SIZE/2. Thetransmit buffer isusually at least 1024 bytes, which is considerably larger than
the limitation when using the CGI_ SEND return code (typically 255 bytes). If you try exceeding that limit,
http write () will never succeed.

Step 7: Creating the Resource Tables

Web browsers use URLS, which are specially formatted strings, to refer to resources (web pages) on the
server. For example, auser may enter http://rabbit server/admin/upload.html toretrieve
the /admin/upload.html resource from the HTTP server on “rabbit_server.”

When the server receives such arequest, it needs to look up the name, open the resource that it refers to,
and send the contents back to the client.

CGl functions are no different from other resources, asfar asthe client is concerned. The server, of course,
does entirely different things. The server needs to have alookup table defined, which translates URL s into
the appropriate local type of resource. Thisisthe function of the “resource table,” which is also known as
the “flashspec” or “ramspec” tablein Dynamic C parlance.

The static resource table is a statically defined, constant, table. The dynamic resource table is generated at
runtime. Both types can be used in the same program, with dynamic entries overriding static entries with
the same URL.

With this release of Dynamic C, thereis no need to put anything in either of these tables, provided that a
filesystem (FAT or FS2) is used. However, it is convenient to have at least afew entriesin the dynamic
table, and it is mandatory to have entries in either or both the static and dynamic tablesif CGI functions
are used.

180 rabbit.com HTTP Server

http://www.rabbit.com

When using the HTTP upload facility, you will need at least one CGI function to be defined, and probably
another entry for the initial form. The resource table may be defined as follows:

SSPEC_ RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE("/index.html", index html),
SSPEC RESOURCE CGI ("upload.cgi", my CGI)

SSPEC_RESOURCETABLE END

This defines a static resource table with two entries. Thefirst is a static web page for the form
(index.html) and the second points to the CGI that will be used to process the uploaded data. Impor-
tant: use SSPEC_RESOURCE_CGI, not SSPEC_RESOURCE_FUNCTION - this defines the CGI as
new-style. SSPEC_RESOURCE XMEMFILE specifies afile that has been imported in the server’sflash
memory using the #ximport directive. For example,

#ximport "samples/tcpip/http/pages/upload.html™ index html

index html isaplaceholder (along int) for the start of the file. Thisis mentioned in the resource
table entry so that the server knows whereto get it.

The second entry above specifies a“new-style” CGI function, which has been the subject of the preceding
sections. You must use the SSPEC_ RESOURCE_ CGI macro to specify thistype of CGIl. The URL
(string) parameter is whatever is mentioned in the <form action=...> parameter of the initial web page. The
other parameter is the function pointer to the CGI that will process the upload.

If you do not wish to write a CGl just for handling file uploads, you could specify
http defaultCGI () asthe CGI function.

Step 8: Create List of Content Type Mappings

The HTTP server needs to recognize different file formats. Thisis done using file extensions and MIME
types. The server shares this information with the browser in its header. In this way, the browser knows
how to handle thefile.

The following code creates a table that maps file extensions to the appropriate MIME type.

SSPEC_MIMETABLE START

SSPEC_MIME (".htm", "text/html"),
SSPEC MIME (".html", "text/html"),
SSPEC_MIME (".gif", "image/gif"),

SSPEC_MIME (", Cgl m, omwn)
SSPEC _MIMETABLE END

This method of creating the MIME type mapping table is new with Dynamic C version 8.5.

TCP/IP Manual, Vol. 2 rabbit.com 181

http://www.rabbit.com

Step 9: Rule Creation
There must be rules to limit the upload facility to select user groups. This access control adds security to
the system by disallowing unauthorized tampering.

Thisis done be assigning aunique user (or user group) the privilege of uploading new files. All other users
will be permitted only read access. To do this, there are several things that need to be coordinated. First,
the user(s) need to be created and assigned the correct group bit (which defines the upload privilege).
Then, the CGI and the file system need to be protected so that only the privileged group can use the CGl,
and only the privileged group can write to a defined subset of the file system.

Let’'stake this step-by-step. In the main program, define a group bit to represent the privileged user(s):
#define ADMIN GROUP 0x0002

Groups are assigned one bit out of 16. In this case, we select bit 1. (Bit 0, or 0x0001, will be used for all
other users).

Next, augment the resource table so that the CGlI is accessible only to usersin ADMIN GROUP:

SSPEC _RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE ("/index.html", index html),
SSPEC RESOURCE_ P CGI ("upload.cgi", my CGI,
"newPages", ADMIN GROUP, 0x0000,
SERVER_HTTP, SERVER AUTH BASIC)
SSPEC_RESOURCETABLE_ END

The SSPEC_RESOURCE_P_CGI isamacro that allows specification of access control parameters. After
the usual URL string and function pointer, the next parameters are:

e “newPages’ - thisisthe so-called “realm” of the CGI resource. Thisis not particularly significant,
except that it notifies the client that thisis arestricted resource, and that a userid/password will be
required. The user sees this string when prompted for his or her credentials.

e ADMIN GROUP - thiswasthe group defined above. Inthiscontext, it appliesto the read accessrights.
To read thisresource (that is, to use the CGl), the user needs to be in this group.

e (0x0000 - thisis aso agroup bit parameter, for write access. CGls themselves do not have the concept
of “writability” (that would imply the ahility to change the CGI function!) so thisis always zero for a
CGl.

e SERVER HTTP - this specifies the server that can use the CGI function. CGls are currently only
usable by the HTTP server, thus there is no other sensible choice for this parameter.

e SERVER AUTH BASIC - this specifies the required (minimum) authentication method. BASIC
means that a simple plain-text userid and password will be required. A better choiceis
SERVER_AUTH DIGEST sincethat does not reveal the password to anyone listening in on the con-
versation; however, older web browsers do not support this.

182 rabbit.com HTTP Server

http://www.rabbit.com

Next, the file system needs to be protected. Usually, you do not want the entire file system to be writable,
even to the privileged group members. To establish this sort of protection, you need to set up arule-based
access control. Thisisdone using the SSPEC_RULETABLE method, or equivalent runtime control:

#define SSPEC FLASHRULES
#use “http.lib”

SSPEC_RULETABLE START
SSPEC_ MM RULE ("/A/new", "newPages", OxFFFF, ADMIN GROUP,
SERVER HTTP, SERVER _AUTH NONE, NULL)
SSPEC_RULETABLE END

The SSPEC_ FLASHRULES macro must be defined before you #use “http.lib”. The rule table has one
entry in this example. The parameters to this entry are:

e “/A/new” -thisisthe string prefix of al file namesto which thisrule applies. In this example, every-
thing in the first FAT partition (/A/) with afilename starting with “new” is protected according to the
remaining parameters. Thisincludes any filein the root directory whose name starts with “new,” or any
filein any subdirectory of the root directory where the subdirectory name starts with “new.”

e “newPages’ - thisistherealm string assigned to these files. Thisisthe same asthe CGI realm, but need
not be.

e OxFFFF - thisisthe user groups who are allowed read access. In this case, everyoneis allowed.
e ADMIN GROUP - thisisthewritable group: only the one defined for the CGl is allowed.
e SERVER _HTTP - only the HTTP server can access.

e SERVER AUTH NONE - thisisonly relevant when the resource is being read directly by the client.
When the file iswritten (viathe CGI) the CGI has already authenticated the user in its own way, and
doesn’t need to re-authenticate. In this example, no authentication is required for retrieval (read-only)
of thefile.

e NULL - thisisan additional parameter that is not relevant to this discussion.

By default, every other file in the filesystem(s) that is not covered by this rule is denied write access. In
general, aruleisonly required when it is desired to permit write access (not deny it).

4.6.2.1 Step 10: Create Set of User IDs

The last step isto actually define the users. This must be done at runtime, using the sauth_* () func-
tions. The following code illustrates:

int uid;
uid = sauth adduser("admin", "upload", SERVER HTTP) ;

sauth setusermask (uid, ADMIN GROUP, NULL) ;
sauth setwriteaccess(uid, SERVER HTTP) ;

This sets up asingle user, with userid “admin” and password “upload.” The user is only “known” to the
HTTP server. sauth setusermask () isrequired when auserid is created (since the default may not
be satisfactory). It makes sure the user is placed into the correct group(s), in this case, the ADMIN GROUP
that we defined above. Finally, each user must be individually granted write access using the

sauth setwriteaccess () function. If thisis not done, the user will not be able to write the filein
gpite of passing other tests.

TCP/IP Manual, Vol. 2 rabbit.com 183

http://www.rabbit.com

Step 11: Tying It All Together

After performing the above steps, the actual running of the HTTP server and CGI isalmost trivial. The
main C function should have aloop init which callshttp _handler():

void main ()

{

}

int uid;
sock _init(); // Initidlize the network

// Mount the FAT filesystem.
sspec_automount (SSPEC_MOUNT ANY, NULL, NULL, NULL) ;

// Create the authorized user, as described in the previous section.

uid = sauth adduser ("admin", "upload", SERVER HTTP) ;

sauth setusermask (uid, ADMIN GROUP, NULL) ;
sauth setwriteaccess(uid, SERVER HTTP) ;

http init () ; // Initializethe HTTP server
tcp reserveport (80) ; / / Enable smooth handling of multiple HTTP requests
for (;;) http_handler(); // Thebigloop! Driveseverything.

All error handling has been pared out of the above code. For full details, please refer to the sample pro-
gram samples\tcpip\http\upld fat.c.

184

rabbit.com

HTTP Server

http://www.rabbit.com

cgi_continue
cgi_redirectto
cgi_sendstring
http_abortCGlI
http_addfile
http_contentencode
http_date_str
http_defaultCGlI
http_delfile
http_finderrbuf
http_finishCGI
http_getAction
http_getCond
http_getContentDisposition
http_getContentL ength
http_getContentType
http_getcontext
http_getContext
http_getData
http_getDatalength
http_getField
http_getHTTPMethod
http_getHTTPMethod_str

4.7 API Functions for HTTP Servers
Below isalist of linksto the function descriptions for each of the API functions for the HTTP server.

http_getHTTPVersion
http_getHTTPVersion_str
http_getRemainingL ength
http_get _sock
http_getSocket
http_getState
http_getTransferEncoding
http_getURL
http_getUserState
http_handler

http_idle

http_init

http_is_secure
http_nextfverr
http_parseform

http_safe

http_scanpost
http_set_anonymous
http_setauthentication
http_setCond
http_setcookie
http_set_path

http_setState
http_shutdown
http_skipCGil
http_sock_bytesready
http_sock_fastread
http_sock_fastwrite
http_sock gets
http_sock _mode
http_sock_readable
http_sock _writable
http_sock_thleft
http_sock _write
http_sock xfastread
http_sock xfastwrite
http_status
http_switchCGlI
http_urldecode
http_write
shtml_addfunction
shtml_addvariable
shtml_delfunction
shtml_delvariable

TCP/IP Manual, Vol. 2

rabbit.com

185

http://www.rabbit.com

cgi continue

int cgi continue(HttpState * state, char * localurl);

DESCRIPTION

Called from a CGlI function after processing any data submitted. Thisfunction continues creating
aresponse asif from anorma GET request to the specified local URL.

NOTE: the CGI function must NOT have sent any data to the socket.

PARAMETERS
state A pointer to the HTTP server state structure.
localurl The URL string, which must be a URL defined in the server spec table (oth-

erwise the browser will see a“not found” message).

RETURN VALUE

Thereturn value from this function should be used as the return value from the CGI handler func-
tion that callsit.

LIBRARY
HTTP.LIB

186 rabbit.com HTTP Server

http://www.rabbit.com

cgi redirectto

void cgi redirectto(HttpState *state, char *url);

DESCRIPTION

This utility function may be called in a CGI function to redirect the user to another page. It sends
auser tothe URL storedin url. You should immediately issuea“return 0;”" after calling

thisfunction. The CGl is considered finished when you call this, and will bein an undefined state.

The HTTP sampleswork correctly with cgi_redirectto () becausethey use macro con-
stants to define the URL parameter. If you manipulate the url string, please be aware of the fol-
lowing issues.

The library function sets a pointer to the 2nd parameter - url. The calling routine is respon-
sible for ensuring that the location represented by the pointer remains valid after the call.
Thisis because the URL string will not be processed until after the CGI function is fin-
ished.

If the application hasMAX TCP SOCKET BUFFERS and HTTP MAXSERVERS Set to
more than one, it is possible that the CGI function will be called successively with different
server states serving different client requests. In these circumstancesit is necessary to
ensure that the pointer to the url isvalid for each of the server states.

After the cgi function hascalled cgi redirecto () andreturns 0, the http_handler
then causes the server response to be sent to the browser. The information is sent as fol-
lows:

1. HTTP header response containing the redirection information response code 302.

2. A human readable redirection html page telling the user that redirection has taken
place, and to click “here” to go to the new URL. Thisisfor browsers that do not rec-
ognize the redirection 302 command in the header.

Thismay cause a problem for browsers which do recognize the 302 redirection command.
Some browsersimmediately issue a GET request to the new location while still reading in
the human readable page. If MAX TCP SOCKET BUFFERS and HTTP MAXSERVERS
are set to one, the server will not receive the GET request because it is busy sending out the
human-readabl e page. The symptom is that the browser appearsto time-out. (Thistiming
problem may be masked when a proxy server is used.) Set

MAX TCP_SOCKET BUFFERS and HTTP_MAXSERVERS to avalue more than one to
prevent this problem.

TCP/IP Manual, Vol. 2 rabbit.com

187

http://www.rabbit.com

cgi redirectto

PARAMETERS
state Current server struct, as received by the CGI function.
url Fully qualified URL to redirect to.

RETURN VALUE
None - sets the state, so the CGl must immediately return with avalue of 0.

LIBRARY
HTTP.LIB

SEE ALSO
cgi_sendstring

cgi sendstring

void cgi sendstring(HttpState *state, char *str);

DESCRIPTION

Sends astring to the user. You should immediately issuea“return 0;" after calling thisfunc-
tion. The CGl is considered finished when you call this, and will bein an undefined state. This
function greatly simplifiesa CGI handler becauseit allows you to generate your pagein a buffer,
and then let the library handle writing it to the network.

PARAMETERS
state Current server struct, as received by the CGI function.
str String to send.

RETURN VALUE
None - sets the state, so the CGl must immediately return with avalue of 0.

LIBRARY
HTTP.LIB

SEE ALSO
cgi_redirectto

188 rabbit.com HTTP Server

http://www.rabbit.com

http abortCGI

int http abortCGI(HttpState * state);

DESCRIPTION

Terminate this CGI request. The client will receive an error message indicating the connection
was closed.

The CGI should not make any further HTTP calls after calling this function. It should clean up
any resources that it opened, since no further calls are made to this CGI for this request.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
0

LIBRARY
HTTPLIB

SEE ALSO
http_getAction, http_skipCGI, http_switchCGI, http_finishCGI, http_write

TCP/IP Manual, Vol. 2 rabbit.com 189

http://www.rabbit.com

http addfile

int http addfile(char *name, long location);

DESCRIPTION
Adds afile to the dynamic resource table.

PARAMETERS
name Name of thefile (for example, /index.html).
location Address of thefile data. (Return value from #ximport)

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
HTTP.LIB

SEE ALSO
http_delfile

190 rabbit.com

HTTP Server

http://www.rabbit.com

http contentencode

char *http contentencode(char *dest, const char *src, int len);

DESCRIPTION

Converts astring to include HT TP transfer-coding tokens (such as & #64; (decimal) for at-sign)
where appropriate. Encodes these characters: "<>@%#&."

Source string isNULL - byte terminated. Destination buffer is bounded by 1en. Thisfunctionis

reentrant.
PARAMETERS
dest Buffer where encoded string is stored.
src Buffer holding original string (not changed)
len Size of destination buffer.

RETURN VALUE

dest: Therewasroom for al conversions.
NULL: Not enough room.

LIBRARY
HTTP.LIB

SEE ALSO
http_urldecode

TCP/IP Manual, Vol. 2 rabbit.com 191

http://www.rabbit.com

http date str

char *http date str(char *buf);

DESCRIPTION
Print the date (time zone adjusted) into the given buffer. This assumesthere is room!
PARAMETERS

buf The buffer to write the date into. This requires at least 30 bytes in the desti-
nation buffer.

RETURN VALUE
A pointer to the string.

LIBRARY
HTTP.LIB

SEE ALSO
http_handler

192 rabbit.com HTTP Server

http://www.rabbit.com

http defaultCGI

int http defaultCGI(HttpState * state);

DESCRIPTION

This function should not be called directly by the application. It isintended to be used as a new-
style CGI for handling file uploads. See “ samples\tcpip\http\upld_fat.c” for an example of using
this function.

This CGI function accepts POST requests from the client (browser) which may contain one or
more filesthat are being uploaded. It looks at the field name of the form datain the request. If the
field name startswith “ /", it is assumed to be the name of aresource which isto be created (if it
does not already exist) and overwritten with the uploaded file contents.

There are three steps required to use this CGl:

1. Define a CGI resource in the flash- or ram-spec table. If using flashspec, for example,
there would be an entry like

SSPEC_RESOURCETABLE START

SSPEC RESOURCE XMEMFILE ("/index.html", index html),
SSPEC_RESOURCE_CGI ("/upload.cgi", http defaultCGI)
SSPEC_RESOURCETABLE END

There may be other resources, but at |east two are normally required. Oneresourceis
aweb page (see below) that contains aform the user can fill in with the name of the
fileto upload. The other resource (CGl) isareferenceto thisfunction, giving it a URL
name that identifies it to the browser.

2. Create a web page which contains aform like the following skeleton example:

<FORM ACTION="/upload.cgi" METHOD="POST"
enctype="multipart/form-data">
<INPUT TYPE="FILE" NAME="/A/incoming/new.htm">
<INPUT TYPE="SUBMIT" VALUE="Upload"s
</FORM>

in the <FORM> element, the ACTION= parameter specifiesthe URL assigned to this
CGl. Inthe<INPUT TYPE="FILE"> element, the NAME= parameter specifiesthe
resource name used to contain the uploaded file contents. In this example, the
resourceis caled “/A/incoming/new.htm”, which will work if you are using the FAT
filesystem.

If uploading to a subdirectory, “incoming” in the above example, the subdirectory
must already exist. If not, the upload will fail.

TCP/IP Manual, Vol. 2 rabbit.com

193

http://www.rabbit.com

http defaultCGI (cont.)

3. To add user authentication and other facilities there are three possible things to pro-
tect:

e The web page containing the form. Give read access only to those users who
could conceivably upload the files specified therein.
e The CGI itself (thisfunction). Protect asfor (a).

e The uploaded resource. You should set up arule allowing write access only to
the intended user(s).
When defining user IDs which can use the upload, do not forget to give those users overall write
access using, for example:

sauth_setwriteaccess(uid, SERVER_HTTP)

Be awarethat “rogue clients’ could easily change the resource name to something other than the
one that was intended in the original form. Thisiswhy resource protection isimportant.

Having done these three things, the HT TP server is now set up to automatically place uploaded
filesin the filesystem.

Notethat this CGI islimited to placing filesinto fixed resource locations (as specified by thefield
name of the INPUT element). If you need more sophisticated control, you may wish to write your
own CGI function, using the code of this one as a starting point.

This CGI also presents a default status web page back to the client. This page indicates whether
the upload was successful, the number of bytes uploaded, and alink to test out the new file (as-

suming it is something the browser will understand, such asan HTML document or GIF image).
You can use this function as a starting point for generating your own content.

PARAMETERS
state HTTP state pointer, provided by HTTP server to all CGls.
newURL The resource name to present to the client. Thismay be another CGl, or any

other type of resource that could be presented to the client in responseto an
HTTP GET or POST request. The resource must exist in the flash- or ram-
spec table, or in afilesystem.

RETURN VALUE
See documentation for “writing a data handler CGI”

LIBRARY
HTTPLIB

SEE ALSO
http_getAction, http_skipCGI, http_switchCGI, http_finishCGI, http_write

194 rabbit.com HTTP Server

http://www.rabbit.com

http delfile

int http delfile(char *name);

DESCRIPTION
Deletes afile from the RAM spec table.

PARAMETERS
name Name of thefile, aspassedto http addfile ().

RETURN VALUE

0: Success,
1: Failure (not found).

LIBRARY
HTTP.LIB

SEE ALSO
http_addfile

http finderrbuf

char *http finderrbuf(char *name);

DESCRIPTION

Findsthe occurrence of the given variableinthe HTML form error buffer, and returnsitslocation.
PARAMETERS

name Name of the variable.

RETURN VALUE

NULL: Failure,
I NULL: Success, location of the variable in the error buffer.

LIBRARY
HTTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com 195

http://www.rabbit.com

http findname

int http findname (char *name) ;

DESCRIPTION
Finds a spec entry, searching first in RAM, then in flash.

Thisfunction is deprecated as of Dynamic C 8.50. Use sspec_findname ().

PARAMETERS

name Name, in text, of the spec to find.

RETURN VALUE
The spec entry.

LIBRARY
HTTP.LIB

http finishCGI

int http finishCGI(HttpState * state);

DESCRIPTION

Indicate to the HTTP server that this CGI has finished processing data from this multi-part data

stream. The server reads (and discards) datato the end of the entire stream (including epilog). The
next call to the CGI function will have an action code of CGI_EOF (or possibly CGI ABORT if
there was a stream error).

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
0

LIBRARY
HTTPLIB

SEE ALSO

http_getAction, http_skipCGl, http_abortCGI, http_switchCGI, http_abortCGl,
http_write

196 rabbit.com HTTP Server

http://www.rabbit.com

http genHeader

void http genHeader (HttpState * state, char * buf, int buflen, int
code, char * content type, int more hdrs, char * content);

DESCRIPTION
This function builds HTTP headers to send in response to a request.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.
buf Buffer to store headers and copy of content.
buflen Size of buffer.
code HTTP Status code (e.g., 200 for OK).

content type Content typestring or NULL for default of "text/html”

more hdrs 0 = no more headers
1 = caller will add headers
2 = caller will add headers, but call custom headers function (if
HTTP_ CUSTOM_ HEADERS isdefined)

content If “more_hdrs’ is non-zero, this parameter can include additional headers,
followed by two \r\n pairs and then content for the response. If “more_hdrs’
is zero, this parameter is sent as page content only.

LIBRARY
HTTPLIB

TCP/IP Manual, Vol. 2 rabbit.com 197

http://www.rabbit.com

http getAction

char http getAction(HttpState * state);

DESCRIPTION

Return the current CGI action. This should be caled only from a CGI function registered asa
SSPEC_CGI resourcein the zserver resource table.

NOTE: Thisisimplemented as a macro. You must define the macro
USE_HTTP_UPLOAD if using this macro, otherwise you will get acompile-
time error.

http getAction () should be called at the top of the CGI function. Other http get*
functions/macros may or may not be valid depending on the action code. The following table
shows which functions are applicable:

Table D-8. Valid Functions per Action Code

CGIl Action Code Valid Functions/Macros

http_getContext, http_getURL, http_getState,
http_setState, http_getCond, http_setCond,
http_getUserState, http_getSocket, http_write,

Any action code except CGI_ABORT | http_abortCGl, http_skipCGl, http_finishCGl,
http_switchCGl, http_getHTTPVersion,
http_getHTTPVersion_str, http_getHTTPMethod,
http_getHTTPMethod_str, http_getRemainingL ength

http_getField, http_getContentL ength,
CGI_ START http_getContentType, http_getContentDisposition,
http_getTransferEncoding

http_getField, http_getContentL ength,
http_getContentType, http_getContentDisposition,
http_getTransferEncoding, http_getData,
http_getDatal_ength

CGI_DATA

http_getField, http_getContentL ength,
CGI END http_getContentType, http_getContentDisposition,
http_getTransferEncoding

CGI_HEADER, CGI_PROLOG,

CGI_EPTLOG CGI EOF http_getData, http_getDatal_ength

Depends on previous action code at time of returning
CGI_CONTINUE CGI_MORE, however http getData will NOT be
valid.

198 rabbit.com HTTP Server

http://www.rabbit.com

Table D-8. Valid Functions per Action Code

CGIl Action Code Valid Functions/Macros

Should only do resource cleanup.
http_getContext, http_getURL, http_getState,

CGI ABORT http_getCond, http_getUserState,

http_getHTTPVersion, http_getHTTPVersion_str,
http_getHTTPMethod, http_getHTTPMethod_str

PARAMETER

state

RETURN VALUE

Action code. One of the following values:

LIBRARY

CGI_START - start of apartinamulti-part transfer.
CGI_DATA - binary datafor this part

CGI_END - endof apart

CGI_HEADER - header line of apart
CGI_PROLOG - binary data before the first part
CGI_EPILOG - line of data after the last part
CGI_EOF - normal end of al parts and epilog

CGI_ABORT - abnormal termination. CGI should recover and/or close any open
resources.

CGI_CONTINUE - being caled from the HTTP server after the CGI previously
returned CGI_MORE.

HTTPLIB

SEE ALSO

(functions mentioned above), http defaultCGlI

HTTP state pointer, as provided in the first parameter to the CGI function.

TCP/IP Manual, Vol. 2 rabbit.com

199

http://www.rabbit.com

http getCond

int http getCond(HttpState * state, int idx);

DESCRIPTION
Return the current HTTP condition state variable (aka., cond variable). There are
HTTP_ MAX_ COND of theseinteger state variables, thus i dx must be between 0 and
HTTP_ MAX COND-1,inclusive.

Use of cond variablesisentirely up to the application; however, they areinitialized by the HTTP
server under certain conditions. By default, they are set to zero at the start of each request from
the client. If the client request includes URL GET-type parameters of the form http://host/re-
source.html?A=1& B=2& C=3 etc. then cond state 0 is set to the valuefor 'A’, cond state 1 is set to
the value for 'B' etc. The values must be integers, which are coerced into 16 bit signed integers.

NOTE: Thisisimplemented as a macro.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.
idx Index of cond variable: 0.HTTP_ MAX COND-1. Validity isnot checked.

RETURN VALUE
Vaue of cond variable idx.

LIBRARY
HTTPLIB

SEE ALSO
http_getAction, http_setCond

200 rabbit.com HTTP Server

http://www.rabbit.com

http getContentDisposition

char http getContentDisposition(HttpState * state);

DESCRIPTION

Return the current disposition of the datawhich is being provided by the client. Thisisone of the
following enumerated val ues:

e MIME DISP NONE: unspecified disposition
e MIME DISP INLINE: the content isto bedisplayed "inline"

e MIME DISP ATTACHMENT: the contentisonly to be displayed if thereis some action
by the user

e MIME DISP FORMDATA: the content isform field data (or an uploaded fil€).

Of these, only NONE and FORMDATA areredly relevant toHTTPR. Itisonly validto call thiswhen
the action codeisCGI_START, CGI_DATA Or CGI_END.

NOTE: Thisisimplemented as a macro.
PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
Content disposition code, as documented above.

LIBRARY
HTTPLIB

SEE ALSO
http_getAction

TCP/IP Manual, Vol. 2 rabbit.com

201

http://www.rabbit.com

http getContentLength

long http getContentLength(HttpState * state);

DESCRIPTION
Return the length of datain the current part of amulti-part data stream. The return vaueisinter-
preted differently, depending on the action code.

Itisonly valid to call this when the action codeisCGI_START, CGI_DATA of CGI_END.

When CGI_START, thisreturnsthevalue of the ContentL ength header for thispart (or -1 if there
was no such header).

When CGI_DATA or CGI_END, itisthetotal number of bytesthat have actually been read and
presented to the CGI. Thisincreasesfor each CGI_DATA call, until it representsthe total content
length when actioniSCGI_END.

NOTE: Thisisimplemented as a macro.

PARAMETER
state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
Length of part data.

LIBRARY
HTTPLIB

SEE ALSO
http_getAction

202 rabbit.com HTTP Server

http://www.rabbit.com

http getContentType

char * http getContentType(HttpState * state);

DESCRIPTION
Return the current content type of the datawhich is being provided by the client. ThisisaMIME
type string e.g., “text/html” or “image/jpeg”.

The CGI might need to look at thisto determine the appropriate way to process the data. Normal
form fields will usually contain “text/plain”; however, uploaded files may contain any type of da-

ta
Itisonly valid to call thiswhen the action codeisCGI_START, CGI_DATA of CGI_END.

NOTE: Thisisimplemented as a macro.

PARAMETER
state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
Null terminated string containing the MIME type name.

LIBRARY
HTTPLIB

SEE ALSO
http_getAction

TCP/IP Manual, Vol. 2 rabbit.com 203

http://www.rabbit.com

http getcontext

ServerContext * http getcontext(int servno);

DESCRIPTION
Returnthe serverContext struct for the specified HTTP server ingtance.

NOTE: This structure should not be modified by the application.
PARAMETER

servno Server instance number (0. HTTP_MAXSERVERS-1)

RETURN VALUE

NULL: invalid server instance.
Otherwise, pointer to this server's ServerContext.

LIBRARY
HTTP.LIB

http getContext

ServerContext * http getContext(HttpState * state);

DESCRIPTION

Return the current HT TP server context. The context pointer isrequired by many zserver resource
handler functions.

NOTE: Thisisimplemented as a macro.
PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
Pointer to the HT TP server's context structure. See zserver documentation.

LIBRARY
HTTPLIB

SEE ALSO
http_getAction

204 rabbit.com HTTP Server

http://www.rabbit.com

http getData

char * http getData(HttpState * state);

DESCRIPTION
Return a pointer to the datathat isavailable. It isonly valid to call thisif the action codeis one of
CGI_DATA,CGI_ PROLOG,CGI_ EPILOG,CGI_HEADER Or CGI_EOF.

When CGI_DATA, thisisthe next chunk of datareceived as the content of the current part of a
multi-part transfer. The data arrives in arbitrary amounts. CRLF boundaries (if any) are not re-
spected, and the datamay contain NULLsand other binary values. THE CGI MUST CONSUME
ALL DATA PROVIDED since the datawill not be presented again on the next call.

When CGI_PROLOG, thisis datathat occurs before the first boundary (part) but after the main
HTTP headers. Thisdata (like that for CGI_DATA) isnot line-oriented.

When CGI_EPILOG, CGI_HEADER Or CGI_EOF, the datawill be acomplete line of input
(with the terminating CRLF stripped off). The returned string will also be null-terminated. When
CGI_EOF, the data (if any) istechnically part of the epilog.

Prolog dataislinesof input that were provided beforethefirst “official” part of the multi-part data.
Most HTTP clients will not provide any prolog data. Epilog datais lines of data after the last of -
ficial part. Again, HTTP clients do not usually generateit. It is dways safe to ignore prolog and
epilog data, sinceit isusualy provided only for non-MIME compliant servers.

Data provided when the action iSCGI_HEADER isaline of header data provided at the start of
each part of the multi-part data. It issafefor the CGI toignore header lines, sincethe HT TP server
also processesthe onesthat it needs. The CGI is given these header lines so that it can extract use-
ful or customized information if desired.

Thelength of the data may be obtained using http _getDataLength ().

The CGlI isalowed to overwrite data at the returned area, provided that it writes no more than
HTTP_ MAXBUFFER bytes.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
Pointer to the first character of data.

SEE ALSO
http_getAction

TCP/IP Manual, Vol. 2 rabbit.com 205

http://www.rabbit.com

http getDataLength

word http getDatalLength(HttpState * state);

DESCRIPTION

Return the length of datathat isavailable. Itisonly valid to call thisif it isvalid to cal
http getData (). Thatis, if theaction codeisoneof CGI DATA, CGI_PROLOG,
CGI EPILOG, CGI HEADER Of CGI_EOF.

NOTE: Thisisimplemented as a macro.
PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE

Length of available data. Thiswill rangefrom0to HTTP MAXBUFFER. Owill only be returned
for PROLOG and EPILOG when ablank lineisread.

LIBRARY
HTTPLIB

SEE ALSO
http_getAction

206 rabbit.com HTTP Server

http://www.rabbit.com

http getField

char * http getField(HttpState * state);

DESCRIPTION

Return the current form field name. This function should only be called when the action code is
CGI_START,CGI DATA Of CGI_END.

NOTE: Thisisimplemented as a macro.
PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE

Null-terminated string containing the current field name. The fidd name is the name of aform
element, specified using, for example,

<INPUT TYPE="TEXT" NAME="srv file">

intheHTML, where srv_file isthefield name.

If there was no "name=" parameter in the returned form data, this will be an empty string (zero
length, not NULL).

LIBRARY
HTTPLIB

SEE ALSO
http_getAction

TCP/IP Manual, Vol. 2 rabbit.com

207

http://www.rabbit.com

http getHTTPMethod

char http getHTTPMethod(HttpState * state);

DESCRIPTION
Return the HTTP request method of the current request protocol. The CGI might need to look at

thisto generate the correct response headers.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
One of the following codes:
e HTTP_ METHOD GET -"GET"i.e., normal retrieval, without making any permanent
state update.

e HTTP_ METHOD POST -"POST" i.e., uploading some information to be stored, or
making some permanent state change. This is the normal method for invoking CGls.

e HTTP METHOD HEAD - "HEAD" i.e, the client only wants the headers, not the actual
content e.g. it might be trying to determine the most recent modification date.

Other codes may be returned in the future.

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction

208 rabbit.com HTTP Server

http://www.rabbit.com

http getHTTPMethod str

char *http getHTTPMethod str(HttpState * state);

DESCRIPTION

Return the HT TP request method of the current request protocol. The CGI might need to look at
thisin order to generate the correct response headers.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE

One of the following strings:

“GET” - (HTTP_METHOD_ GET)i.e, normal retrieval, without making any permanent state up-
date.

“POST” - (HTTP_METHOD POST) i.e., uploading someinformation to be stored, or making
some permanent state change. Thisis the norma method for invoking CGls.

“HEAD” - (HTTP_METHOD HEAD)i.e.theclient only wantsthe headers, not the actual content;
e.g., it might be trying to determine the most recent modification date.

“unknown” - returned for unrecognized method

Other strings may be returned in the future.

SEE ALSO
http_getHTTPMethod, http_getAction

TCP/IP Manual, Vol. 2 rabbit.com 209

http://www.rabbit.com

http getHTTPVersion

char http getHTTPVersion(HttpState * state);

DESCRIPTION

Return the HTTP version number of the current request protocol. The CGI might need to look at
thisin order to generate the correct response headers.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE

One of the following codes:

HTTP_VER_ 09 -verson 0.9
HTTP_VER_10 -version1.0
HTTP VER 11 -versonll

Other codes may be returned in the future.

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction

210 rabbit.com HTTP Server

http://www.rabbit.com

http getHTTPVersion str

char * http getHTTPVersion str(HttpState * state):;

DESCRIPTION

Return the HTTP version number of the current request protocol. The CGI might need to look at
thisin order to generate the correct response headers.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE

One of the following strings:
“0.9" - version 0.9

“1.0" -verson 1.0

“1.1" - verson 1.1

“unknown” - unknown version

Other strings may be returned in the future.

LIBRARY
HTTP.LIB

SEE ALSO
http_getHTTPVersion, http_getAction

TCP/IP Manual, Vol. 2 rabbit.com 211

http://www.rabbit.com

http getRemainingLength

long http getRemainingLength(HttpState * state);

DESCRIPTION

Return the remaining length of the incoming data stream. This length includes all parts (not just
the current part) and also includes the boundary separators and epilog data. Normally, thisvalue
will be zero when the action codeisCGI_EOF. If the valueis negative, then the client might not
have indicated the total datalength, or might not have set the right value.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
Length of remaining data, or negative if not known.

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction

212 rabbit.com HTTP Server

http://www.rabbit.com

http get sock

tcp Socket * http get sock(HttpState *state);

DESCRIPTION

This function alows direct access to the TCP socket of an HTTP or HTTPS server. Thiswill
always return the TCP socket associated with the server, evenif that server isHTTPS. Thisis
intended for READ-ONLY operations. Since this function returns a pointer to the actual socket,
changing fields directly affects the connection, which could lead to problems, especialy with
HTTPS servers.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
Pointer to the TCP socket structure of the HTTP or HTTPS server.

LIBRARY
HTTP.LIB

http getSocket

tcp Socket * http getSocket(HttpState * state);

DESCRIPTION

Return the current HT TP server socket. The socket may be written/read; however, thisisinadvis-
able since it may interfere with the server's use of it.

NOTE: Thisisimplemented as a macro.
PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
Pointer to the HTTP server's TCP socket structure.

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction

TCP/IP Manual, Vol. 2 rabbit.com 213

http://www.rabbit.com

http getState

int http getState(HttpState * state);

DESCRIPTION
Return the current primary HTTP CGI state variable.

Use of this state variable is entirely up to the application; however, it isinitidized by the HTTP
server to zero before calling the CGI for the first time.

NOTE: Thisisimplemented as a macro.
PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
Value of primary state variable.

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction

214 rabbit.com HTTP Server

http://www.rabbit.com

http getTransferEncoding

char http getTransferEncoding(HttpState * state);

DESCRIPTION

Return the current encoding of the data which isbeing provided by the client. Thisis one of the
following enumerated val ues:

® CTE BINARY - Thedefault
® CTE 7BIT - 7-bit safe ASCII
® CTE 8BIT - 8-bit ASCII
e CTE QP - Quoted printable
e CTE BASE64 - Base 64
Of these, the CGl isonly likely to see CTE_ BINARY, since HTTP isan 8-bit protocol, and most

clients (browsers) will not bother to encode the data. Encoding is only an issue for internet mail,
which sometimes has to cross interfaces that do not support full 8-bit binary transfers.

If the CGI detects atransfer encoding that requires non-null operation (that is, CTE_QP or
CTE_BASE64) then it should either rgject the transfer, or decode the data as it comesin.

Itisonly valid to call thiswhen the action codeisCGI_START, CGI_DATA of CGI_END.
NOTE: Thisisimplemented as a macro.
PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
Transfer encoding code, as documented above.

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction

TCP/IP Manual, Vol. 2 rabbit.com 215

http://www.rabbit.com

http getURL

char * http getURL(HttpState * state);

DESCRIPTION

Return the URL of the current HTTP client request. Ina CGl, thiswill usualy be something like
foo.cgi.

NOTE: Thisisimplemented as a macro.
PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE

Null-terminated string containing the URL . Note that GET-style form parameterswill be stripped
off: for example, theURL, foo.cgi?A=99&D=-45, will bereturned as foo . cgi.

The GET parameters are availableusinghttp _getCond ().

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction

216 rabbit.com HTTP Server

http://www.rabbit.com

http getUserState

void * http getUserState(HttpState * state);

DESCRIPTION

Get the“ user state” areaof the HT TP server structure. Thisisan areaof memory that can be used
by the CGlI to keep track of itsinternal state, from call to call.

Thesizeof thisareaiSHTTP_ USERDATA SIZE. If that macroisnot defined, it defaultsto zero,
o useof thehttp getUserState macro will result in acompile-time error.

NOTE: Thisisimplemented as a macro.
Example:
typedef struct { ... } myCGIdata;

#define HTTP USERDATA SIZE sizeof (myCGIdata)
#use "http.lib"

int myCGI (HttpState * s) {
myCGIdata * d;

d = (myCGIdata *)http getUserState (state);
}
PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE

Returns the address of the first byte of the user area. This should be cast to the appropriate struc-
ture type.

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction

TCP/IP Manual, Vol. 2 rabbit.com 217

http://www.rabbit.com

http handler

void http handler(void);

DESCRIPTION

Thisisthebasic control function for the HTTP server, atick function to run the HT TP daemon. It
must be called periodically for the daemon to work. It parsesthe requests and passes control to the
other handlers, either html handler, shtml handler, or to the devel oper-defined CGI

handler based on the request’s extension.

LIBRARY
HTTP.LIB

SEE ALSO
http_init

http idle

int http idle(wvoid);

DESCRIPTION
Query to seeif any HTTP servers are active.

RETURN VALUE

0: at least one HTTP server is active
1:dl HTTP serversareidle

LIBRARY
HTTP.LIB

SEE ALSO
http_handler

218 rabbit.com

HTTP Server

http://www.rabbit.com

http init

int http init(void);

DESCRIPTION

Initializes the HTTP daemon. This must be called after sock _init (), and before calling
http handler () inaloop.

Thissetstheroot directory to"/* and setsthedefault filenameto index . html. You can change
these defaultsby callinghttp set path () after thisfunction.

You can override these defaults at compile-time by defining the macros

#define HTTP HOMEDIR "/"
#define HTTP DFLTFILE "index.html"

to be something other than these defaullts. If you do this, then there is no need to invoke the
http set path() function.

RETURN VALUE
0: Success.

LIBRARY
HTTP.LIB

SEE ALSO
http_handler, http_shutdown, http_status, http_set path

http is secure

int http is secure(HttpState* state);

DESCRIPTION
Test if thisHTTP server state represents a secure (SSL/TLS) connection.

PARAMETER

state HTTP state structure.

RETURN VALUE
None.

LIBRARY
HTTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com

219

http://www.rabbit.com

http nextfverr

void http nextfverr(char *start, char **name, char **value,
int *error, char ** next);

DESCRIPTION

Gets the information for the next variable in the HTML form error buffer. If any of the last four
parametersin the function call are NULL, then those parameters will not have avalue returned.
Thisis useful if you are only interested in certain variable information.

PARAMETERS
start Pointer to the variable in the buffer for which we want to get information.
name Return location for the name of the variable.
value Return location for the value of the variable.
error Return location for whether or not thevariableisin error (Oif itisnot, 1if it
is).
next Return location for a pointer to the variable after this one.

RETURN VALUE
None, although information is returned in the last four parameters.

LIBRARY
HTTP.LIB

220 rabbit.com HTTP Server

http://www.rabbit.com

http parseform

int http parseform(int form, HttpState *state);

DESCRIPTION
Parsesthe returned form information. It expectsaPOST submission. Thisfunction isuseful for a
developer who only wants the parsing functionality and wishes to generate forms herself. Note
that the developer must still build the array of Formvarsand usethe server spec table.
This function will not, however, automaticaly display the form when used by itself. If all vari-
ables satisfy all integrity checks, thenthevariables' values are updated. If any variablesfail, then
none of thevauesare updated, and error informationiswritteninto the error buffer If thisfunction
is used directly, the developer must process errors.

PARAMETERS
form server spec index of theform (i.e., location in TCP/IP servers object
list).
state The HTTP server with which to parse the POSTed data.

RETURN VALUE

0: Thereismore processing to do.
1: Form processing has been completed.

LIBRARY
HTTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com

221

http://www.rabbit.com

http safe

int http safe(char *to, char *from, int tolen, int fromlen);

DESCRIPTION

Convert a http-unsafe string in from (length fromlen) into a properly escaped string. For
example, the string "hello& goodbye<>" would be changed to "hello& amp;goodbye& It;& gt;".

Returns non-zero if result could not fitin tolen-1 bytes. A null isalwaysadded, thustolen
should account for this. Double quotes are escaped since the result may itself be quoted.

Newline characters are turned into HTML line break "
" markup. Control characters (codes
lessthan 32) areturnedinto " & #xx;" where"xx" isthe hexadecimal control char value. The source
string can contain null character(s) which iswhy itslength is passed in the parameter fromlen.

PARAMETERS
to Destination buffer for escaped string
from Source buffer for string to convert
tolen Length of destination buffer (must be at least equal to fromlen, since
string is never smaller than source string).
fromlen Length of source buffer.

RETURN VALUE

0: Success.
non-zero if resulting string (plus its null terminator) could not fit in the provided buffer.

LIBRARY
HTTP.LIB

SEE ALSO
http_handler

222 rabbit.com HTTP Server

http://www.rabbit.com

http scanpost

int http scanpost(char *tag, char *buffer, char *dest, int maxlen);

DESCRIPTION

Thisfunction alowsyouto scan abuffer with aPOST responsefor the key/value pairs. Thisfunc-
tion is reentrant.

PARAMETERS
tag Buffer holding the tag name.
buffer Buffer to read data from.
dest Buffer to store valueto.
maxlen Size of destination buffer.

RETURN VALUE

0: Successful
1 0: Not successful

LIBRARY
HTTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com 223

http://www.rabbit.com

http set anonymous

int http set anonymous(int uid);

DESCRIPTION

Set the “anonymous’ user ID. Thisisthe assumed user ID when no credentials are provided by
the client (browser). A typical use of this function would be:

int anon;

anon = sauth adduser ("anonymous", "", SERVER FTP|SERVER HTTP) ;
sauth setusermask (uid, WORLD GROUP, NULL) ;

http set anonymous (uid) ;

ftp_ set anonymous (uid) ; // if using FTPtoo

which defines an “anonymous’ login for the HTTP and, optionally, the FTP servers. (Since FTP
also requires an anon user, you can use the same user 1D for both FTP and HTTP).

When aweb browser initially requests aresource, it may not pass any user credentials (i.e., user

name and password). The HTTP server will assumethat the user isanonymous, and apply the ac-
cess permissionstests on that basis. If accessis denied, then the browser will prompt the user for

areal user name and password, and the request will be re-tried.

You do not always need to define an anonymous user to HTTP. But it isrequired if you have some
resource which is (say) protected for write access, but you want any user to be ableto retrieve the
resource without requiring a user name/password.

NOTE: Thisfunction is non-reentrant. It sets a global variable whichis
accessed by all HTTP server instances. For this reason, you should call this
function once only before starting to call http handler ().

PARAMETER

uid The userID to use as the anonymous user. This should have been defined us-
ing sauth_adduser (). Pass-1 to set no anonymous user. In this case,
only resources which are completely free of any access controls will be ac-
cessible to users who do not provide credentials.

RETURN VALUE
Same as the uid parameter, except -1 if uid invalid.

LIBRARY
HTTP.LIB

SEE ALSO
sauth_adduser, ftp_set anonymous, sauth_setusermask

224 rabbit.com HTTP Server

http://www.rabbit.com

http setauthentication

int http setauthentication(int auth);

DESCRIPTION

Sets the type of authentication to be used globally by the HTTP server. By default, thisis set to
the strongest availabl e type of authentication available (in order of weakest to strongest:

HTTP NO_AUTH,HTTP BASIC AUTH,HTTP DIGEST AUTH. Thisfunction returnsthe
type of authentication that was actually configured. If the type of authentication that you ask for
was not compiled in at compile time, then the type of authentication will not be changed.

NOTE: thisfunction only setsthe “default” authentication method for resources
who have their authentication method set to SERVER _AUTH DEFAULT (or
none specified).

PARAMETERS

auth Type of authentication. Choices are:
e HTTP NO AUTH
e HTTP BASIC AUTH
e HTTP DIGEST AUTH

RETURN VALUE
Actual resulting type of authentication.

LIBRARY
HTTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com

225

http://www.rabbit.com

http setCond

int http setCond(HttpState * state, int idx, int val);

DESCRIPTION

Set the value of an HTTP condition state variable (aka., cond variable). There are
HTTP_ MAX_ COND of theseinteger state variables, thus i dx must be between 0 and
HTTP_ MAX COND-1,inclusive.

NOTE: Thisisimplemented as a macro.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.
idx Index of cond variable: 0.HTTP_ MAX COND-1. Validity isnot checked.
val New value.

RETURN VALUE
Returns the new value of the cond variable, i.e., val.

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction, http_getCond

226 rabbit.com HTTP Server

http://www.rabbit.com

http setcookie

void http setcookie(char *buf, char *value);

DESCRIPTION

This utility generates a cookie on the client. Thiswill storethetext in value into acookie-
generation header that will bewrittento buf. The header placed inbuf isnot automatically sent
to the web client. It isthe caller’s responsibility to send the header in bu £, along with any other
HTTP headers, to the client.

When a pageisrequested from the client, and the cookie is already set, the text of the cookie will
bestoredin state->cookie []. Thisisachar*, andif no cookie was available, then
state->cookie[0] will equal *\o".

PARAMETERS
buf Buffer to store cookie-generation header, that is, the name of the cookie.
value Text to store in cookie-generation header, that is, the value of the cookie.
LIBRARY
HTTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com 227

http://www.rabbit.com

http set path

int http set path(char * rootdir, char * dfltname);

DESCRIPTION

Set the default root directory and resource name for all HTTP server instances. In general, this
function should be called once only, after http init () but beforehttp handler ().

Theroot directory isthebase directory and isused asaprefix for all resourcerequestsfrom clients.
For example, if the root directory isset to "/A/" then aclient request for
http://<hostnames>/foo.htmwill look up theresourcecaled /A/foo.htmonthis
server.

The default resource nameis used if the client's URL requests adirectory. For example, if
dfltname isset to "index.htm" (and rootdir is"/A/") then aclient request for

“ http://<hostname>/admin” will look up the resource called "/A/admin”. If that resourceis
actualy adirectory, then it will look up aresource called "/A/admin/index.htm". If itisnot a
directory, then the default nameis not used.

PARAMETERS
rootdir Root directory nameto use. Thismust beanull-terminated stringand MUST
start and end with aforward dash (/) character. If thisfunctionisnot called,
the root directory nameissetto”/” by http init ().
dfltname Default file name to use. Thisis appended to the directory part of the URL,

if the URL actually refersto adirectory. If thisfunctionis not called, the de-
fault filenameissetto index.html by http init ().

If this parameter is NULL, there will be no default name. A request for a
directory will generally return a404 error (not found) to the client. If itisnot
NULL, this parameter must be a null-terminated string. 1t must not start or
end witha* /" character.

RETURN VALUE
0: OK
-E2BIG: rootdir wastoo long. It should be limited to less than about 12 characters, but you can
increase the value of SSPEC_MAXNAME if necessary.
-EINVAL: rootdir was NULL, or did not start and end with a forward slash character.

LIBRARY
HTTP.LIB

SEE ALSO
http_handler, http_init

228 rabbit.com HTTP Server

http://www.rabbit.com

http setState

int http setState(HttpState * state, int wval);

DESCRIPTION
Set the current primary HTTP CGI state variable.

Use of this state variable is entirely up to the application; however, it isinitidized by the HTTP
server to zero before calling the CGl for the first time.

NOTE: Thisisimplemented as a macro.

PARAMETER
state HTTP state pointer, as provided in the first parameter to the CGI function.
val New value for the primary state variable.

RETURN VALUE
Returnsthe new value, that is, val.

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction

TCP/IP Manual, Vol. 2 rabbit.com 229

http://www.rabbit.com

http shutdown

int http shutdown(int graceful);

DESCRIPTION
Shut down the http daemon. Usehttp init () torestart.

PARAMETER

If non-zero, current connections are allowed to terminate normally. Otherwise, any open connec-
tions are reset.

RETURN VALUE
0

LIBRARY
HTTP.LIB

SEE ALSO
http_handler, http_init, http_status

http skipCGI

int http skipCGI(HttpState * state);

DESCRIPTION

Indicate to the HTTP server that the CGI has finished processing this part of amulti-part data
stream. The server reads (and discards) data from the stream until the next part is found (or the
epilog). When the next part is found, the server continues calling the CGI function as before.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
0

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction, http_abortCGI, http_switchCGI, http finishCGI, http_write

230 rabbit.com HTTP Server

http://www.rabbit.com

http sock bytesready

int http sock bytesready(HttpState *state);

DESCRIPTION

HTTPwrapper function for sock _bytesready () . Thisfunction may be used by CGI appli-
cationsto determineif thereisdatawaiting on the socket associated with aparticular HTTP server.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE

-1: no byteswaiting to be read
0:in ASCIl mode, ablank lineiswaiting to be read,
or, for UDP, an empty datagram is waiting to be read
>0: number of byteswaiting to be read

LIBRARY
HTTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com 231

http://www.rabbit.com

http sock fastread

int http sock fastread(HttpState *state, byte *dp, int len);

DESCRIPTION

HTTP wrapper function for sock_fastread (), that isfor non-blocking reads (root). This
function can be used to read data from a socket associated with aparticular HTTP server. This
function isintended for usein CGI applications.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.
dp Pointer to return buffer
len Maximum size of return buffer

RETURN VALUE

>0: the number of bytesread
-1: error

LIBRARY
HTTP.LIB

232 rabbit.com HTTP Server

http://www.rabbit.com

http sock fastwrite

int http sock fastwrite(HttpState *state, byte *dp, int len);

DESCRIPTION

HTTPwrapper functionfor sock_fastwrite (), thatis, for non-blocking writes. Thisfunc-
tion can be used to write data from aroot buffer to a socket associated with a particular HTTP
server. Thisfunctionisintended for usein CGI applications.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.
dp Pointer to buffer containing data to be written.
len Maximum number of bytes to write to the socket.

RETURN VALUE

>0: the number of byteswritten
-1: error

LIBRARY
HTTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com

233

http://www.rabbit.com

http sock gets

int http sock gets(HttpState *state, byte* dp, int len);

DESCRIPTION

HTTP wrapper function for sock_gets (). Thisfunction can be used by CGI applications to
retrieve a string waiting on an ASCII-mode socket associated with aparticular HTTP server.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.
dp Pointer to return buffer
len Maximum size of return buffer

RETURN VALUE

0: if buffer isempty, or
ifno“\r” or “\n" isread, but buffer had room and
the connection can get more datal
>0: isthe length of the string
-1: error

LIBRARY
HTTP.LIB

SEE ALSO
http_sock_mode

234 rabbit.com HTTP Server

http://www.rabbit.com

http sock mode

void http sock mode(HttpState* state, http sock mode t mode);

DESCRIPTION

HTTP socket wrapper function for socket mode. This function can be used by CGI applications
to set the mode of a socket associated with a particular HTTP server.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.
mode HTTP mode to use for the socket. Valid valuesfor mode are:

e HTTP MODE ASCII - Setsthe associated socket to ASCII
mode.

e HTTP MODE BINARY - Setsthe associated socket to BINARY.

RETURN VALUE
None

LIBRARY
HTTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com

235

http://www.rabbit.com

http sock readable

int http sock readable(HttpState * state);

DESCRIPTION

HTTP wrapper function for socket readable function. This function may be used by CGI applica-
tionsto determineif asocket is readable or not. See sock_readable for more information.

PARAMETER

state HTTP state structure, as provided in the first parameter to the CGI function.

RETURN VALUE

If parameter isa TCP or SSL server:

0: socket is not readable. It was aborted by the application or the peer has closed the socket and
all pending data has been read by the application. This can be used as a definitive "EOF" indica-
tion for areceive stream.

non-zero: the socket is readable. The amount of data that the socket would deliver isthisvalue
minus 1; which may turn out to be zero if the socket's buffer istemporarily empty, or the socket
is not yet connected to a peer.

If parameter isa UDP server:

0: socket is not open.

non-zero: socket is open. Thisvalue minus 1 equals the size of the next datagram in the receive
buffer, that would be returned by udp recvfrom () etc. Notethat ICMP error messages are
also considered if the socket is set up to receive ICMP messages.

LIBRARY
HTTP.LIB

236 rabbit.com HTTP Server

http://www.rabbit.com

http sock writable

int http sock writable(HttpState * state);

DESCRIPTION

HTTP wrapper function for socket writable function. Thisfunction may be used by CGI applica
tionsto determineif asocket iswritable or not. See sock_writable for more information.

PARAMETER

state HTTP state structure, as provided in the first parameter to the CGI function.

RETURN VALUE

If parameter isa TCP or SSL server:

0: socket is not writable. It was closed by the application or it may have been aborted by the peer.
Non-zero: the socket iswritable. The amount of data that the socket would accept isthisvalue
minus 1; which may turn out to be zero if the socket's buffer istemporarily full. On afreshly-
established socket, and at any other time when all data has been acknowledged by the peer, the
return value (minus one) indicates the maximum socket transmit buffer size.

If parameter isa UDP server:

0: socket is not open.

Non-zero: socket is open. This value minus 1 equals the maximum size datagram payload that
would be sent without fragmentation at the IP level. Note: the maximum payload depends on the
interface which is selected. Sincethisisnot known a-priori, theinterfacewith thelargest MTU is
arbitrarily sdlected.

LIBRARY
HTTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com 237

http://www.rabbit.com

http sock tbleft

long http sock tbleft(HttpState *state);

DESCRIPTION

HTTPwrapper functionfor sock_tbleft (). Thisfunction may be used by CGI applications
to determine how much spaceis left in the HTTP socket's transmit buffer.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI function.

RETURN VALUE
Number of bytes of free space remaining in the transmit buffer.

LIBRARY
HTTP.LIB

http sock write

int http sock write(HttpState *state, byte *dp, int len);

DESCRIPTION

HTTP wrapper function for blocking writes. This function can be used to write data from aroot
buffer to a socket associated with a particular HTTP server. Thisfunction isintended for usein

CGl applications.
PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.
dp pointer to buffer containing data to be written
len maximum number of bytes to write to the socket

RETURN VALUE
Number of bytes of written or -1 if there was an error

LIBRARY
HTTP.LIB

238 rabbit.com HTTP Server

http://www.rabbit.com

http sock xfastread

int http sock xfastread(HttpState *state, long dp, long len);

DESCRIPTION

HTTP wrapper function for sock fastxread (), that is, for non-blocking reads (xmem).
This function can be used to read data from a socket associated with a particular HTTP server.
Thisfunction isintended for use in CGI applications.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.
dp Pointer to return xmem buffer.
len Maximum length of the return xmem buffer.

RETURN VALUE
Number of bytes of read or -1 if there was an error

LIBRARY
HTTP.LIB

http sock xfastwrite

int http sock xfastwrite(HttpState *state, long dp, long len);

DESCRIPTION

HTTP wrapper functionfor sock_xfastwrite () thatisfor non-blocking writes. It can be
used to write the contents of an xmem buffer to asocket associated with aparticular HTTP server.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.
dp Buffer containing datato be written, as an xmem address obtained from, for
example, xalloc ().
len Maximum number of bytes to write to the socket.

RETURN VALUE
Number of bytes of written or -1 if there was an error

LIBRARY
HTTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com 239

http://www.rabbit.com

https set cert

void https set cert(SSL Cert t far * cert);

DESCRIPTION

Register aserver certificate with all HTTPS server instances. Client hosts (such asweb browsers)
will verify this certificate, and may refuse to connect if thereis no certificate, or the server certif-

icate isnot valid.
Thismust be called at |east once, otherwise there may be no default certificate.

Alternatively, you can use the method that was deprecated in Dynamic C 10.54. Have the follow-
ing line at the top of your main program:

#ximport "cert.dcc" SSL_CERTIFICATE

where cert.dcc is the name (and path) of the server certificate file to use, which must be in .dcc
format. Theuseof SSI. CERTIFICATE isdeprecatedsincehttps set cert () provides
amore flexible interface.

PARAMETER

cert Pre-parsed certificate, as generated by SSL._new_cert ().

LIBRARY
HTTP.LIB

SEE ALSO

SSL _new_cert

240 rabbit.com HTTP Server

http://www.rabbit.com

http status

int http status(void);

DESCRIPTION
Determine whether the HTTP server is allowing connections.

RETURN VALUE

0: server is currently disabled
non-zero: server is enabled.

LIBRARY
HTTP.LIB

SEE ALSO
http_handler, http_init, http_shutdown

TCP/IP Manual, Vol. 2 rabbit.com 241

http://www.rabbit.com

http switchCGI

int http switchCGI(HttpState * state, char * newURL);

DESCRIPTION
Tell the HTTP server to switch processing to a different CGI function or resource.

The CGlI isresponsible for generating the correct HT TP response header(s) using

http write () etc. If thisfunctionisused to pass control to a different CGl, then both CGls
must coordinate so that only one header iswritten. You can use the HT TP state variable
(http_setState() andhttp getState())and/lorhttp getUserState () to
achieve the necessary coordination.

If newURL refersto afile or SSI resource (not a CGl), then the CGI function must NOT have
already written the HTTP response header(s); the headers will be generated when the new re-
source is opened.

If newURL refersto anew-style CGlI (that is, a CGl resource added using SSPEC_ CGI, not
SSPEC_FUNCTION) then that CGlI is presented with the remaining content of the current re-
quest data stream.

If newURL refersto an old-style CGlI (that is, a CGl added using SSPEC_FUNCTION or
HTTPSPEC_FUNCTION) thenthe HTTP server abandons parsing of the request data stream,
since old-style CGls are expected to read the HT TP socket themselves.

Rather than calling http switchCGI (), it isoften more convenient to call
cgi_redirectto (), whichtellsthe client to retrieve the next resource rather than the re-
source being provided in the current connection. Using redirect is less efficient, however.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI function.
newURL The resource name to present to the client. Thismay be another CGl, or any

other type of resource that could be presented to the client in responseto an
HTTP GET or POST request. The resource must exist in the flash- or ram-
spec table, or in afilesystem.

RETURN VALUE
0

LIBRARY
HTTP.LIB

SEE ALSO
http_getAction, http_skipCGl, http_abortCGI, http finishCGI, http_write

242 rabbit.com HTTP Server

http://www.rabbit.com

http urldecode

char *http urldecode(char *dest, const char *src, int len);

DESCRIPTION

Converts a string with URL -escaped "tokens" (such as %20 (hex) for space) into actua values.
Changes"+" into aspace. String can be NULL terminated; it is also bounded by a specified string
length. Thisfunction isreentrant.

PARAMETERS
dest Buffer where decoded string is stored.
src Buffer holding origina string (not changed).
len Maximum size of string (NULL terminated strings can be shorter).

RETURN VALUE

dest: if al conversion was good.
NULL: if some conversion had trouble.

LIBRARY
HTTP.LIB

SEE ALSO
http_contentencode

TCP/IP Manual, Vol. 2 rabbit.com

243

http://www.rabbit.com

http write

int http write(HttpState * state, char * data, word length);

DESCRIPTION

Write data back to the client. Thisfunction either sends all of the given data or none of it. If the
data cannot be sent (for example, because the socket transmit buffer isaready full) then aspecial
return code indicates that the CGI should try again on the next call.

Often, the CGl itself will not need to write anything to the client—thehttp switchCGI ()
function takes care of most needs. If thisfunction is used, then the CGl is responsible for gener-
ating the correct HTTP response (including headers) and http switchCGI () and Similar
functions should NOT be called.

Use of this function can often be avoided. Instead, the CGI can copy astring to the pointer pro-

videdby http getData (), thenreturn CGI_SEND. Thiswill cause the server to send out

the (null terminated) string in the buffer, and not call the CGI until the string is sent to the client.
Seethesourcetohttp defaultCGI () for an example of this method.

PARAMETERS
state HTTP state pointer, as provided to the CGI function.
data Pointer to first char to transmit. It is OK to make this the same pointer that
wasreturned by http_getData (), Sincethat buffer can be used for out-
put aswell asinput. In any case, the CGl must ensure that it has processed
any incoming data before writing new datato that buffer.
length Length of datato transmit. There isalimit to the amount of data that

http write () canwriteonany givencall. Thislimitisset by theHTTP
server socket transmit buffer size. This buffer sizeis given by
TCP_BUF SIZE/2. Thetransmit buffer isusually at least 1024 bytes. If
you try exceeding that limit, ht tp_write () will never succeed.

RETURN VALUE

0: datawritten (or buffered) successfully.

CGI_MORE: datanot written, try again on next call to the CGI. In genera, the CGI should pass
thiscode (CGI_MORE) back to the HTTP server. When the server callsthe CGI next time, it will
set the action codeto CGI CONTINUE which will be a cueto the CGI to try retransmitting the
previousdata. When CGI_CONTINUE isprovided, the contentsinthehttp getData ()
buffer will not have been atered.

LIBRARY
HTTP.LIB

SEE ALSO

http_getAction, http_skipCGl, http_switchCGI, http_finishCGI, http_abortCGI,
http_defaultCGI

244 rabbit.com HTTP Server

http://www.rabbit.com

shtml addfunction

int shtml addfunction(char *name, void (*fptr()));

DESCRIPTION
Adds a CGI/SSI-exec function for making dynamic web pagesto the RAM resource table.

PARAMETERS
name Name of thefunction (e.g.,"/foo.cgi").
fptr Function pointer to the handler, that must take Ht tpState* asan argu-
ment. Thisfunction should returnan int (0 while till pending, 1 whenfin-
ished).

RETURN VALUE
0: Success,
1: Failure (no room).

LIBRARY
HTTP.LIB

SEE ALSO
shtml_delfunction

TCP/IP Manual, Vol. 2 rabbit.com

245

http://www.rabbit.com

shtml addvariable

int shtml addvariable(char *name, void *variable, word type, char
*format);

DESCRIPTION
This function adds a variable so it can be recognized by shtml handler ().

PARAMETERS
name Name of the variable.
variable Pointer to the variable.
type Type of variable. The following types are supported: INT8, INT16,
INT32, PTR16, FLOAT32.
format Standard printf format string. (e.g., "%d").

RETURN VALUE

0: Success.
1: Failure (no room).

LIBRARY
HTTP.LIB

SEE ALSO
shtml_delvariable

246 rabbit.com HTTP Server

http://www.rabbit.com

shtml delfunction

int shtml delfunction(char * name);

DESCRIPTION
Deletes afunction from the RAM resource table.
PARAMETERS
name Name of the function asgivento shtml addfunction().
RETURN VALUE

0: Success,
1: Failure (not found).

LIBRARY
HTTP.LIB

SEE ALSO
shtml_addfunction

shtml delvariable

int shtml delvariable(char * name);

DESCRIPTION

Deletes a variable from the RAM resource table.
PARAMETERS

name Name of the variable, asgivento shtml addvariable ().
RETURN VALUE

0: Success,
1: Failure (not found).

LIBRARY
HTTP.LIB

SEE ALSO
shtml_addvariable

TCP/IP Manual, Vol. 2 rabbit.com 247

http://www.rabbit.com

248 rabbit.com HTTP Server

http://www.rabbit.com

PRODUCT MANUAL

S. RABBITWEB

The Dynamic C RabbitWeb software allows devel opers to web-enable embedded applications. This chap-
ter explains the ease with which aweb interface to a Rabbit-based device can now be created. In most
cases this enhanced HTTP server eliminates the need for complicated CGI programming while giving the
devel oper complete freedom in web page design.

The enhanced HTTP server is called RabbitWeb and uses:

e A simple scripting language consisting of server-parsed tags added to the HTML page that contains the
form.

e Dynamic C language enhancements, which includes new compiler directives that can be added to the
application calling the HTTP server.

Section 5.1 presents a simple example to show the power and ease of developing a RabbitWeb server that
presents aweb interface to your device. This example gives step-by-step descriptions of the HTML page
and the Dynamic C code. New features will be briefly explained, then linked to their comprehensive
descriptionsin Section 5.2 and Section 5.3. These sections are followed by amore complex examplein
Section 5.4, which in turnis followed by quick reference guides for both the Dynamic C language exten-
sions and the new scripting language, which iscalled ZHTML (Section 5.5).

5.1 Getting Started: A Simple Example

In this example, we pretend that a humidity detector is connected to your Rabbit-based controller. Your
controller runs aweb server that displays a page showing the current reading from the humidity detector.
From this monitoring page thereis alink to another page that contains an HTML form that allows you to
remotely change some configuration parameters. This example introduces web variables and user groups.
It also illustrates some new security features and the use of error checking.

This example assumes you have already installed Dynamic C version 8.5 (or later) and hooked up a Rab-
bit-based core module that has an Ethernet jack. Hardware hook up instructions are in the user’s manual
for the device. The hardware user’s manual describes network connections for your device, as well as set-
ting IP addresses for running sample programs.

5.1.1 Dynamic C Application Code for Humidity Detector

This section describes the application for our example. The program is shown in its entirety for conve-
nience. It is broken down into manageabl e pieces on the following pages.

TCP/IP Manual, Vol. 2 rabbit.com 249

http://www.rabbit.com

FileName /Samples/tcpip/rabbitweb/humidity.c
#define TCPCONFIG 1
#define USE_RABBITWEB 1
#memmap xmem
#use “dcrtcp.lib”
#use “http.lib”
#ximport “samples/tcpip/rabbitweb/pages/humidity monitor.zhtml”
monitor zhtml
#ximport “samples/tcpip/rabbitweb/pages/humidity admin.zhtml” admin_ zhtml
SSPEC MIMETABLE START
SSPEC_MIME FUNC (".zhtml", "text/html", zhtml handler),
SSPEC_ MIME (".html", "text/html")
SSPEC MIMETABLE END
SSPEC_RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE ("/index.zhtml", monitor zhtml),
SSPEC_RESOURCE_XMEMFILE ("/admin/index.zhtml", admin zhtml)
SSPEC_RESOURCETABLE END

#web groups admin
int hum;
#web hum groups=all (ro)
int hum alarm;
#web hum alarm ((0 < S$hum alarm) && (Shum alarm <= 100))\
groups=all (ro) ,admin
int alarm interval;
char alarm email [50] ;

#web alarm interval ((0 < Salarm interval) && (Salarm interval < 30000)) \
groups=all (ro) ,admin

#web alarm email groups=all (ro),admin
void main (void) {
int userid;

hum = 50;
hum alarm = 75;

alarm interval = 60;

strcpy (alarm email, "somebody@nowhere.org") ;
sock_init () ; // initialize TCP/IP stack
http init(); // initiaize web server
http set path("/", "index.zhtml");
tcp reserveport (80) ;
sspec_addrule (“/admin”, “Admin”, admin, admin,

; SERVER ANY, SERVER AUTH BASIC, NULL) ;
userid = sauth adduser (“harpo”, “swordfish”, SERVER ANY) ;
sauth setusermask (userid, admin, NULL) ;
while (1)

http handler() ;

}
}

250 rabbit.com RabbitWeb

http://www.rabbit.com

The source code walk-through consists of blocks of code followed by line-by-line descriptions. Particular
attention is given to the RabbitWeb #web and #web groups statements, which are new compiler direc-
tives.

#define TCPCONFIG 1
#define USE_RABBITWEB 1

#memmap xmem

#use “dcrtcp.lib”
#use “http.lib”

The macro TCPCONFIG isused to set network configuration parameters. Defining this macro to 1 sets
10.10.6.100, 255.255.255.0 and 10.10.6.1 for the board’s | P address, netmask and gateway/nameserver
respectively. If you need to change any of these values, read the comments at the top of
\lib\tcpip\tcp config.lib forinstructions.

TheUSE_RABBITWEB macro must be defined to 1 to use the HTTP server enhancements. The
#define of USE RABBITWEB isfollowed by arequest to map functions not flagged as root into xmem.
The two #use statements allow the application the use of the main TCP/IP libraries (all brought in by
dertep.1ib) and the HTTP server library (which also brings in the resource manager library,
zserver.lib).

#ximport “samples/tcpip/rabbitweb/pages/humidity monitor.zhtml”
monitor zhtml

#ximport “samples/tcpip/rabbitweb/pages/humidity admin.zhtml” admin zhtml

SSPEC_MIMETABLE START
SSPEC_MIME FUNC (".zhtml", "text/html", zhtml handler),
SSPEC_MIME (".html", "text/html")

SSPEC_MIMETABLE END

SSPEC_RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE ("/index.zhtml", monitor zhtml),
SSPEC_RESOURCE_XMEMFILE ("/admin/index.zhtml", admin zhtml)
SSPEC_RESOURCETABLE END

The HTML pages are copied to Rabbit memory using #ximport. Thefirst oneis astatus page and the
second oneis a configuration interface.

Next the MIME type mapping tableis set up. Thisallows zhtml handler () to becaled when afile
with the extension . zhtml isprocessed. Then the static resource table is set up, which gives the server
access to the files that were just copied in using #ximport. Thefirst parameter is the name of the
resource and the second parameter isits address.

TCP/IP Manual, Vol. 2 rabbit.com 251

http://www.rabbit.com

#web groups admin

The RabbitWeb server has a concept of user groups, which are created using the compiler directive,
#web groups. Users can be added to and removed from these groups at runtime by calling the API
functions sauth adduser () and sauth removeuser ().

The purpose of the user groups s to protect directories and variables from unauthorized access. User
groups are fully described in Section 5.2.3.

int hum;
#web hum groups=all (ro)

This declares a variable named hum of type integer using normal Dynamic C syntax. It will be used to
store the current humidity reported by the humidity detector. The #web expression registers this C vari-
able with the web server. The read-only attribute is assigned by the “groups=all(ro)” part which gives read-
only access to this variable to all user groups.

More information on registering variablesis given in Section 5.2.1.

int hum_alarm;
#web hum_alarm \
((0 < Shum alarm) && (shum alarm <= 100)) groups=all (ro),admin

This code creates avariable called hum _alarm to indicate the level at which the device should send an
alarm. Unlike the #web statement for hum, there is a guard added when hum_alarm isregistered. A
guard is an error-checking expression used to evaluate the validity of submissionsfor its variable. The
guard given for hum_alarm ensures only the range of values from 1 to 100 inclusive are accepted for
this variable. More information on the syntax of the error-checking expressionisin Section 5.2.2. The way
error information isused in the HTML form is described in Section 5.3.5.

The dollar sign symbol in Shum_alarm specifiesthe latest submitted value of the variable, not necessar-
ily the latest committed value of the variable. The difference between, and the importance of, the latest
submitted value and the latest committed value of a variable will make more sense when you have read
Section 5.2.2. Also, $-variables in web guards must be simple variables. for example, int, long, float, char,
or string (char array). They cannot be structures or arrays.

The “admin” group is given full accessto the variable (accessisread and write by default), while all other
users are limited to read-only access. If no “group=" parameter is given, then anyone can read or write
hum_alarm. The order of group namesisimportant. If “admin” came before “all(ro)” then the admin
group would not have write access.

252 rabbit.com RabbitWeb

http://www.rabbit.com

int alarm interval;
char alarm email [50] ;

#web alarm interval \
((0 < $alarm interval) && (Salarm interval < 30000))\
groups=all (ro) ,admin

#web alarm email groups=all (ro),admin

These lines declare and register an integer variable and astring. Thevariablealarm _interval gives
the minimum amount of time in minutes between two alarms, thus preventing alarm flooding. The variable
alarm_email givesthe email addressto which alarms should be sent.

This concludes the compile-time initialization part of the code.

void main (void)

{

int userid;

hum = 50;

hum alarm = 75;

alarm interval = 60;

strcpy (alarm email, "somebody@nowhere.org") ;
sock_init () ; // initialize TCP/IP stack
http init(); // initialize web server
http set path("/", "index.zhtml");

tcp reserveport (80) ;

sspec _addrule (“/admin”, “Admin”, admin, admin, SERVER ANY,
SERVER AUTH BASIC, NULL) ;
userid = sauth adduser (“harpo”, “swordfish”, SERVER ANY) ;

sauth setusermask (userid, admin, NULL) ;

while (1) {
http handler () ; // cal the http server

Inmain (), after thelocal variable userid isdeclared, there is run-timeinitialization of the variables
that will be visible on the HTML page. Then the stack and the web server areinitialized with callsto
sock_init () andhttp init (), respectively.

TCP/IP Manual, Vol. 2 rabbit.com 253

http://www.rabbit.com

Thefunctionhttp init () setstheroot directory to*“/” and sets the default file name to
index.html. Thecaltohttp set path () canbeused to change these defaults. We only want to
change the default filename, so in the function call we keep the default root directory by passing“ /" asthe
first parameter and change the default filename by passing index . zhtml asthe second parameter. The
reason we want to do thisis for when the browser specifies adirectory (instead of a proper resource name)
we want to default to using index . zhtml inthat directory, if it exists. If we don't use the set path func-
tion, the default is index . html which won't work for this sample because the file index . html
doesn't exist.

Thecall to sspec_addrule () configuresthe web server to give write and read access to the directory
/admin to any members of the admin group and to require basic authentication for any accessto this
directory. Thecall to sauth adduser () addsthe user named harpo with a password of
swordfish tothelist of users kept by the server. The next function call, sauth setusermask (),
adds the user named harpo to the user group named admin. This sequence of calls allows you to restrict
accesstothefilehumidity admin.zhtml. Only members of the user group admin,which in this
case isthe one user named harpo, can get the server to display afile resource that startswith /admin.
Recall that thefilehumidity admin.zhtml wascopied to memory by the #ximport directive and
given thelabel admin zhtml. Thefile was then added to the static resource table and given the name
/admin/index.zhtml. Thisisthe name by which the server recognizes the file and the name by
which accessto it is restricted.

The web server isdriven by the repeated call to http handler ().

The second part of our example requires additionsto the HTML pagethat is served by our web server. The
use of the new scripting language will be explained asit is encountered in the sample pages. Regular
HTML code will not be explained, asit is assumed the reader has a working knowledge of it. If that is not
the case, refer to one of the numerous sources that exist (on the web, etc.) for information on HTML.

5.1.2 HTML Pages for Humidity Detector

This sample requires two HTML files: oneto display the current humidity to all users, and another page
that contains the form that allows some parameters to be changed.

5.1.2.1 The Monitor Page

Thefirst HTML fileishumidity monitor.zhtml. The®.zhtml” suffix indicates that it contains
special server-parsed HTML tags. That is, the server must inspect the contents of the HTML file for spe-
cial tags, rather than just sending the file verbatim.

254 rabbit.com RabbitWeb

http://www.rabbit.com

Filename: \Samples\tcpip\rabbitweb\pages\humidity monitor.zhtml

<HTML>
<HEAD><TITLE>Current humidity reading</TITLE></HEAD>
<BODY>

<Hl>Current humidity reading</H1l>
The current humidity reading is (in percent) :
<?z print ($hum) °?>
<P>
Change the device settings
</BODY >
</HTML>

The above code displays the current humidity reading. The new server-parsed tags begin with “ <?z" and
end with “2>”. “print ($hum)” displays the given variable (that must have been registered with #web).

This code sets up a hyperlink that the user can click on to change the device settings. Note that sinceitisin
the“/admin” directory, the user will need to enter a username and password (“harpo” and “swordfish”)
to access the file. The username and password requirement was determined by the call to
sspec_addrule () inhumidity. c. Also note that the reference to the second HTML file uses the
namethat was given to humidity admin.zhtml when it was entered into the static resource table in
humidity.c.

Figure 5.8 Web Page Served

/3 Current humidity reading - Microsoft Internet Explorer

by RabbitWeb |'die e vew faoies 1o e |EE

: : : sz iy Fo::ald ¥ ?w Hsh H;ﬁ;e Sj?ch Fa\%tes H%w %anv .
.ThIS-WGb page Isvery Slmple’ as shown Agdressl http: A nawhere. org/indes. zhirl j @ Go | Links ¥
in Figure 5.8, but you are free to create o
more complex web pages (probably Current humidity reading
containing more variables to monitor).
HTML editors such as Netscape's Com- | The euerent humidiy reading is (in perceat). 50
poser, Hotdog Professional, and Macro- Change the device settings
media Dreamweaver can be used to
create these web pages.
5.1.2.2 The Configuration Page
The second HTML file is known to the
serveras.“ /admin/index. zhtml”.
Using error () and some conditional E=
code allows multiple display options I€) Dene L [e y

with the same HTML file. Again, the
fileisshown in its entirety for convenience. It is broken down on the following pages.

TCP/IP Manual, Vol. 2 rabbit.com 255

http://www.rabbit.com

Filename: Samples/tcpip/rabbitweb/pages/humidity admin.zhtml

<HTML>
<HEAD><TITLE>Configure the humidity device</TITLE></HEAD>
<BODY>
<Hl>Configure the humidity device</H1>
<?z if (error()) { 2>
ERROR! Your submission contained errors. Please correct
the entries marked in red below.
<?z } ?>
<FORM ACTION="/admin/index.zhtml” METHOD="POST” >
<P><?z if (error (Shum alarm)) { 2>

<?z } ?>
Humidity alarm level (percent) :
<?z if (error ($hum alarm)) { 2>

<?z } ?>
<INPUT TYPE="text” NAME="hum alarm” SIZE=3
VALUE="<?z print (shum alarm) ?>">
<P><?z if (error ($alarm email)) { 2>

<?z } ?>
Send email alarm to:
<? if (error (Salarm email)) { 2>

<?z } ?>
<INPUT TYPE="text” NAME="alarm email” SIZE=50
VALUE="<?z print ($salarm email) °?>">

<P><?z if (error($alarm interval)) { ?>

<?z } ?>
Minimum time between alarms (minutes) :
<?z if (error($alarm interval)) { 2>

<?z } ?>
<INPUT TYPE="text” NAME="alarm interval” SIZE=5
VALUE="<?z print ($alarm interval) ?>">
<P><INPUT TYPE="submit” VALUE="Submit”>
</FORM>
Return to the humidity monitor page
</BODY >
</HTML>

256 rabbit.com RabbitWeb

http://www.rabbit.com

After the usual opening lines of an HTML page, is our first server-parsed tag.

<?z if (error()) { 2>
ERROR! Your submission contained errors. Please correct
the entries marked in red below.

<?z } ?>

Without any parameters, error () returns TRUE if there were any errorsin the last form submission.
When the submit button for the form is clicked, the POST request goes back to the zhtml page specified by
theline:

<FORM ACTION="/admin/index.zhtml” METHOD="POST” >

Since thisrefers back to itself, if there were any errorsin the last form submission, the page is redisplayed
and aong with it the error message inside the 1 £ statement.

Figure 5.9 Web Page with Error Message

; Configure the humidity device - Microsoft Internet E xplorer

Fil= Edit “iew Fawortes Tool: Help ‘

« = QD i Q @ @ | By >
Back barinand Stop Refresh Home Search Favorter Hiztore GET!
ﬂgdressl http: A nowhere. org/ admindindes. zhtml j o Go ‘ Links *

Configure the humidity device

EEEOE! Your submizsion contained errors. Please correct the entries marked in
red below.

Humidity alarm level (percent): |1 12

Send emat alarm to:; |someb0dy@nuwhere.org

Minimum time between alarms (minutes): IEU

Submit |

Eeturn to the hunndity monitor page

|3j Done l_ l_ l_ |ﬂ Intermet

Sl

There are five actions the user can take on this page. The Submit button was discussed above and the link
to the monitor page is acommon HREF link. The other three actions are the input fields of the form. These
aretext fields created by the INPUT tags.

<INPUT TYPE="text” NAME="hum alarm” SIZE=3
VALUE="<?z print (shum alarm) ?2>">

TCP/IP Manual, Vol. 2 rabbit.com 257

http://www.rabbit.com

Notice how, with the use of print (), the value of the text fields arefilled in by the server before the
pageis given to the browser.

Before the INPUT tag thereis some code that displays text to describe the input field, along with some
error checking:

<?z if (error ($hum alarm)) { ?>

<?z } ?>
Humidity alarm level (percent) :
<?z if (error ($hum alarm)) { 2>

<?z } ?>

Instead of calling error () with no parameters, the variable whose input field we are considering is
passed to error (). Used with an if statement, thiscall to error () letsuschange the font color to red
if the value for that variable wasinvalid in the last form submission. Note that it is the text we have used to
describe the web variable on the HTML page that is shown in red, not the value of the web variable itself.
Also notethat it isnecessary to call error () twice, the second call isto close the FONT tag.

If in the last form submission the web variable had avalid value, the code above will still display the
descriptive text but its font color will not be changed.

If there were no errors with any of the web variables in the last form submission, the page display reflects
this status.

Figure 5.10 Web Page with No Error Message

3 Configure the humidity device - Microsoft Internet Explorer

File Edit “iew Favortes Toolz Help |

4 = @ [o QB >

Back Fomward Stop Refresh Home Search Faworites History b il

Agldressl hitp: / fnowhere. orgd adminindes. zhtml j & Go | Lirks ¥

[- |

Configure the humidity device

Humidity alarm level (percent): |?5

Zend email alarm to: |sumebudy@nuwhere.org

Minimum time between alarms (minutes): IED

Submit |

Eeturn to the humidity moniter page

s E

[&] |_|_|_|Q Internet

258 rabbit.com RabbitWeb

http://www.rabbit.com

5.2 Dynamic C Language Enhancements for RabbitWeb

This section describes the RabbitWeb language enhancements and how to make use of them to create a
RabbitWeb server. These language enhancements are designed to interact with the ZHTML scripting
language, (described in Section 5.3). They work together to provide an easy-to-program web-enabled
interface to your device.

5.2.1 Registering Variables, Arrays and Structures

Registering variables, arrays or structures with the web server is easy. First, we'll ook at the smple case
of aninteger variable.

int foo;
#web foo

The variable foo is declared as an integer in the first expression and then registered with the web server in
the second. Variable registration can only be done at compile-time.

Arrays and structures are registered in the same way as variables.

int temps[20];
#web temps

Strings, which are character arrays, can aso be registered:

char mystring[20] ;
#web mystring

Strings receive special handling by RabbitWeb. The bounds are always checked when updating a string
through a RabbitWeb interface, which means that the character buffer will not overflow.

It is permissibleto register an array element without registering the entire array. For example,
int temps[20];
#web temps [0]
will register temps [0] but not tempg[1], temps[2], etc. The same holds true for structure members.

struct foo2 {
int a;
int b;
struct foo2 bar;
#web bar

The above #web statement is functionally the same as.

#web bar.a
#web bar.b

Registering structure members or array elements separately lets you assign separate error-checking expres-
sionsto them, atopic covered in Section 5.2.2.

TCP/IP Manual, Vol. 2 rabbit.com 259

http://www.rabbit.com

It isaso possible to have arrays of structures:

struct foo2 bar[3];
#web bar

Arrays of structures can contain structures that contain arrays.

struct foo {
int a;
int b[2];

}i

struct foo bar[3];
#web bar

And so on, and so on...

5.2.1.1 Selection-type Variables

Defining variables that can take on one of alist of variablesis donewiththe select () feature a com-
pile time.

int color;
#web color select (“blue”, “red”, “green”)

Theselect () featureisuseful when creating a drop-down menu or a set of radio buttons. Itissimilar to
an enumerated type. In this case, the actual variable, color, isan int and holds one of thevalues0, 1, or
2 corresponding to the strings “blue,” “red” and “green,” respectively. To specify starting numbers other
than zero, do the following:

int color
#web color select (“blue” = 5, “red”, “green” = 10)

This causes “blue” to be 5, “red” to be 6, and “green” to be 10. Unlike an enum, a selection-type variable
can be of type 1ong aswell as int.

5.2.2 Web Guards

Registering variables, arrays and structures with the server is not enough—when data is received from the
user, it should be checked for errors before being committed to the actual C variables. The #web syntax
allows an optional expression to be added that is evaluated when the user submits a new value for that
variable.

int foo;
#web foo (($foo > 0) && ($foo < 16))

If the C expression evaluates to TRUE (i.e, !0), the new valueis accepted. If it evaluatesto FALSE (i.e,,
0), the new vaue isrejected. The new values are not applied until all variablesin a submission have been
checked.

260 rabbit.com RabbitWeb

http://www.rabbit.com

To reference the old, committed (and therefore guaranteed correct) value, reference the variable directly:

int foo;
#web foo ((0 < $foo) && (sfoo < foo))

One variable can reference another variable in an error-checking expression:

int low;
int high;

#web low
#web high ($high > $low)
#web low ($low < $high)

Notice that the variable 1 ow is registered with the web server beforeit is used in the error-checking
expression for the variable high. This ordering lets the guard for high know that 1ow isaweb variable.

Arrays also need to be considered when doing error checking. The“@" character represents awild-card
for the index value. It is replaced with the index being checked in the expression:

int temps[20];
#web temps[@] ((50 <= Stemps([@]) && (Stemps[@] <= 100))

For example, if temps [0] isbeing checked for errors, the error-checking expression becomes:

((50 <= Stemps([0]) && (Stemps[0] <= 100))

Alternatively, it is possible to give each array element its own error-checking expression:

int tempsI[3];

#web temps ((50 <= Stemps[0]) && (Stemps[0] <= 100) && \
(60 <= Stemps[1]) && (Stemps[l] <= 90) && \
(

70 <= Stemps[2]) && (Stemps[2] <= 80))

Note that the above statement spans lines. The statement is continued on the next line by escaping the end
of theline.

It isalso possible to register and check array variables individually:

int temps|[3];

#web temps[0] ((50 <= Stemps[0]) && (Stemps[0] <= 100))
#web temps[1l] ((60 <= Stemps[l]) && (Stemps[l] <= 90))
#web temps([2] ((70 <= S$Stemps[2]) && (Stemps[2] <= 80))

Structures are a so supported with error checking.

struct foo {
int a;
int b;
Vi
struct foo bar;
#web bar ((0 < $bar.a) && (Sbar.a < 10) && \
(-5 < Sbar.b) && (Sbar.b < 5))

TCP/IP Manual, Vol. 2 rabbit.com 261

http://www.rabbit.com

Alternatively, each structure element can be specified separately (using the same structure definition as
above) and given its own error-checking expression.

struct foo bar;
#web bar.a ((0 < S$bar.a) && (Sbar.a < 10))
#fweb bar.b ((-5 < sSbar.b) && (Sbar.b < 5))

In the two code sections shown above, two similar methods for registering a structure are presented. The
difference between these two methods is that the first one registers the entire structure as a single web vari-
able, and the second one registers each element as separate web variables. In the first case, a change to any
element of the structure causes the guard expression to be evaluated. In other words, changing either
bar.a or bar.b will cause the guard expression to be evaluated and so both variables will be checked.
In the second case, bar . a and bar . b are registered as independent web variables and so changing one
does not cause the guard expression of the other one to be eval uated.

Structure elements can be specified separately in arrays of structures, as well:

struct foo bar[3];
#web bar([@] .a (0 < Sbar[@].a)
#ftweb bar[@] .b (Sbar[@] .a > 10)

The same holds true for arrays of structures, in which the structures themselves contain arrays.

struct foo {
int a;
int b[2];
}i
struct foo bar[3];
#web bar([@] .a (0 < Sbar[@].a)

Of special note are variables with more than one array index. Which index is“ @” referring to? Consider
the following example:

#web bar[@] .b[@] ((0< $bar[@[0]].b[@[1]]) && ($bar[@[0]] .b[@[1]] <10))

In this case, the“@" in the guard is not enough. Instead, a different syntax is used, “ @[#]", where # isthe
#th index being referenced. If the user usesasimple “@" for awildcarded index, it isimplicitly replaced
with “@[0Q]” (since, in general, @ is a shorthand notation for @[0]).

If the error-checking expression is not flexible enough, a user-defined function can be specified instead:

struct (
int a;
intb;
} foo;

#web foo (check foo($foo.a, foo.b))

Remember that a $-variable must be asimple variable or astring (char array). It would beillegal to call the
above function, check foo (), with“sfoo” since foo isastructure.

262 rabbit.com RabbitWeb

http://www.rabbit.com

Consider the order of evaluation of each of the variable error checks to be undefined, that is, do not depend
on the order. Also, only changed variables are checked for errors. This must be taken into account when
writing guards. For example, in the following code:

#web low
#web high ($high > $low)

let us say the value of high is60 and the value of 1ow is40. If these variables are presented in an HTML
form and avalue of 65 for 1 ow is submitted while the value for hi gh iskept the same, it would be
accepted because 1 ow has no guard. Since the value of high did not change, its guard was not activated.
Hence, the guards for interdependent variables must be symmetric.

5.2.2.1 Reporting Errors

When avariable failsits error-check, the reason for the failure can be displayed in an HTML page by using
theWEB_ERROR () function:

#web foo ((0 < $foo)?1:WEB ERROR(“too low”))
#web foo ((s$foo < lG)?l:WEB_ERROR(“tOO high"))

Note that the checks for the variable f oo have been split into two parts; both checks are done during the
error-checking phase. If the check (such as“(0 < $foo)”) succeeds, then the expression evaluatesto 1. If
the check fails, then the special WEB_ERROR () function istriggered, which will associate the given error
string with the variable and will return 0.

RWEB_WEB ERROR_MAXBUFFER, which is 512 by default, defines the size of the buffer for the error
strings. The buffer must be large enough to hold all error strings for a single form submission. To change
it, #def ine thismacro before the #use “http.lib” statement in the application code.

Go to Section 5.3.5 to see how the error string passed to WEB _ERROR () isdisplayed inan HTML page.

5.2.3 Security Features

Various HT TP authentication methods (basic, digest, and SSL) are supported to protect web pages and
variables. Each method requires a username and password for access to the resource. (More information
on the HTTP authentication methods is found in Section 4.3.) In addition to the security offered by authen-
tication, the concept of permissions allow specific protection for selected resources. Permissions are
granted based on user groups rather than on individual user ids. User groups are defined at compile-time;
however, users can be added to or removed from a user group at run-time.

The groups are defined at compile-time in this manner:
#web groups admin,users

This statement creates the two groups, “admin” and “users.” The symbols “admin” and “users’ are added
to the global C namespace. These represent unsigned 16-bit numbers. Each group has one of the 16 bits set
to 1, so that the groups can be ORed together when multiple groups need to be referenced. Note that this
limits the number of groupsto 16.

TCP/IP Manual, Vol. 2 rabbit.com 263

http://www.rabbit.com

The web server does not directly know that “admin” isfor administrative users and “users’ isfor everyone
else. Thisditinction is made by how the programmer assigns protection to server resources. For example,

#web foo ($foo > 0) groups=users(ro),admin

limits access to the variable foo. Thisvariable is read-only for thosein the “users’ group. “(rw)” can be
specified to mean read-write for the “admin” group, but this is the default so it is not necessary. The group
“al” isavalid group, which will give accessto avariable to all usersregardiess of group affiliation. By
default, all groups have accessto al variables. The “groups=" is used to limit access. Consider the line:

#web foo ($foo > 0) groups=users (ro)

Thisline causes the admin group to have no access to the variable foo. In other words, if thereisa
“groups=" clause then any group that is not mentioned explicitly in it will have no accessto the variable to
which it applies.

Also the order of the groupsisimportant if the “all” group is mentioned. For example, the line:
#web foo ($foo > 0) groups=all (ro),admin

gives read/write access to the admin group. But the line
#web foo ($foo > 0) groups=admin,all (ro)

limits the admin group to read-only access.

To add a user to agroup, you must first add the user to the list kept by the server by calling
sauth adduser (). Thevaluereturned by sauth adduser () identifiesaunique user. Thisvalueis
passed to sauth setusermask () to set the groupsthat the user will bein. For example:

id = sauth adduser(“me”, “please”, HTTP_ SERVER) ;
sauth setusermask(id, admin|users, NULL) ;

The user me isnow in both the “admin” group and the “users’ group. The groups determine what server
resources the user can access. The user information only determines what username and password must be
provided for the user to gain access to that group’s resources.

The web server has no concept of which variables are located on which forms. By allowing certain vari-
ablesto be available to certain user groups, it doesn’t matter which variables are located on which forms—
any user can update variables through any POST-capable resource as long as a group the user is a member
of has access to that variable.

It may also be important to update certain variables only through certain authentication methods. For
instance, if the data must be secret, you can require that it only be updated via SSL. You can also make cer-
tain variables be read-only for certain user groups.

Valid user groups and authentication methods can be specified as follows:
#tweb foo(foo > 0) auth=basic,digest,ssl groups=admin,users (ro)
By default, all authentication methods and user groups are alowed to update the variable. That is, to limit

access to the variable, you must include the applicable auth= or groups= parameters when registering the
variable.

“none” isavalid authentication method.

264 rabbit.com RabbitWeb

http://www.rabbit.com

If foo isastructure or array, the protection modes are inherited by al members of the structure or array
unless specifically overridden with another #web statement.

If areceived variable fails a security check, then the client browser will be given a*“ Forbidden access’
page.

5.2.4 Handling Variable Changes

Receiving, checking, and applying the variable changes works well when the program does not immedi-
ately need to know the new values. For instance, if we are updating a value that represents the amount of
idle time needed on a serial port before sending the queued data over the Ethernet, the program does not
need to know the new interval value immediately—it can just use the new value the next time it needs to
do the calculation. But sometimes the program must perform some action when values have been updated.
For example, if abaud rate is changed on a seria port, then that serial port likely needsto be closed and
reopened. To handle this, and similar situations, a callback function can be associated with an arbitrary
group of variables:

#web update foo, bar, baz user callback

If any variable within a group is changed, then the callback function for that group is called. The user pro-
gram, through the callback function, can then take the proper action based on the new value. The above
statement means that if any of the variables foo, bar, or baz are updated, then the function

user callback () will becaled to notify the application. If variablesin more than one group are
updated at once, each group’s callback function will be called in turn (with no guarantees on order of
calls). If avariableisin multiple groups and that is the only variable updated, then all update callback
functions are called, although the order in which they are called is unspecified.

There is an important restriction on the use of #web update for arrays and structures: for an array ele-
ment or structure member registered explicitly (that is, with its own #web statement), the callback func-
tion associated with the array or structure as awhole will not be called when the variable is updated. For
example, consider:

struct foo2 {
int a;
int b;

struct foo2 bar;

#web bar
#web bar.a / /#web_update variables must be explicitly #web registered

#web_update bar user_ callback

#web_update bar.a differentuser_ callback

If bar.bisupdated, user callback () iscaled, butif bar.a isupdated, the function
differentuser callback() iscalledandnotuser callback().

TCP/IP Manual, Vol. 2 rabbit.com 265

http://www.rabbit.com

5.2.4.1 Interleaving Problems

Consider the following scenario: Users A and B are operating aweb interface on Device C. User A getsa
form page from Device C and then leaves the computer for awhile. User B then gets the same form page
from Device C, updates the data, and then the new values are committed on Device C. Then, User A
comes back to his computer, makes changes to the form that was | eft on his screen from earlier, and sub-
mits those values. Keep in mind that User A never saw the update done by User B. What should Device C
do? Should it allow A’s update? Or should it tell User A that an interim update has been made, and that he
should thus review his changesin light of that fact?

Ideally, the developer should be in control of how this scenario is handled since different applications have
different needs. One way to avoid trashing avalid update is given here:

int foo;
#tweb foo ($foo == foo + 1)
#web update foo increment value

void increment value (void) ({
foo++;

}

Some client-side JavaScript is needed in the ZHTML file where the f oo valueisincluded:

<SCRIPT>
document .write ('<INPUT TYPE="hidden" NAME="foo"
VALUE="' + (<?z echo($foo) ?> + 1) + '">'")
</SCRIPT>

This causes the variable foo to be updated whenever a successful update is made. Here's how it works:
e The developer gives foo aninitia value

e Included inaformisahidden field that representsthe value of foo (seethe HTML in the SCRIPT tags
above)

e |nthe JavaScript above, the“<?z echo ($foo) ?>" isfirst replaced by the HTTP server with the
current value of foo.

¢ |nthe browser, the JavaScript is executed, which takes the value of foo and adds onetoit. Thisisthe
value of the hidden input field.

e \When the form datais submitted, the automatic error-checking will recognize that the value of foo has
been updated a ong with the other data. If all data passes the error-checking, then the value of foo is
incremented by theuser’'s increment _value () function.

e |f, when theform datais submitted, the current value of £oo plus one does not match the submitted
value of foo, then we know that an interim update has occurred. The value of foo ismarked as an error
by the server, which can be handled by the developer’s ZHTML page. Note that none of the updated
form values will be committed, since an error was triggered.

266 rabbit.com RabbitWeb

http://www.rabbit.com

5.3 ZHTML Scripting Language

This section describes the ZHTML scripting language: a set of features that can be included in HTML
pages. These features interact with some new featuresin Dynamic C (described in Section 5.2) to create an
enhanced HTTP server.

5.3.1 SSI Tags, Statements and Variables

The new server-parsed tag is similar to SSI tags prior to Dynamic C version 8.5, in that they are included
in HTML pages and are processed by the server before sending the page to the browser.

The new tags dl have the following syntax:
<?z statement ?>

That is, avalid statement ispreceded by < ? z and followed by 2 >. Thisfollows the naming scheme
for PHP and XML tags (“<?php” and “<?xml”, respectively) and so follows standard conventions.

To surround a block of HTML, do the following:

<?z statement { ?>
<H1>HTML code here!</Hl>
<?z } ?>

The <?z ... ?> tags delimit statements. This means that you cannot put two statementsin a single set of
tags. For example,

<?z if (error($foo)) {
echo (sfoo)

} ?>
isnotvalid. The i f, echo, and“ }” statements must be separated by the <?z ... 2> tags like the following:

<?z if (error($foo)) { ?>
<?z echo($foo) ?>
<?z } ?>

Notethat “ }” is considered astatement in ZHTML (the “close block” statement), and must always bein its
own <7z ... ?> tags.

The simplest use of the new SSI tag simply prints the given variable:
<?z print (Sfoo) ?>

The value of the given variable is displayed using areasonable default print £ () specifier. For example,
if fooisanint, print () usesthe conversion specifier %d. £ oo must be registered with the web
server. How to register a variable with the web server is described in Section 5.2.1.

A variable must begin with a“$” character to accessits last submitted value. This value may or may not
have been committed. The last committed value is accessible using “ @,” asin:

<?z print (@foo) ?>

TCP/IP Manual, Vol. 2 rabbit.com 267

http://www.rabbit.com

Why isthere a distinction between the last submitted value and the last committed one? In other words,
doesit matter in the HTML code whether the submission value is valid? It can. See Section 5.3.5 for more
information.

To specify aprintf-style conversion specifier, theprint £ () function can be used, but with the limitation
that it will only accept one variable as an argument:

<?z printf (*%1d”, s$long foo) ?>

Note that the print function does not generate the code for the form widget itself—this is done with the
INPUT tag, an HTML tag that generates a specific form element. Here is an example of usingthe print
command to display avalue in aform widget:

<INPUT TYPE=“text” NAME=“foo” SIZE=10
VALUE= “<?z print($foo) ?>">

For the value to be updateable, the NAME field must be the name of the variable. Otherwise, when the
form is submitted, the web server will not know where to apply the new value. Thisis not true of arrays.
When referencing arrays the name must differ somewhat from the C name because the ‘[* and ‘]’ symbols
are not valid in the NAME parameter of the INPUT tag due to limitationsin HTTP.

Thevarname () function must be used to make the variable name safe for transmission.
NAME="<?z varname (Sfoo[3]) ?>"

That is, varname () automatically encodes the variable name correctly.

5.3.2 Flow Control

In addition to simply displaying variablesin your HTML documents, the new ZHTML tag allows some
simple looping and decision making.

5.3.2.1 Looping
A for loop, when combined with arrays, makesit easy to display lists of variables. The format of the for
loop isasfollows:

<?z for ($A = start; $A < end; $A += step) { ?>
<H1>HTML code here!</Hl>

<?z } ?>
where:

e A: A single-letter variable name from A-Z. These loop-control variablestake on an unsigned int
value.

e dtart: Theinitial value of the for loop. The value of the variable will start at this value and count to the
end value.

e end: The upper value of the for loop. The operator may be any one of thefollowing: <, >, ==, <=,

>=, | =,

e step: The number by which the variable will change for each iteration through the loop. The operator
may be any one of thefollowing: ++, - -, +=step, -=step. Notethat $A++ will increment the vari-
able by 1.

268 rabbit.com RabbitWeb

http://www.rabbit.com

Note that although this for loop looks like the regular Dynamic C for loop, itsuse is restricted to what
is documented here.

To display alist of numbersin HTML using a £or loop, you can do something like this:

<TABLE><TR>

<?z for ($A = 0; $A < 5; $A++) { 2>
<TD><?z print ($foo[SA]l) 72>

<?z } ?>

</TR></TABLE>

This code will display the variables foo [0], foo [1], foo[2], foo[3],and foo[4] inan HTML
table.

It isaso possible to get the number of elementsin a one-dimensional array by doing the following:
<?z for ($A = 0; S$A < count($foo, 0); $A++) { 2>

The second parameter to count () indicates that we want the upper bound of the nth array index of foo.
(From thisyou can infer that the first parameter must be an array!) For example, if $foo isathree-dimen-
siona array, then count ($foo, 0) yieldsthe array bound for thefirst dimension, count ($foo, 1)
yields the array bound for the second dimension and count ($foo, 2) Yyieldsthearray bound for the
third dimension.

5.3.2.2 Conditional Code

In addition to looping, you can have conditional codewith i f statements. The 1 £ statement is specified as
follows:

<?z if (3A == 0) { 2>
HTML code
<?z } ?>

where:

e A: Thevariableto check in the conditional. This can be anything that eva uates to a number, whether it
be anormal integral #web-registered variable, aloop variable, anumeric literal, or acount () expres-
sion.

e —=: Therdational operator in the i f statement. Thiscan be“==", “I=",“<" “>" “<=" or“>=",

e 0: The number to which the variable should be compared. This can be anything that evaluatesto a num-
ber, whether it be anormal integral #web-registered variable, aloop variable, anumeric literal, or a
count () expression.

For example:
<?z if ($foo == 0) { 2>
HTML code

<?z } ?>

or
<?z if ($foo == @foo) { 2>
HTML code
<?z } ?>

are both legal.

TCP/IP Manual, Vol. 2 rabbit.com 269

http://www.rabbit.com

The table from the previous example was modified to allow one of the valuesto be displayed in an input
widget, whereas all the other values are simply displayed.

<TABLE><TR>
<?z for ($A = 0; S$A < count($foo, 0); $A++) { 2>
<TD>
<?z if ($A == 3) { 2>

<INPUT TYPE="text” NAME="<?z varname ($fool[S$SA]) ?>"
VALUE="<?z print ($foo[SA]) ?>">
<?z } ?>
<?z if ($A != 3) { 2>
<?z print ($fool$A]l) 2>
<?z } ?>
<?z } ?>

</TR></TABLE>

The i f statements can be nested. Even £ or loops can be nested within other £or loops. The nesting level
has an upper limit defined by the macro ZHTML MAX BLOCKS, which has a default value of 4.

5.3.3 Selection Variables

Put together, 1 £ statements and £for loops are useful for selection-type variables. To iterate through all
possible values of a selection-type variable and output the appropriate “<OPTION>" or “<OPTION
SELECTED>" tags, something like the following can be done:

<?z for (SA = 0; SA < count($select var); SA++) { ?>
<OPTION
<?z if (selected($select var, $A)) { 2>
SELECTED

<?z } ?>
>
<?z print opt ($select var, $SA) ?>

This syntax allows for maximum flexibility. In this case, the count () function returns the number of
optionsin aselection variable. The selected () function takes a selection variable and an index as
parameters. It returns TRUE if that option matches the current value, and FALSE if it doesn't.

Theprint opt () function outputs the $A-th possible value.

The following is a convenience function that automatically generates the option list for a given selection
variable:

<?z print select ($select var) °?>

270 rabbit.com RabbitWeb

http://www.rabbit.com

5.3.4 Checkboxes and RadioButtons
This section describes how to add checkboxes and radiobuttons to your web page.

Checkboxes are a bit tricky because if a checkbox is not selected, then no information on that variable is
sent to the server. Only if it is selected will the variable value (“on” by default, or whatever you have in the
VALUE="this_is the value’ attribute) be passed in. In particular this means that if avariable was
checked, but then you uncheck it, the server will not be able to tell the difference between that variable
being unchecked and that variable value simply not being sent. The server would need a notion of the full
list of variables that should be in a specific form, information which RabbitWeb does not have.

However, thereisaworkaround. If avariableisincluded in aform multiple times, its value will be submit-
ted multiple times. RabbitWeb will take the last value given as the true value, and ignore all previous ones.
So, to force adefault unchecked value, you can include a hidden variable before you do the checkbox
INPUT field. Since you can do ZHTML comparisons with numbers, if you give the variable the value 0 or
1, it can be used in the checkbox INPUT tag.

<INPUT TYPE="hidden" NAME="<?z wvarname (Scheckbox[0]) ?>"
VALUE="0">

<INPUT TYPE="checkbox" NAME="<?z varname (Scheckbox[0]) ?>
VALUE="1"
<?z if ($Scheckbox[0] == 1) { ?>
CHECKED
<?z } ?>

So, if thevalue of $checkbox [0] is1, thenthe CHECKED attribute will be included and the checkbox
will be checked. Otherwise, it will be blank. If it is checked when the form is displayed, but you clear the
value, this till works, since the hidden field with avalue of 0 will always be sent.

Since alist of radiobuttons is more likely to be subject to different formatting depending on user taste than
something like a pulldown menu, thereis no automatic way of generating thelist. The best way to generate
alist of radiobuttonsisto use afor loop and the count function.

The following page displays both a checkbox and alist of radiobuttons.

<HTML>
<HEAD>
<TITLE>Radio button and checkbox</TITLE>
</HEAD>
<BODY >
<form action="./index.zhtml" method="post" >
<INPUT TYPE="hidden" name="checkboxBoolean" VALUE="0" >
<INPUT TYPE="checkbox"
<?z if ($checkboxBoolean==1) { 2>
CHECKED
<?z } ?>
NAME="checkboxBoolean" VALUE="1" >

TCP/IP Manual, Vol. 2 rabbit.com 271

http://www.rabbit.com

<?z for ($A = 0; $A < count ($radiobutton); $A++){ 2>
<INPUT TYPE="radio" NAME="radiobutton"
VALUE="<?z print opt($radiobutton, $A) ?2>"

OPTION
<?z if (selected($Sradiobutton, $A)) { 2>
CHECKED

<?z } ?> >
<?z } ?>

<INPUT TYPE="Submit" VALUE="Submit" >
</form>
</BODY >
</HTML>

To take advantage of the above zhtml script, the server code would need something like the following:

int checkboxBoolean, radiobutton;
#web checkboxBoolean

#web radiobutton select("O" - O, ulu' u2u' u3u, u4u' u5u, u6u, u7u)
checkboxBoolean = 0;
radiobutton = 0;

5.3.5 Error Handling

One of the biggest benefits to the new server-parsed HTML tagsis the ability to perform actions based on
whether a user-submitted variable wasin error. A natural way of creating an HTML user interfaceisto
create the form on an HTML page. When the user enters (or changes) values and submits the result, the
server should check the input for errors. If there are errors, then the same form can be redisplayed. This
form can mark the values that are in error and allow the user to update them. With the use of conditionals,
it is possible to create both the origina form and the form that shows the errors in the same page.

The destination page of a submitted form can be any page. When the web server receives a POST request
with new variable data, it checks the data using the error-checking expression in the #web statement that
registered the variable. If there is an error, then the destination web pageis displayed in error mode. The
following text describes how error mode affects the display of the destination web page.

By default, the print statement displays the new value of the variable when in error mode. To override
the default behavior and show the old, committed value (note that the erroneous value has not been com-
mitted), do the following:

<?z print (@foo) ?>
The"@" symbol specifiesthe old value of the variable.
To execute some code only when a certain variable has an error, do the following:

<?z if (error($foo)) { ?>
This value is in error!

<?z } ?>

272 rabbit.com RabbitWeb

http://www.rabbit.com

Itisalso possibletosay: 'error ($foo).

If avalue submitted for avariable has an error, then error (var) usedinaprint statement evaluates
to an error string if one was defined using the method described in Section 5.2.2.1. Here is an example:

<?z if (error($foo)) { ?>
This value is <?z print(error($foo)) ?>!
<?z } ?>

Although the ZHTML parser can output error messages into the HTTP stream, these messages may not be
visible on aweb page depending on how the browser is displaying pages. The surest way to find out
exactly the result of aZHTML page is to check the source of the page in the browser. For Internet
Explorer, the user can choose the "View/Source" menu item. Other browsers have equivalent functionality.

To display some information if the page is being displayed in error mode, use error () with no parame-
ter. If any variablein the form has an error, error () will return TRUE. Here is an example of its use:

<?z if (error()) { 2>
Errors are in the submission! Please correct them below.
<?z } ?>

5.3.6 Security: Permissions and Authentication
To check if auser has authorization for a specific variable, call the auth () function:

<?z if (auth($foo, “rw”)) { 2>
You have read-write access to the variable foo.
<?z } ?>

“ro” isalso avalid second parameter.

To check if the current page is being displayed as the result of a POST request instead of a GET request,
call theupdating () function.

<?z if (updating()) { 2>
<?z if (lerror()) { ?>
<META HTTP-EQUIV="Refresh” CONTENT="0;
URL=http://yoururl.com/" >
<?z } ?>

<?z } ?>

Both auth () and updating () may be preceded by “1” (the not operator).

TCP/IP Manual, Vol. 2 rabbit.com 273

http://www.rabbit.com

5.4 TCP to Serial Port Configuration Example

This section is a step-by-step description of the sample program ethernet to serial.c.ltis
located in Samples\tcpip\rabbitweb.

This sample program can be used to configure a simple Ethernet-to-serial converter. For simplicity, it only
supports listening on TCP sockets, meaning that Ethernet-to-serial devices can only be started by another
deviceinitiating the network connection to the Rabbit.

Each serial port is associated with a specific TCP port. The Rabbit listens on each of these TCP portsfor a
connection. It then passes whatever data comesin to the associated serial port, and vice versa.

5.4.1 Dynamic C Application Code
The program starts with a configuration section:

##define TCPCONFIG 1

This#define statement setsthe predefined TCP/IP configuration for this sample. If the default network
configuration of 10.10.6.100, 255.255.255.0 and 10.10.6.1 for the board's | P address, netmask and gate-
way/nameserver respectively are not acceptable, change them before continuing. See

LIB\TCPIP\TCP CONFIG.LIB for instructionson how to change the configuration.

const char ports config[] = { 'E', 'F' };

#define E2S BUFFER SIZE 1024
#define HTTP MAXSERVERS 1

#define MAX TCP_SOCKET BUFFERS (HTTP MAXSERVERS +
sizeof (ports config))

#define SERINBUFSIZE 127
#define SEROUTBUFSIZE 127

Each element in array ports config correspondsto aserial port. In the following code, the size of this
array will beusedin for loopsto identify, initialize and monitor the serial ports. A buffer is defined that
will hold the data that is being passed from the Ethernet port to the serial port. The number of server
instancesis set to one and the number of socket buffersis set to the number of server instances plus the
number of serial ports. The last two defines will be used later to allocate space for the receive and transmit
buffers used by the serial port drivers.

Thisisthe end of the configuration section.

274 rabbit.com RabbitWeb

http://www.rabbit.com

#memmap xmem
#define USE RABBITWEB 1

#use "dcrtcp.lib"
#use "http.lib"

#ximport "samples/tcpip/rabbitweb/pages/config.zhtml"
config zhtml

SSPEC MIMETABLE START

SSPEC_MIME FUNC(".zhtml", "text/html", zhtml handler),
SSPEC MIME (".html", "text/html"),
SSPEC MIME(".gif", "image/gif")

SSPEC MIMETABLE END

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE ("/", config zhtml),
SSPEC_RESOURCE_XMEMFILE ("/index.zhtml", config_ zhtml)
SSPEC_RESOURCETABLE_END

Thisblock of code asks the compiler to map functions not declared as root to extended memory. Setting
the macro USE_ RABBITWEB to one enables the use of the scripting language and the HT TP enhance-
ments. (Other macros that affect these features are described in the reference section.) Next the TCP/IP
libraries are brought in, aswell asthe HTTP library. The HTML page that contains the configuration inter-
face to the serial portsis copied into memory with the #ximport directive.

HTTP servers require MIME type mapping information. Thisinformation is kept in the MIME table,
which isset up by the SSPEC_ MIME_ * macros.

The SSPEC_RESOURCE* macros set up the static resource table for this server. The resource tableis a
list of all resources that the server can access. In this case, the server has knowledge of two resources
named“/” and “/index.zhtml”. When either of theseisrequested, the config.zhtml fileis
served. Thefile extension (zhtm1) identifies the file as containing server-parsed tags.

void restart socket (int i) ;
void update tcp(void) ;

void restart serial (int i) ;
void update serial (void) ;
void serial open(int i) ;
void e2s init (void) ;

void e2s tick(void) ;

These are the function declarations. They will be defined later in the program.

TCP/IP Manual, Vol. 2 rabbit.com 275

http://www.rabbit.com

struct SerialPort
word tcp port;
struct {
char port;
long baud;
int databits;
int parity;
int stopbits;
} ser;

s

struct SerialPort serial ports[sizeof (ports config)];
struct SerialPort serial ports copylsizeof (ports config)];

TheserialPort structure hasfields for the configuration information for each serial port and TCP port
pair. Theserial ports array (and its copy) stores configuration information about the serial ports.
serial ports_ copy [] isused to determine which port information changed when the update func-
tion iscalled.

#web serial ports[@] .tcp port ($serial ports[@].tcp port > 0)
#web serial ports[@] .ser.port

Thefirst #web statement is registration for the TCP port. Note that the only rule in the guard is that the
new value must be greater than zero. The next #web statement registers the character representing the
serial port, inthis case, “E” or “F.”

#web serial ports[@].ser.baud(($serial ports[e@].ser.baud >=300)7? \
1:WEB_ERROR ("too low"))

#web serial ports[@].ser.baud((Sserial ports[@].ser.baud <=115200)? \
1:WEB_ERROR ("too high"))

These two #web statements correspond to the baud rate. The guards are split into two so that the
WEB_ERROR () feature can be used. The string passed to WEB_ERROR () can later be used in the
ZHTML scripting to indicate why the guard statement failed.

#web serial ports|[@] .ser.databits select("7" = 7, "8" = 8)
#web serial ports([@] .ser.parity select ("None" = 0, "Even", "Odd")
#web serial ports|[@] .ser.stopbits select("1" = 1, "2" = 2)

These are selection variables. They limit the available options for seria port configuration parameters.

276 rabbit.com RabbitWeb

http://www.rabbit.com

#web update serial ports[@] .tcp port update tcp
#web update serial ports[@].ser.baud, serial ports[@].ser.databits, \
serial ports[@] .ser.stopbits update serial

The #web_update feature will initiate a function call when the corresponding variables are updated.
Note that update tcp () will be caled when the TCP port changes, and update serial () will be
called when any of the other serial port configuration parameters are updated.

#define AINBUFSIZE SERINBUFSIZE
#define AOUTBUFSIZE SEROUTBUFSIZE
#define BINBUFSIZE SERINBUFSIZE
#define BOUTBUFSIZE SEROUTBUFSIZE
#define CINBUFSIZE SERINBUFSIZE
#define COUTBUFSIZE SEROUTBUFSIZE
#define DINBUFSIZE SERINBUFSIZE
#define DOUTBUFSIZE SEROUTBUFSIZE
#define EINBUFSIZE SERINBUFSIZE
#define EOUTBUFSIZE SEROUTBUFSIZE
#define FINBUFSIZE SERINBUFSIZE
#define FOUTBUFSIZE SEROUTBUFSIZE

These set the receive and transmit buffer sizes for the serial ports. In this example only serial ports“E” and
“F" are being used, but here, aswell asinthefunctione2s init (), codeisincluded for all possible
seria ports. Inthisway it isrelatively easy to change the serial ports being used simply by changing the
character array, ports _configl].

enum {
E2S_INIT,
E2S LISTEN,
E2S PROCESS

5

These are symbols representing different states in the Ethernet-to-serial state machine.

TCP/IP Manual, Vol. 2 rabbit.com 277

http://www.rabbit.com

struct {
int state; // Current state of the state machine
tcp Socket sock; // Socket associated with this serial port

// Thefollowing members are function pointers for accessing this serial port
int (*open) () ;

int (*close) () ;

int (*read) () ;

int (*write) () ;

int (*setdatabits) () ;
int (*setparity) () ;

} e2s statelsizeof (ports config)];

Thee2s state array of structures holds critical information for each socket/serial port pair, namely the
socket structures that are used when calling TCP/IP functions and the various seria port functions that
access the serial ports or set serial port parameters.

The first member of the structure (state) isthe value of the variable that determines which state of the
Ethernet-to-serial state machine will execute thenexttimee2s tick () iscalled.

char e2s buffer [E2S BUFFER SIZE] ;

Thisis atemporary buffer for copying data between the serial port buffers and the socket buffers.

Now we will ook at the functions that were declared earlier in the program.

void restart socket (int i)

{

printf ("Restarting socket %d\n", 1i);

/ / Abort the socket
sock abort (&(e2s_state[i] .sock)) ;

// Set up the state machine to reopen the socket
e2s state[i] .state = E2S INIT;

}

Thefunction restart socket () displaysascreen message and then aborts the socket. The state vari-
able for the Ethernet-to-seria state machine is set to the initialization state, which will cause the socket to
be opened for listening the next time the state machine tick function is called.

278 rabbit.com RabbitWeb

http://www.rabbit.com

void update tcp(void) {
auto int 1i;

// Check which TCP port (s) changed
for (i = 0; i < sizeof (ports config); i++) {
if (serial ports[i] .tcp port !=serial ports copyl[il] .tcp port)

{

// Thisport has changed, restart the socket on the new port
restart socket (i) ;

// Savethe new port, so we can check which one changed on the next update

serial ports copylil] .tcp port = serial ports[i].tcp port;

}

The function update tcp () iscaled whenaTCP port is updated viathe HTML interface. It deter-
mines which TCP port(s) changed, and then restarts them with the new parameters.

void restart serial (int i) {
printf ("Restarting serial port %d\n", 1i);
e2s statel[i] .close(); // Closethe serial port
serial open (i) ; // Open the seria port

}

Thefunction restart serial () closesand then reopens the seria port specified by its parameter.

TCP/IP Manual, Vol. 2 rabbit.com

279

http://www.rabbit.com

void update serial (void) {
auto int 1i;

// Check which serial port(s) changed

for (i = 0; 1 < sizeof (ports config); i++)

{

if (memcmp (& (serial ports[i] .ser),
&(serial ports copyl[i].ser),
sizeof (serial ports[i] .ser)))

// Thisserial port has changed, so re-open the serial port with the new parms

restart serial (i) ;

// Savethe new parameters, so we can check which one changed on the next update

memcpy (& (serial ports copyli] .ser),
&(serial ports[i] .ser),
sizeof (serial ports[i] .ser)) ;

}

Thefunctionupdate serial () iscalled when aserial port isupdated viathe HTML interface. It
determines which serial port(s) changed, and then restarts them with the new parameters.

280 rabbit.com RabbitWeb

http://www.rabbit.com

void serial open(int i)
{
// Open the serial port
e2s state[i] .open(serial ports[i] .ser.baud) ;

// Set the data bits
if (serial ports[i].ser.databits == 7) {
e2s state[i] .setdatabits (PARAM 7BIT) ;

}

else
e2s state[i] .setdatabits (PARAM 8BIT) ;

}
// Setthe stop bits

if (serial ports[i].ser.stopbits == 1) {
if (serial ports[i].ser.parity == 0) { // No parity
e2s state[i] .setparity (PARAM NOPARITY) ;
}
else if (serial ports[i].ser.parity == 1) // Even parity
e2s state[i] .setparity (PARAM EPARITY) ;
}
else // Odd parity (== 2)
e2s state[i] .setparity (PARAM OPARITY) ;
}
}
else // 2 stop bits

e2s state[i] .setparity (PARAM 2STOP) ;

}

Thefunction, serial open (), iscaled from the function that initializes the Ethernet-to-serial state
machine, e2s init (). It doesall of the work necessary to open aserial port, including setting the num-
ber of data bits, stop bits, and parity.

The first statement opens the seria port using the baud rate value that was initialized inmain () . Inthe
rest of the code, the values for the other serial port parameters, which are also initidized inmain (), are
used to determine the correct bitmask to send to the serial port functions serxdatabits () and
serXparity (). (Thebitmasks, PARAM *, aredefined in the serial port library, RS232.11ib.)

TCP/IP Manual, Vol. 2 rabbit.com 281

http://www.rabbit.com

void e2s init (void)

{
auto int 1i;
for (1 = 0; i < sizeof (ports config); i++) {
e2s state[i] .state = E2S INIT; // Initidize the state

// Initialize the serial function pointers

switch (ports configli]) {

case 'A':
e2s state[i] .open = serAopen;
e2s state[i] .close = serAclose;
e2s state[i] .read = serAread;
e2s state[i] .write = serAwrite;
e2s state[i] .setdatabits = serAdatabits;
e2s state[i] .setparity = serAparity;
break;

default:
// Error--not avalid serial port
exit (-1);

}
/ / Open each seria port

serial open (i) ;

}

The above function initializes the Ethernet-to-serial state machine: first by setting the variable that is used
to travel around the state machine (e2s_state [1] . state), then by setting the function pointers used
to access the serial ports. For example, serAopen () isafunction definedinRs232.11ib that opens
seria port A.

The switch statement has cases for seria ports B, C and D that are not shown here. They are function-
ally the same as the above code for serial port A. If the chip on the target board is a Rabbit 3000, there are
cases for serial ports E and F aswell. The default caseis an error condition that will cause arun-time error
if encountered.

The last statement in the for loopisacall to serial open (). Thisfunction, which was described ear-
lier, makes calls to the appropriate serial port functions using the function pointers that were just initial-
ized.

282 rabbit.com RabbitWeb

http://www.rabbit.com

void e2s tick(void)
auto int 1i;
auto int len;
auto tcp Socket *sock;

for (1 = 0; i < sizeof (ports config); i++) {
sock = &(e2s statel[i] .sock);
switch (e2s _state[i].state) {
case E2S INIT:
tcp listen(sock, serial ports[i].tcp port, 0, 0, NULL, 0) ;
e2s state[i] .state = E2S LISTEN;
break;

case E2S LISTEN:
if (!sock waiting(sock)) ({
// The socket is no longer waiting
if (sock established(sock)) {
// The socket is established
e2s state[i] .state = E2S PROCESS;
}
else if (!sock_alive(sock)) ({
/ / The socket was established but then aborted by the peer
e2s state[i] .state = E2S INIT;
}
else {
/ /socket was opened, but isnow closing. Go to PROCESS state to read any data.
e2s state[i] .state = E2S PROCESS;
}
}

break;

Thefunction, e2s tick (), drivesthe Ethernet-to-serial state machine. Each timethistick functionis
called, it loops through all of the serial ports, first grabbing the socket structure that associates a particular
seria port with a TCP port, then determining which state is active for that TCP port. There are three states
in the Ethernet-to-serial state machine, identified by:

e E2S INIT

e E2S LISTEN

e E2S PROCESS

Thefirst state, E2S_INIT, opensthe socket withacaltotcp listen () andthen setsthe state vari-
ableto bein the listen state. The next time the tick function iscalled the E2S LISTEN state will execute.

TCP/IP Manual, Vol. 2 rabbit.com 283

http://www.rabbit.com

The state machine will stay in this listen state until a connection to the socket is attempted, a condition
determined by acall to sock _waiting().

As noted in the code comments above, once a connection is attempted there are several stagesit can bein,
which one will determine the next state of the Ethernet-to-serial state machine.

case E2S PROCESS:
// Check if the socket is dead
if (!sock alive(sock)) {
e2s state[i] .state = E2S INIT;
}
// Read from TCP socket and write to serial port
len = sock fastread(sock, e2s buffer, E2S BUFFER SIZE) ;
if (len < 0) { / /Error
sock abort (sock) ;
e2s state[i] .state = E2S INIT;
}
if (len > 0) {
// Write the read data to the serial port--Note that for simplicity,
// thiscodewill drop bytesif more data has been read from the TCP
// socket than can be written to the serial port.
e2s state[i] .write(e2s buffer, len);

}
else { /* Nodataread, donothing*/ }

// Read from the serial port and write to the TCP socket
len = e2s state[i] .read(e2s buffer, E2S BUFFER SIZE,

(unsigned long)0) ;

if (len > 0) {
len = sock fastwrite(sock, e2s buffer, len);
if (len < 0) { / /Error
sock abort (sock) ;
e2s state[i] .state = E2S INIT;

TheE2S_ PROCESS state checks to make sure the user did not abort the connection since the last time the
tick function was called. If there was no abort, an attempt is made to read data from the socket buffer. If an
error isreturned from sock fastwrite (), the connection is aborted and we go back to the init state
the next time thetick functionis called. If datawas read, it is written to the serial port. If no data was read,
then nothing happens.

284 rabbit.com RabbitWeb

http://www.rabbit.com

Next an attempt is made to read data from the serial port. If datawasread, it isthen written out to the TCP
socket. If the data read from the serial port was not written successfully to the TCP socket, the connection
is aborted and we go back to the init state the next time the tick function is called.

If no data was read from the serial port, the process state will execute again the next time the tick function
iscaled.

void main (void)

{

auto int 1i;

// Initialize the serial_ports data structure

for (1 = 0; i < sizeof (ports config); i++) {
serial ports[i].tcp port = 1234 + 1i;
serial ports[i] .ser.port = ports configl[i];

serial ports([i] .ser.baud 9600;

serial ports[i] .ser.databits = 8;
serial ports[i] .ser.parity = 0;
serial ports([i] .ser.stopbits = 1;

}

// Make acopy of the configuration options to be compared against when
// theupdate functions are called
memcpy (serial ports copy, serial ports, sizeof (serial ports)) ;

// Initidlize the TCP/IP stack, HTTP server, and Ethernet-to-serial state machine.
sock init () ;
http init();
e2s init () ;

// Thisisaperformance improvement for the HTTP server (port 80),
// especially when few HTTP server instances are used.

tcp reserveport (80) ;

while (1) {
// Drive the HTTP server
http handler () ;

// Drive the Ethernet-to-serial state machine
e2s tick() ;

}

Inthemain () function, the configuration parametersfor the serial portsare giveninitial valueswhich are
then copied for later comparison. After initialization of the stack, the web server and finally the state
machine, the while loop allows us to wait for a connection.

TCP/IP Manual, Vol. 2 rabbit.com 285

http://www.rabbit.com

5.4.2 HTML Page for TCP to Serial Port Example

Thefileconfig. zhtml that was copied into memory at the beginning of this program contains the
HTML form that is presented when someone contacts the | P address of the Rabbit that is running the
above application code. config. zhtml usesthe ZHTML scripting language that interacts with the code
above to create the web interface to a Rabbit-based controller board.

Filename: Samples/tcpip/rabbitweb/pages/config.zhtml

<HTML><HEAD>
<TITLE>Ethernet-to-Serial Configuration</TITLE></HEAD>
<BODY >

<Hl1>Ethernet-to-Serial Configuration</H1l>

Reload the page with committed values
<P>

<?z if (error()) { 2>

There is an error in your data! The errors are both listed below
and marked in red.

<?z for ($A = 0; SA < count(S$Sserial ports, 0); SA++)
{ ?>
<?z 1f (error($serial ports[$SA].tcp port))
{ 2>

Serial Port <?z echo($serial ports[$SA] .ser.port) ?>
TCP port is in error (must be greater than 0)
(committed value is
<?z echo(@eserial ports[S$A].tcp port) ?>)

<?z } ?>

<?z 1f (error(sserial ports[SA].ser.baud))

{ 2>
Serial Port <?z echo($serial ports[$SA] .ser.port) ?>
baud rate is in error
(<?z echo(error ($serial ports[SA].ser.baud)) ?>)
(must be between 300 and 115200 baud)
(committed value is
<?z echo(@serial ports[$A] .ser.baud) ?>)

<?z } ?>

<?z } ?>

<?z } ?>

After the usual opening lines of an HTML page, the first server-parsed tag we encounter is used with the
cal toerror () todisplay aform submission error message, the same way we did in the humidity detec-
tor examplein Section 5.1.2.2. Next is an example of a for loop used to print additional, more focused,

286 rabbit.com RabbitWeb

http://www.rabbit.com

error messages regarding the local TCP port number and the baud rate for each serial port. Again,
error () isused with an 1 £ statement to verify the submission of particular web variables and display
whatever error messages are chosen.

<FORM ACTION="/index.zhtml" METHOD="POST">

<?z for ($A = 0; SA < count(sserial ports, 0); SA++) { 2>
<H2>Serial Port <?z echo($serial ports[$SA] .ser.port) ?> Setup
</H2>
<TABLE>

The form isdefined next. Another £or loop allows us to have the same form entries for each seria port in
turn.When displayed without errors, the page looks like this:

Figure 5.11 Web

Page Served by —— —
RabbitWeb .| Eile Edit ¥iew Search Go Bookmarks Tasks Help

FY

Ethernet-to-Serial Configuration |

= | Ethermet-to-Serial Canfiguration - Mozilla {Build ID: 20010301113 |Q|E|E

4

There are two tables, one for
seria port E and, if you could
scroll down in Figure 5.11,
you would see that it isfol-
lowed by atable for seria
port F. Each table consists of Serial Port E Setup
five rows and two columns.

Reload the page with committed values

Of the five rows, two have Local TCF Port |1234 |
text entries and three have Baud Rate |gsun

drop-down menus, one for Data Rits g o

each of the three selection

variables defined in the Parity [None 7]

Dynamic C application code Stop Bits 1+

shown above. We will not]
show therest of the HTML

code here because it is too repetitive and we have seen similar code in the humidity detector example.
There are two lines, however, that are worth further discussion.

<INPUT TYPE="text"
NAME="<?z varname ($Sserial ports[$A] .tcp port) ?>"
SIZE=5 VALUE="<?z echo($serial ports[S$A].tcp port) ?>">

The two text fieldsin the above form are created with INPUT tags like the one shown here. Recall that the
NAME attribute does not allow the use of “[” or “].” The call to varname () solvesthat problem for us.

<SELECT NAME="<?z varname ($serial ports[$A] .ser.parity) °?>">
<?z print select ($serial ports[$SA] .ser.parity) ?>
</SELECT>

TCP/IP Manual, Vol. 2 rabbit.com 287

http://www.rabbit.com

The SELECT tag is used to create a drop-down menu in HTML, which is a convenient way to display a
RabbitWeb selection-type variable.

5.5 RabbitWeb Reference

This section is the repository of some specialized details, such as the grammars that describe the scripting
language and the Dynamic C enhancements. It is also intended as away to quickly find descriptions of
particular components of the RabbitWeb software.

5.5.1 Language Enhancements Grammar
Terminalsarein bold, “[]” indicate optional parts, and “|" indicates an OR in the statement.

web-extension -> #web-statement |
#web groups-statement |
#web_ update-statement

#web-statement -> #web variable expression [authorization]
End-of-line escaping must be used for the #web statement to span lines.

variable -> case-insensitive-C-variable
expression -> modified-C-expression |
select (select-list)
select-1list -> “string“ [= numeric-literal] [, select-list]

variable isaC variableinthe global scope. Dueto details of how variables are transferred over HTTR,
the variable name must be treated as case-insensitive. We can catch variablesthat conflict because of case-
insensitivity at run-time.

modified-C-expression isaregular C expression, with an optional “$” symbol preceding C vari-
ables which is used to reference the newest value of the variable.

authorization -> [authorization] [auth-method] [valid-groups]
auth-method -> auth = auth-type-list

auth-type-list -> ssl | basic | digest [, auth-type-list]
valid-groups -> groups = valid-groups-list

valid-groups-list -> group [(group-rights)] [, valid-groups-list]
group-rights -> ro | rw

#web groups-statement -> #web groups groups-list

groups-list -> group-name [, groups-list]

group-name followsthe same rules of a C variable name (it will, in fact, be in the namespaceasaC
variable).

#web update-statement -> #web update variable-list function-spec
variable-list -> variable [, wvariable-1list]

function-spec isthe name of apreviously declared C function.

288 rabbit.com RabbitWeb

http://www.rabbit.com

5.5.2 Configuration Macros
There are several macros that can be used when setting up a RabbitWeb server.

USE RABBITWEB
Defineto 1 to enable the HTTP extensions, including the ZHTML scripting language. Defaultsto O.

RWEB_POST MAXBUFFER

This defines the size of abuffer that is created in xmem. This buffer stores POST requests that contain
variable updates. Hence, this macro limits the size of POST requests that can be processed. Defaults to
2048.

RWEB POST MAXVARS

This macro defines the maximum number of variables that can be processed in asingle POST request.
That is, it limits the number of variables that can be updated in a single request. Each variable requires 20
bytes of root memory for bookkeeping information, so the total memory usageis 20 *

RWEB_POST MAXVARS. Defaultsto 64.

RWEB ZHTML MAXBLOCKS

This macro determines the number of if and for blocks that can be nested in ZHTML. Each additional
block alowed adds 11 bytes for each HTTP server instance (defined by HTTP MAXSERVERS). Defaults
to 4.

RWEB ZHTML MAXVARLEN

This defines the size of aroot buffer (in bytes) that is used to store variable names and values, and hence
limits the maximum length of avariable name or value. Only strings can be larger than four bytes, so real-
istically this macro only affects strings.

Please note that the macro HTTP _MAXBUFFER limitsthe size of the root buffer that is used to hold the
output of ZHTML commands. Strings the size of RWEB_ ZHTML MAXVARLEN are outputs of ZHTML
commands and will need to fit in the buffer of Sze HTTP_MAXBUFFER if they are to be sent over the net-
work. This effectively limitsthe value of RWEB _ZHTML_MAXVARLEN to be no more than the value of
HTTP_ MAXBUFFER. Both macros default to 256. If RWEB_ZHTML MAXVARLEN isincreased,

HTTP_ MAXBUFFER should beincreased by the same amount.

RWEB_WEB ERROR_ MAXBUFFER
This macro defines the size of a buffer in xmem that is used to hold WEB_ERROR () error messages. This
buffer limitsthe total size of the error messages associated with a single form update. Defaults to 512.

TCP/IP Manual, Vol. 2 rabbit.com 289

http://www.rabbit.com

5.5.3 Compiler Directives
The RabbitWeb compiler directives are summarized here.

#web
Registers avariable, array or a structure with the server. For more information, see Section 5.2.1.

The #web statement has several optional parts that can be used when avariable (or array or structure) is
registered. The optional parts are:

e An error-checking expression to limit the acceptable values that are submitted. For more information
see Section 5.2.2. A macro called WEB_ ERROR can be included in the error-checking expression to
associate a string with an error. For more information, see Section 5.2.2.1.

e The"auth=" parameter is a comma separated list of acceptable authentication methods. The possible
choices are basic, digest and sd. For more information, see Section 5.2.3.

e The“groups="“ parameter is a comma separated list of user groups that are allowed access to the web
variable (or array or structure). For more information, see Section 5.2.3.

One or more of the optional partscan be used in a #web statement.

#web groups
This directive defines aweb group. For more information, see Section 5.2.3.

#web update
This directive identifies a user-defined function to call in response to avariable update. For more informa-
tion, see Section 5.2.4.

290 rabbit.com RabbitWeb

http://www.rabbit.com

5.5.4 ZHTML Grammar
Terminalsarein bold, “[]” indicate optional parts, and “|" indicates an OR in the statement.

zhtml-tag -> <?z statement ?>

statement -> print-function | printf-function |
varname-function | print opt-function |
print select-function | if-statement | for-loop

print-function -> print(variable)
variable -> $ registered-variable | loop-variable
registered-variable isan array, structure or variable that is registered with the web server.

loop-variable -> $ A-Z

loop-variable isaone-letter variable (A-Z) defined in the for loop, and can be used asthe index for

an array.
printf-function -> printf (printf-specifier , wvariable)
Theprintf-specifier islikeaC printf specifier, except that it islimited to asingle variable.

varname-function -> wvarname(variable)

print opt-function -> print opt(variable , number) |
print opt(variable , loop-variable)

print select-function -> print select(variable)

count-expression -> count(variable, number) | count(variable)

Note that in the first option variable isan array; in the second option it is a selection-type variable.

numeric-expression -> loop-variable | integral-variable |
count-expression | numeric-literal

integral-variable refersto aregistered #web variable of integral (int or long, signed or
unsigned) type.

if-statement -> if (if-expression) { html-code }

if-expression ->numeric-expression operator numeric-expression |
[1] error(variable) |
[1] auth(variable , “ group-rights “) |
[1] updating()

operator -> == | != | > | < | >= | <=
group-rights -> ro | rw
for-loop -> for (loop-variable = numeric-expression ;

loop-variable operator numeric-expression ;
loop-variable for-inc) { html-code }
for-inc -> ++ | -- | += numeric-expression | -= numeric-expression

ro stands for read-only

rw stands for write-only

TCP/IP Manual, Vol. 2 rabbit.com

291

http://www.rabbit.com

5.5.5 RabbitWeb Functions
This section lists all of the functions that can be called within ZHTML tags.

auth ()
Thisfunction is used to check if a user has authorization for accessing a specific variable.

<?z if (auth($foo, “rw”)) { 2>
You have read-write access to the variable foo.

<?z } ?>
This function can be preceded by “!” (the not operator).

count ()
Thisfunctionisfor arrays and selection-type variables.

If the first parameter is an array, the second parameter specifies an array dimension. For aone-dimensional
array, the second parameter must be zero. For atwo-dimensional array, the second parameter must be zero
or one. And so on. If the first parameter is an array, the return value of the function is the upper bound for
the specified array dimension.

If the first parameter is a selection variable, there is no second parameter. The count () function returns
the number of options for a selection variable. The return value of count () canbeusedinafor loop to
cycle through all elements of an array.

<?z for ($A = 0; S$A < count($foo, 0); $A++) { 2>

echo (), print()
These are display functions to make web variables visible on an HTML page. They display the variable
passed to them using a default conversion specifier. The function echo () isanaliasfor print ().

<?z print(Sfoo) ?>

error ()

Theerror () function can be called both with and without a parameter. If it is called without a parameter
it will return TRUE if there were any errorsin the form submission and FAL SE otherwise. To call

error () with aparameter, you must pass it the name of aweb variable. The function will return TRUE
if that variable did not passits error check, and FAL SE otherwise.

It can be used to print out the WEB_ERROR () message:

print (error ($foo))

printf ()
Thisisadisplay function to make web variables visible on an HTML page. Withprintf () you can dis-
play avariable of type int or long:

<?z printf (“%1d”, S$long foo) ?>

print opt ()

Thisisadisplay function to make selection-type web variables visible on an HTML page. It takes two
parameters. The first parameter is a selection-type variable and the second parameter is the index into the
list of possible values for the selection-type variable.

<?z print opt ($select var, $SA) °?>

292 rabbit.com RabbitWeb

http://www.rabbit.com

print select ()
Thisisadisplay function to make selection-type web variables visible on an HTML page. It automati-
cally generates the option list for a given selection variable:

<?z print select ($select var) °?>

selected()

The selected () function takes two parameters. The first parameter is a selection variable and the sec-
ond parameter is an integer index into the array of optionsfor the specified selection variable. The function
returns TRUE if the option indicated by the index parameter matches the currently selected option, and
FALSE if it doesn't.

For example, to iterate through all possible values of a selection-type variable and output the appropriate
“<OPTION>" or “<OPTION SELECTED>" tags, something like the following can be done:

<?z for (SA = 0; S$A < count($select var, 0); $A++) { 2>
<OPTION
<?z if (selected($select var, $Aa)) { ?>
SELECTED

<?z } ?>

>

<?z print opt ($select var, $SA) °?>

Thepage Samples/tcpip/rabbitweb/pages/selection. zhtml usesthe selected ()
function.

updating ()

Thisfunction can be used with an i £ statement to test whether the current page is being displayed as the
result of a POST request instead of a GET request. Thisis useful to redirect to another page on a success-
ful form submission. Use this function as follows:

<?z if (updating()) { 2>
<?z if (lerror()) { ?>
<META HTTP-EQUIV="Refresh” CONTENT="0;
URL=http://yoururl.com/" >
<?z } ?>

<?z } ?>

This function can be preceded by “!” (the not operator).

varname ()

Thisisaconvenience function that gets around the limitation of no square bracketsin the NAME attribute
of the INPUT tag in HTML.

<INPUT TYPE="text” NAME="<?z varname (Sfoo[3]) ?>
"VALUE=" <?z echo($foo[3]) ?>">

TCP/IP Manual, Vol. 2 rabbit.com 293

http://www.rabbit.com

294 rabbit.com RabbitWeb

http://www.rabbit.com

PRODUCT MANUAL

6. HTTP CLIENT

The HTTP client library, http client.1lib, isused for connecting to web servers. A common HTTP
client implementation that most of us have used isfound in aweb brower, e.g., Internet Explorer or
Mozilla Firefox. The client that can be implemented by thislibrary isfar |ess ambitiousin terms of bells
and whistles, but is useful for the basics of making valid requests of an HTTP server and understanding the
subsequent responses.

Theinitial versionof http client.lib requires Dynamic C 10.54 or later.
The following programs demonstrate using the library:

Samples/tcpip/http/http client.c
Samples/tcpip/http/dyndns.c

6.1 Configuration Macros

The following macros may be defined in a #def ine statement before the inclusion of
http client.lib inan application program.

HTTPC VERBOSE
If defined, library will print status messages to Stdio window.

HTTPC DEBUG
If defined, functions will be debuggable (e.g., you can set breakpoints and single-step into them).

HTTPC HEADER TIMEOUT
Timeout, in milliseconds, to wait for headersto complete when calling httpc skip headers ().
Defaults to 5000 (5 seconds).

HTTPC PROXY AUTH STRLEN
Length of authentication information (printable string in “ username:password” format) for proxy server.
Does not include null-terminator at end of string.

TCP/IP Manual, Vol. 2 rabbit.com 295

http://www.rabbit.com

6.2 APl Functions

This section contains aquick APl overview, followed by detailed function descriptions. The functions are
located in /Lib/../tcpip/http client.lib, reative tothe Dynamic C installation folder.

6.2.1 Initialization Functions

Theinitialization function httpc init if () must be called before any other HTTP client function.
Thisfunction letsyou specify aninterface. ht tpc init () isamacroforhttpe init if (), using
IF ANY astheinterface designator.

6.2.2 Connect and Request Functions

Asisusual with client-side software, the HT TP client initiates the connection and makes a regquest of the
server. Common requests are GET, POST and HEAD. The Dynamic C HTTP client has seven functions to
choose from that accomplish the connect/request tasks.

There are two functions that allow you to connect and request separately. They are: httpc open () and
httpc request ().Youmustusehttpc request () to makeaHEAD request. You may also
make GET and POST requests with this function asit allows you to specify the request method. The other
five functions couple the connect and request tasks and are method specific. They differ in the form that
the resource and its server are identified.

The connect/request functions are:

e httpc get - connect and GET

e httpc get url -connectand GET

® httpc post - connect and POST

e httpc post ext - connect and POST
e httpc post url -connect and POST

6.2.3 Read Server Response Functions

A valid HTTP server response has a fixed structure. The HTTP client may read any of the header lines
and/or the optional message body using the following functions:

e httpc read header - read the next header from the response

e httpc read body - read bytesfrom the body of the response

6.2.4 Miscellaneous Functions

e httpc close - releaseresourcesfor the specified socket

e httpc headermatch - find string in header

e httpc skip headers - skip over the headers entirely (blocking call)

e httpc use proxy - configure client to use aproxy server for al new connections

296 rabbit.com HTTP Client

http://www.rabbit.com

6.2.5 Function Descriptions

httpc close httpc _init if
httpc get httpc_open
httpc get url httpc_ post
httpc headermatch httpc post ext
httpc init httpc post url

httpc read body
httpc read header
httpc_ request
httpc skip headers
httpc use proxy

httpc close

void httpc close(httpc Socket far *s);

DESCRIPTION
Closes an open socket to the web server.

PARAMETER

s Pointer to socket structure to use for connection.

TCP/IP Manual, Vol. 2

rabbit.com

297

http://www.rabbit.com

httpc get

int httpc get(httpc Socket far *s, const char *host, word port,
const char far *file, const char far *auth);

DESCRIPTION
Connect to “host” and GET “file” using “auth” credentials.

PARAMETERS
s Pointer to socket structure to use for connection.
host Hostname (or dotted | P) to connect to.
port Port to connect to (typically 80).
file Filename to request (should start with “/")
auth Optiona username and password (separated with “:”) to authenticate with.

Use NULL for no credentials.

RETURN VALUE

0: Success

-NETERR DNSERROR: Can't resolve hostname
-EI0: Unableto send request over socket
-E2BIG: Buffer full trying to create HTTP request

298 rabbit.com HTTP Client

http://www.rabbit.com

httpc get url

int httpc_get url(httpc Socket far *s, const char far *url);

DESCRIPTION

Connect to the HT TP server referenced in “url” and GET the resource referenced in “url”. This
functionislikehttpc get, but withaURL instead of separate host, authentication, port and
file parameters.

PARAMETERS
s Pointer to socket structure to use for connection.
url URL, in the following format (itemsin [] are optional):

[http://][user|: pass] @] hostname] :port] /filename

RETURN VALUE

0: Success
-EINVAL: Error parsing URL

-E2BIG:URL istoobigtoparse. IncresseURL MAX BUFFER_ SIZE tohandlelarger URLS.

-NETERR DNSERROR: Can't resolve hostname.

EXAMPLE

/ / Connect to google.com and request their homepage
httpc get url(&hsock, "http://www.google.com/") ;

TCP/IP Manual, Vol. 2 rabbit.com

299

http://www.rabbit.com

httpc _headermatch

char far *httpc headermatch(char far *header, char far *match);

DESCRIPTION
Seeif aheader matches aparticular field name.

PARAMETERS
header Pointer to aline from the headers.
match Header to match.

RETURN VALUE

NULL: header does not match
non-NULL: far pointer to value of header

EXAMPLE

// returnsapointer to "text/html"
httpc headermatch("Content-Type: text/html", "Content-Type");

300 rabbit.com HTTP Client

http://www.rabbit.com

httpc init

int httpc_init(httpc_Socket far *s, tcp Socket *t);

DESCRIPTION
Thisfunction initidlizestheht tpc_Socket structureand bindsitto tcp Socket “t".

NOTE: httpc_ init () isamacrofor httpc init if,usingIF ANY.

PARAMETERS
s Pointer toan httpc_Socket structure.
t Pointer tothe tcp_Socket that the HTTP client will use for its connec-

tions.

RETURN VALUE
0: OK
-EINVAL: NULL passed for one of thefirst two parameters.
EXAMPLE
httpc init(&hsock, &tsock);

TCP/IP Manual, Vol. 2 rabbit.com

301

http://www.rabbit.com

httpc _init if

int httpc_init if(httpc_ Socket far *s, tcp Socket *t, int iface);

DESCRIPTION

Thisfunctioninitializestheht tpc_Socket structure, bindsittotcp Socket “t” andforces
it to use interface “iface’.

PARAMETERS
s Pointer toan httpc_Socket structure.
t Pointer tothe tcp_Socket that the HTTP client will use for its connec-
tions. Caller should memset this structure to O before first use.
iface Interface to use for connection (if on a multi-interface device).

RETURN VALUE

0: OK

-EINVAL: NULL passed for one of first two parameters, or invalid interface passed for “iface”.
EXAMPLE

httpc init if(&hsock, &tsock, IF PPPO) ;

302 rabbit.com HTTP Client

http://www.rabbit.com

httpc open

int httpc open(httpc Socket far *s, const char *host, word port):;

DESCRIPTION
Attempts to open a connection to aweb server.
NOTE: If aproxy server hasbeen configured by callinghttpc use proxy,

the host and port parameters are ignored and the proxy server settings are used
for establishing the connection.

PARAMETERS
s Pointer to ht tpc_Socket structure to use for connection.
host Hostname (or dotted | P) to connect to.
port Port to connect to, or O for default port (80).

RETURN VALUE

0: Success
-NETERR DNSERROR: Cannot resolve hostname
-NETERR NOHOST_ARP: Loca host or gateway unreachable

EXAMPLE
httpc open(&hsock, "192.168.1.1", 80);

TCP/IP Manual, Vol. 2 rabbit.com 303

http://www.rabbit.com

httpc post

int httpc post(httpc Socket far *s,

const char *host,

word port,

const char *file, const char *auth, const char far *postdata):;

DESCRIPTION

Connect to “host” and POST “postdata’ to “file” using “auth” credentials.

PARAMETERS
s
host
port
file

auth

postdata

RETURN VALUE
0: Success

Pointer to socket structure to use for connection.
Hostname (or dotted I P) to connect to.
Port to connect to (typically 80).

Filename to request (should start with “/")

Optiond username and password (separated with “:") to authenticate with

(or NULL for no authentication).

Datato post (already URL-encoded and null terminated)

-NETERR DNSERROR: Can't resolve hostname

SEE ALSO

httpc post url,httpc post ext

304

rabbit.com

HTTP Client

http://www.rabbit.com

httpc post ext

int httpc post ext(httpc Socket far *s, const char *host, word port,
const char *file, const char *auth, const char far *postdata, word
postlen, const char *contenttype);

DESCRIPTION

Connect to “host” on “port” and POST “postlen” bytes from “postdata’ to “file” using “auth”

credentials.

PARAMETERS
s
host
port
file

auth

postdata
postlen

contenttype

RETURN VALUE
0: Success

Pointer to socket structure to use for connection.
Hostname (or dotted | P) to connect to.

Port to connect to (typically 80).

Filename to request (should start with “/").

Optiond username and password (separated with “:") to authenticate with
(or NULL for no authentication).

Datato post (aready URL-encoded).
Length of datato post (typically strlen(postdata)).

String to send as “ Content-Type'.
Use NULL for default of “application/x-www-form-urlencoded”.

-EI0: couldn't write to socket
-NETERR DNSERROR: Can't resolve hostname
-E2BIG: Buffer full trying to create HTTP request

SEE ALSO

httpc post url,httpc post

TCP/IP Manual, Vol. 2

rabbit.com 305

http://www.rabbit.com

httpc post url

int httpc_post url(httpc Socket far *s, const char far *url,

char far *postdata, word plen, const char *contenttype);

DESCRIPTION
Connect to resource at “url” and POST “plen” bytes of “ postdata’.

PARAMETERS
s Pointer to socket structure to use for connection.
url URL, in thefollowing format (itemsin [] are optional):
[http://][user[: pass] @] hostname] : port] /filename
postdata Datato post, already url-encoded.
plen Length of datato post (typically strlen(postdata))

contenttype Stringto send as"Content-Type'".
Use NULL for default of “ application/x-www-form-urlencoded”

RETURN VALUE

0: Success
-EINVAL: Error parsing URL

const

-E2BIG: URL istoobigtoparse. Increase URL_MAX BUFFER_SIZE tohandlelarger URLSs.

-NETERR DNSERROR: Can't resolve hostname.

SEE ALSO
httpc post,httpc post ext, url_encodestr

306 rabbit.com

HTTP Client

http://www.rabbit.com

httpc read body

int httpc_read body(httpc Socket far *s, char *buffer, int buflen);

DESCRIPTION
Read some of the body returned by the HTTP server.

PARAMETERS
s Pointer to socket structure to use for connection.
buffer Buffer to store the datain.
buflen Length of buffer for storing data.

RETURN VALUE

>0: length of dataread

0: waiting on data from socket
- ENOTCONN: connection closed, can't read from socket
-NETERR_REMOTE_RESET: connection closed before end of headers
-EI0: eror in chunked encoding

EXAMPLE
// read bytes from the body of the response, retval = # of bytes written
do {
retval = httpc read body(&hsock, buffer, sizeof (buffer) - 1);
} while (hsock.status == HTTPC_STATE BODY) ;

TCP/IP Manual, Vol. 2 rabbit.com 307

http://www.rabbit.com

httpc read header

int httpc _read header(httpc_Socket far * s, char * buffer,
int buflen);

DESCRIPTION
Read the next header from the socket.

PARAMETERS
s Pointer to socket structure to use for connection.
buffer Buffer to store the header in, recommend at least 128 bytes. Header will be
up to (buflen-1) bytes, followed by anull terminator. Pass NULL if the call-
ing function does not need a copy of the header.
buflen Length of buffer for storing header. Ignored if parameter 2is NULL.

RETURN VALUE

>0: length of header read (excluding null-terminator byte)

0: no more headers or incompl ete header read from socket
-NETERR_REMOTE_RESET: connection closed before end of headers
-EEOF: socket is not readable

EXAMPLE
do {
retval = httpc read header (&hsock, buffer, sizeof (buffer)-1);
} while (hsock.status == HTTPC STATE HEADER) ;

308 rabbit.com HTTP Client

http://www.rabbit.com

httpc request

int httpc request (char *buffer, int bufsize, const char far *method,
const char far *host, word port, const char far *file, const char
far *auth);

DESCRIPTION
Generate HTTP headersto request afile from an HTTP server.

PARAMETERS
buffer Pointer to socket structure to use for connection.
bufsize Length of buffer for storing header.
method Method (typicaly "GET", "POST" or maybe "HEAD")
host Hostname (or dotted | P) to connect to.
port Port to connect to or O for default (80). Only used with proxy servers, ig-
nored otherwise.
file Filename to request (must start with "/*)
auth Optiona username and password (separated with ":') to authenticate with.

Use NULL for no credentials.

RETURN VALUE

Number of byteswritten to buffer. Caller can add additional headers, but must append\r\n (CRLF)
before sending.
-E2BIG: request would overflow buffer

SEE ALSO

httpc get,httpc get url,httpc post url,httpc post
httpc post ext

TCP/IP Manual, Vol. 2 rabbit.com 309

http://www.rabbit.com

httpc skip headers

int httpc_skip headers(httpc_Socket far *s);

DESCRIPTION

Skip through the headers to get to the body of the HT TP response. Blocks up to
HTTPC_HEADER TIMEOUT milliseconds (defaultsto 5000 if not defined).

NOTE: Note, themacro HTTPC HEADER TIMEOUT controlsthe timeout, in
milliseconds, that ht tpc_skip headers () will block while waiting for the
headers to complete. If not set, H-TTPC HEADER TIMEOUT defaultsto 5000 (5

seconds).

PARAMETER

s Pointer to socket structure to use for connection.

RETURN VALUE
Total bytesin headers, or <0 for error

-NETERR_INACTIVE TIMEOUT: timed out dueto inactivity
-NETERR_REMOTE_RESET: connection closed before end of headers

310 rabbit.com

HTTP Client

http://www.rabbit.com

httpc use proxy

void httpc use proxy(unsigned long ip, word port, const char far
*auth) ;

DESCRIPTION

Configurethe HTTP client library to use aproxy server for al new connections. Pass OUL for the
I P address to switch back to the default behavior of making direct connections.

PARAMETERS
ip I P address of the proxy server.
port Port number to connect to.
auth Basi ¢ authentication credential s (in username: password format) to usewhen

connecting. Use NULL or an empty string if the proxy server does not re-
quire authentication.

RETURN VALUE
None

EXAMPLE

httpc use proxy(inet addr("192.168.1.1"),80,"username:password") ;

I

TCP/IP Manual, Vol. 2 rabbit.com

311

http://www.rabbit.com

312 rabbit.com HTTP Client

http://www.rabbit.com

PRODUCT MANUAL

/. FTP CLIENT

Thelibrary FTP CLIENT.LIB implementsthe File Transfer Protocol (FTP) for the client side of the
connection.

Thislibrary supports asingle FTP session at any one time since the session state is maintained in asingle
global structure in root memory.

You can upload and download files to either a static buffer in root data memory (for simple applications)
or, starting with Dynamic C version 7.20, you can have the data passed to, or generated by, a data handler
callback function that you specify. The data handler function can implement large file transfers in extended
memory buffers, or it can be used to generate or process data on-the-fly with minimal buffering.

Starting with Dynamic C 7.20, you can specify “passive” mode transfers. Thisis most important for clients
which areinside afirewall. Passive mode is specified by passing the FTP_ MODE PASSIVE option to
ftp client setup ().When passive modeis specified, the client will actively open the data transfer
port to the server, rather than the other way around. This avoids the need for the server to penetrate the
firewall with an active connection from the outside, which is most often blocked by the firewall. For this
reason, it is recommended that your FTP client application uses passive mode by default, unless overrid-
den by an end-user.

7.1 Configuration Macros

The following macros may be defined in a #def ine statement before the inclusion of
FTP_CLIENT.LIB inan application program. Note that strings must contain the NULL byte, soif a
maximum string length is 16, the maximum number of charactersis 15.

FTP MAX DIRLEN
The default is 64, which is the maximum string length of a directory name.

FTP MAX FNLEN
The default is 16, which is the maximum string length of afile name.

FTP MAX NAMELEN
The default is 16 which is the maximum string length of usernames and passwords.

FTP MAXLINE
The default is 256, which is both the maximum command line length and data chunk size that can be
passed between the FTP data transfer socket and the data handler (if any defined).

FTP_TIMEOUT
The default is 16, which is the number of seconds that pass before atime out occurs.

TCP/IP Manual, Vol. 2 rabbit.com 313

http://www.rabbit.com

7.2 APl Functions

ftp client setup

int ftp client setup(long host, int port, char *username, char
*password, int mode, char *filename, char *dir, char *buffer, int
length);

DESCRIPTION

Setsup aFTPtransfer. Itiscalled first, then ftp client tick () iscaled until it returns
non-zero. Failure can occur if the host addressis zero, if 1ength isnegative, or if theinternal
control socket to the FTP server cannot be opened (e.g., because of lack of socket buffers).

PARAMETERS

host Host IP address of FTP server.

port Port of FTP server, O for default.

username Username of account on FTP server.

password Password of account on FTP server.

mode Mode of transfer: FTP_MODE_UPLOAD of FTP_ MODE_DOWNLOAD.
Youmay also ORinthevalue FTP_MODE PASSIVE to use passive mode
transfer (important if you are behind afirewall).

filename Filename to get/put.

dir Directory fileisin, NULL for default directory.

buffer Buffer to get/put the file from/to. Must be NULL if adata handler function
will beused. See ftp data handler () for moredetails.

length On upload, length of file; on download size of buffer. This parameter limits

thetransfer size to amaximum of 32767 bytes. For larger transfers, it will be
necessary to use a data handler function.
RETURN VALUE
0: Success.
1: Failure.
LIBRARY
FTP_CLIENT.LIB

SEE ALSO
ftp client setup url, ftp client tick, ftp data handler

314 rabbit.com FTP Client

http://www.rabbit.com

ftp client setup url

int ftp client setup url(const char far * url, int mode,
char * buffer, int length);

DESCRIPTION
Setsup aFTPtransfer. Itiscalled first, then ftp client tick () iscaled until it returns
non-zero.
PARAMETERS
url URL to download.
mode Mode of transfer:
e FTP MODE UPLOAD -
e FTP MODE DOWNLOAD -
Youmay also ORinthevalueFTP_MODE PASSIVE to use passive mode
transfer (important if you are behind afirewall).
UseFTP_MODE_GETLIST if youjust wanttoretrievethefileinformation
givenby “LIST filename.” If FTP_ MODE_GETLIST isusedwithaNULL
filenamethe, theresultsof "LIST" aregiven. Theseresultsmay just bealist
of file names, or they may contain more information with each filethisis
server-dependent.
buffer Buffer to get/put the file to/from. Must be NULL if a data handler function
will beused. See ftp data_ handler () for moredetails.
length On upload, length of file; on download size of buffer. This parameter limits

the transfer size to a maximum of 32767 bytes. For larger transfers, it will
be necessary to use a data handler function.

RETURN VALUE

0: Success

-NETERR DNSERROR: Couldn't resolve hostname from URL.

-NETERR_HOST REFUSED: Couldn't connect to FTP server.

-EINVAL: Error parsing URL

-E2BIG: URL istoobigtoparse. Increase URL_MAX BUFFER_ SIZE tohandlelarger URLs.

LIBRARY
FTP_CLIENT.LIB

SEE ALSO
ftp client setup, ftp client tick, ftp data handler

TCP/IP Manual, Vol. 2 rabbit.com 315

http://www.rabbit.com

ftp client tick

int ftp client tick(void);

DESCRIPTION

Tick function to run the FTP daemon. Must be called periodicaly. The return codes are not very
specific. Youcancal ftp last code () togettheinteger value of the last FTP message
received from the server. See RFC959 for details. For exampl e, code 530 meansthat the client was
not logged in to the server.

RETURN VALUE

FTPC AGAIN: still pending, cal again.

FTPC_OK: success (file transfer complete).

FTPC_ ERROR:failure(cal ftp last code () for more details).
FTPC_NOHOST: failure (Couldn't connect to remote host).

FTPC_NOBUF: failure (no buffer or data handler).

FTPC_TIMEOUT) : warning (Timed out on close: datamay or may not be OK).
FTPC_ DHERROR: error (Data handler error in FTPDH_END operation).
FTPC_CANCELLED: FTP control socket was aborted (reset) by the server.

LIBRARY
FTP_CLIENT.LIB

SEE ALSO

ftp client setup, ftp client filesize, ftp client xfer,
ftp last code

316 rabbit.com FTP Client

http://www.rabbit.com

ftp client filesize

int ftp client filesize(void);

DESCRIPTION

Returns the byte count of datatransferred. This function is deprecated in favor of
ftp _client xfer (),whichreturnsalong vaue.

If the number of bytestransferred was over 32767, then thisfunction returns 32767 which may be
misleading.

RETURN VALUE
Size, in bytes.

LIBRARY
FTP_CLIENT.LIB

SEE ALSO
ftp client setup, ftp data handler, ftp client xfer

ftp client xfer

longword ftp client xfer(void);

DESCRIPTION

Returns the byte count of datatransferred. Transfers of over 232

ed correctly.

bytes (about 4GB) are not report-

RETURN VALUE
Size, in bytes.

LIBRARY
FTP_CLIENT.LIB

SEE ALSO
ftp client setup, ftp data handler, ftp client filesize

TCP/IP Manual, Vol. 2 rabbit.com 317

http://www.rabbit.com

ftp data handler

void ftp_data handler(int (*dhnd) (), void *dhnd data, word opts);

DESCRIPTION

Sets adatahandler for further FTP datatransfer(s). This handler isonly used if the "buffer" pa-
rameter to ftp client setup () ispassed aSNULL.

The handler is afunction which must be coded according to the following prototype:

int my handler (char *data, int len, longword offset, int flags,
void *dhnd data) ;

Thisfunctioniscalled with dat a pointing to adatabuffer, and 1en containing the length of that
buffer. of £ set isthebytenumber relativetothefirst byteof theentire FTP stream. Thisisuseful
for data handler functions that do not wish to keep track of the current state of the data source.
dhnd_ data isthe pointer that waspassedto ftp data handler ().

flags contains an indicator of the current operation:

* FTPDH_IN: dataisto be stored on this host (obtained from an FTP download).
* FTPDH_OUT: dataisto be filled with the next data to upload to the FTP server.

* FTPDH_END: dataand len areirrelevant: this marks the end of data, and givesthefunction
an opportunity to e.g., closethe file. Called after either in or out processing.

* FTPDH_ ABORT: end of data; error encountered during FTP operation. Similar to END ex-
cept the transfer did not complete. Can use thisto e.g., delete a partialy written file.

The return value from this function depends on the in/out flag. For FTPDH _ IN, the function
should return 1 en if the datawas processed successfully and download should continue; -1 if an
error has occurred and the transfer should be aborted. For FTPDH_OUT, the function should re-
turn the actual number of bytes placed in the data buffer, or -1 to abort. If zero is returned, then
the upload is terminated normally. For FTPDH _END, the return code should be zero for success
or -1 for error. If an error is flagged, then thisis used as the return code for

ftp client tick().For FTPDH ABORT, thereturn codeisignored.

318

rabbit.com FTP Client

http://www.rabbit.com

ftp data handler (cont’d)

PARAMETERS
dhnd Pointer to datahandler function, or NULL to removethe current datahandler.
dhnd_data A pointer which is passed to the data handler function. This may be used to
point to any further datarequired by the data handler such asan open file de-
scriptor.
opts Options word (currently reserved, set to zero).
LIBRARY

FTP_CLIENT.LIB

SEE ALSO
ftp_client setup

ftp last code

int ftp last code(void);

DESCRIPTION

Returns the most recent message code sent by the FTP server. RFC959 describesthe codes in de-
tail. Thisfunction ismost useful for error diagnosis in the case that an FTP transfer failed.

RETURN VALUE

Error code; anumber between 0 and 999. Codes less than 100 indicate that an interna error oc-
curred e.g., the server was never contacted.

LIBRARY
FTP_CLIENT.LIB

SEE ALSO
ftp client setup, ftp client tick

TCP/IP Manual, Vol. 2 rabbit.com 319

http://www.rabbit.com

7.3 Sample FTP Transfer
Program Name: Samples\itcpip\ftp\ftp_client.c

//#define MY IP ADDRESS "10.10.6.105"
//#define MY NETMASK "255.255.255.0"

#define TCPCONFIG 1

#memmap xmem
#use "dcrtcp.lib"
#use "ftp client.lib"

#define REMOTE HOST "10.10.6.19"
#define REMOTE PORT 0

main () {

}

char buf[2048];

int ret, 1, Jj;

printf ("Calling sock init()...\n");
sock init () ;

* Set up the ftp transfer. Thisis to the host defined above, with anormal

anonymous/e-mail password login info. A get of the file bar is requested, which
will be stored in buf.* /

printf ("Calling ftp client setup()...\n");

if (ftp client setup(resolve (REMOTE HOST), REMOTE PORT,
“anonymous", "anon@anon.com", FTP MODE DOWNLOAD, "bar",
NULL, buf,sizeof (buf)))

{

printf ("FTP setup failed.\n");

exit (0) ;
}
printf ("Looping on ftp client tick()...\n");
while (== (ret = ftp client tick()))
continue;
if(1 == ret) {

printf ("FTP completed successfully.\n") ;

// ftp_client_filesize() returnstransfer size, since we asked for download.
buf [ftp client filesize()] = '\O0';

printf ("Data => '%s'\n", buf);
}
else {

printf ("FTP failed: status == %d\n",ret);
}

320

rabbit.com FTP Client

http://www.rabbit.com

PRODUCT MANUAL

8. FTP SERVER

This chapter documents the FTP server. The following information is included:

e configuration macros

e the default file handlers

e how to assign replacement file handlers

e what to do when thereisafirewall

e AP functions

e commands accepted by the server

e reply codes generated by the server

e sample code demonstrating a working FTP server

Thelibrary FTP_SERVER . LIB implementsthe File Transfer Protocol for the server side of aconnection.
FTP usestwo TCP connections to transfer afile. The FTP server does a passive open on well-known

port 21 and then listens for a client. Thisisthe command connection. The server receives commands
through this port and sends reply codes. The second TCP connection is for the actual data transfer.

Anonymous FTP is supported. Most FTP servers on the Internet use the identifier “anonymous.” So since
FTP clients expect it, thisisthe identifier that is recommended. But any string (with a maximum length of
SAUTH MAXNAME) may be used.

Dynamic C 8 includes some enhancements that basically let the FTP server act asafull FTP server, where
you can create, read and delete files at will. To use these enhancements, the configuration macro
FTP_USE_FS2 HANDLERS must be defined to enable FS2 support in the default file handler functions.
The structure that holds the association of filenames and FS2 file locations is the server spec list—the glo-
bal array definedin zserver. 1ib. Itisstored in the User block and the API functions

ftp save filenames() andftp load filenames () areused for support of this.

NOTE: For ademonstration of the enhanced FTP server, see the sample pro-
gram, /SAMPLES/TCPIP/FTP/FTP_SERVER FULL.C.

TCP/IP Manual, Vol. 2 rabbit.com 321

http://www.rabbit.com

8.1 Configuration Macros

The configuration macros control various conditions of the server’s operation. Read through them to
understand the default conditions. Any changes to these macros may be made in the server application
with #def ine statements before inclusion of FTPSERVER . LIB.

FTP_CMDPORT
Thismacro defaultsto 21 which isthe well-known FTP server port number. You can overridethis
to cause the server to listen on a non-standard port number.

FTP_CREATE MASK
This macro specifies the mask that is passed into the servermask parameter in
sspec_addfsfile () callswhenanew fileiscreated. In particular, this defines which serv-
erswill be allowed to accessthisfile. By default, it isdefined to SERVER _FTP |
SERVER_WRITABLE.

FTP DTPTIMEOUT
The default is 16, thesameas FTP TIMEOUT. This appliesto the data transfer port instead of
the command port. The data transfer port is involved with get/store commands, aswell as direc-
tory listings.

FTP EXTENSIONS
The macro is not defined by default. Defineit to alow the server to recognize the DELE, SIZE
and MDTM commands. If thismacro isdefined, then the FTP handler structure (FTPhandlers)
is augmented with pointers to mdtm and delete handlers.

FTP INTERFACE
Thismacro defaultsto IF_DEFAULT, i.e., the (single) default interface. Defineto IF_ANY if
FTP sessions can be accepted on any active interface, or a specific interface number (e.g.,
IF ETHO)toalow sessionson that interface only. Note that you are currently limited to asingle
interface, or all interfaces. This macro isonly relevant starting with Dynamic C version 7.30.

FTP_ MAXLINE
The default is 256: the number of bytes of the working buffer in each server. Thisisalso the max-
imum size of each network read/write. The default value of 256 isthe minimum valuethat allows
the server to function properly.

FTP MAXSERVERS
Thedefault is1: the number of simultaneous connectionsthe FTP server can support. Each server
requires a significant amount of RAM (4096 bytes by default, though this can change through
SOCK_BUF SIZE or tcp MaxBufSize (deprecated)).

FTP NODEFAULTHANDLERS
This macro isundefined. Define it to eliminate the code for the default file handlers. You must
then provide your own file handlers. Thismacro is no longer needed starting with Dynamic C ver-
sion 7.20.

322 rabbit.com FTP Server

http://www.rabbit.com

FTP_TIMEOUT
The default is 16: the number of seconds to wait for FTP commands from the remote host before
terminating the connection. In ahigh-latency network thisvaluemay need to beincreased to avoid
premature closures.

FTP_USE FS2 HANDLERS
Definethisto enablethefull use of FS2 inthe default FTP handler functions. Defining thismacro
will automatically define FTP_ WRITABLE FILES to 1, aswell.

FTP_USERBLOCK OFFSET
This macro should be defined to a number that specifies the offset into the User block at which
thelist of filenameswill be saved. Thislist correlates the filenames with the locations of the files
in the filesystem (FS2). This macro defaultsto O. If the user is putting other information in the
User block, this offset may need to be adjusted to prevent clobbering the other data.

FTP WRITABLE FILES
Thedefaultsis 0. Defineto 1 to provide supportin ftp dflt open () for authenticating a
user for write access before afileis opened. Thisa so provides support in thefilelisting function,
ftp dflt 1list (), toshow thewrite permission for writablefiles.

NOTE: The user will need to override both the write and close default file han-
dlersto provide full support for writing afile.

SSPEC_NO STATIC
Thismacro must bedefined in any FTP server application compiled with Dynamic C 8.50 or later.

TCP/IP Manual, Vol. 2 rabbit.com 323

http://www.rabbit.com

8.2 File Handlers

Default file handlers are provided. The defaults access the server spec list, which is set up using
sspec_addxmemfile (), sauth adduser () etc. Thedefault file handlers are used when NULL is
passed to theinitiaization function ftp init ().

8.2.1 Replacing the Default Handlers

The FTPhandlers structure contains function pointers to the file handlers. This structure may be passed
toftp init () toselectively replace the default file handlers. You may provide aNULL pointer for han-
dlersthat you do not wish to override. If you have defined FTP_EXTENSIONS then there are an addi-
tional two function pointers that should be initialized.

typedef struct {

int (*open) () ;
int (*read) () ;
int (*write) () ;
int (*close) () ;

long (*getfilesize) () ;
int (*dirlist) ();
int (*cd) ()
int (*pwd) () ;
#ifdef FTP_EXTENSIONS
long (*mdtm) () ;
int (*delete) () ;
#endif
} FTPhandlers;

Starting with Dynamic C 7.30, all FTP server instances share the same set of data handlers. Before this
release, there was a separate copy of the handler pointers for each instance of the server. This change does
not affect your existing application except to dlightly reduce memory usage. This change does add
flexibility because it gives any file handler the ability to call any other file handler. In particular,

ftp dflt list () maynowcal ftp dflt getfilesize () togetthefilessize

8.2.2 File Handlers Specification

Function descriptions for the default handlers are detailed in this section. Additional information is pro-
vided in these descriptions when the default handler does not cover the entire function specification.

The default file handlersarein FTPSERVER . LIB.

324 rabbit.com FTP Server

http://www.rabbit.com

ftp dflt open

int ftp dflt open(char *name, int options, int uid, int cwd);

DESCRIPTION

Opens afile. If afileis successfully opened, the returned valueis passed to subsequent handler

routines to identify the particular file or resource, asthe 'fd' parameter. If necessary, you can use
thisnumber to index an array of any other state information needed to communicate with the other
handlers. The number returned should be unique with respect to al other open resource instances,
so that your handler does not get confused if multiple FTP datatransfersare active simultaneoudly.

Notethat the specified file to open may be an absolute or relative path: if the handler supportsthe
concept of directories, then it should handle the path name appropriately and not just assume that
thefileisinthe current directory. If the filenameisrelative, then the cwd parameter indicatesthe
current directory.

PARAMETERS

name Thefileto open.
options File access options.
O_RDONLY (marksfile as read-only).
O_WRONLY (not currently supported by the default handler).
O_RDWR (not used sinceit’s not supported by the FTP protocol).
uid The userid of the currently logged-in user.
cwd Current directory (not currently supported by the default handler).

RETURN VALUE

>0: File descriptor of the opened file.

FTP_ERR NOTFOUND: File not found.

FTP_ERR NOTAUTH: Unauthorized user.

FTP_ERR BADMODE: Requested option (2nd parameter) is not supported.
FTP_ERR UNAVAIL: Resourcetemporarily unavailable.

In thefirst case, the returned value is passed to subsequent handler routines to identify the partic-
ular file or resource, asthe 'fd' parameter. |f necessary, you can use this number to index an array
of any other state information needed to communicate with the other handlers. The number re-
turned should be unique with respect to al other open resourceinstances, so that your handler does
not get confused if multiple FTP datatransfers are active simultaneously. Note that the given file
name may be an absolute or relative path: if the handler supports the concept of directories, then
it should handle the path name as appropriate and not just assume that thefileisin the current di-
rectory. If the filenameis "relative," then the cwd parameter indicates the current directory.

TCP/IP Manual, Vol. 2 rabbit.com

325

http://www.rabbit.com

ftp dflt getfilesize

long ftp dflt getfilesize(int £fd);

DESCRIPTION

Return the length of the specified file. Thisis called immediately after open for aread file. If the
fileisof aknown constant length, the correct length should be returned. If the resource length is
not known (perhapsit is generated on-the-fly) then return -1. For write operations, the maximum
permissible length should be returned, or -1 if not known.

PARAMETERS
fd The file descriptor returned when the file was opened.

RETURN VALUE

20: The size of thefilein bytes.
-1: Thelength of thefileis not known.

326 rabbit.com FTP Server

http://www.rabbit.com

ftp dflt read

int ftp dflt read(int £d4d, char *buf, long offset, int len);

DESCRIPTION

Read file identified by £d. Thefile contents at the specified offset should be stored into bu f, up
to amaximum length of 1en. Thereturn value should be the actua number of bytestransferred,
which may belessthan 1en. If the return value is zero, this indicates normal end-of-file. If the
return value is negative, then thetransfer is aborted. Each successive cdl to thishandler will have
anincreasing offset. If the getfilesize handler returns anon-negative length, then the read handler
will only be called for data up to that length — thereis no need for such read handlers to check
for EOF since the server will assume that only the specified amount of datais available.

The return value can also be greater than 1en. Thisisinterpreted as"| have not put anything in
buf. Cal meback when you (the server) can accept at least 1 en bytesof data” Thisisuseful for
read handlers that find it inconvenient to retrieve data from arbitrary offsets, for example alog
reader that can only access whole log records. If the returned value is greater than the server can
ever offer, then the server aborts the data transfer. The handler should never ask for more than
FTP_MAXLINE bytes.

PARAMETERS
fd The file descriptor returned when the file was opened.
buf Painter to the buffer to place the file contents.
offset Offset in the file at which copying should begin.
len The number of bytes to read.

RETURN VALUE

0: EOF.
>0: The number of bytesread into bu f.
- 1: Error, transfer aborted.

TCP/IP Manual, Vol. 2 rabbit.com 327

http://www.rabbit.com

ftp dflt write

int ftp dflt write(int £f£d, char *buf, long offset, int len);

DESCRIPTION
The default write handler does nothing but return zero.

The specification statesthat the handler may write thefileidentified by £d. buf contains data of
length 1en, which isto be written to thefile at the given offset within the file. The return value
must be equal to 1 en, or anegative number if an error occurs (such as out of space).

The FTP server does not handle partial writes: the given data must be compl etely written or not at
al. If thereturn codeislessthan 1en, an error isassumed to have occurred. Notethat itisup to
the handler to ensure that another FTP server isnot accessing afilewhich is opened for write. The
open call for the other server should return FTP_ERR_UNAVAIL if the current server iswriting

to afile.
PARAMETERS
£d Thefile descriptor returned when the file was opened.
buf Pointer to the data to be written.
offset Offset in the file at which to start.
len The number of bytesto write.

RETURN VALUE

=>0: The number of byteswritten. If thisislessthan 1en, an error occurred.
-1: Error.

328 rabbit.com FTP Server

http://www.rabbit.com

ftp dflt close

int ftp dflt close(int fd);

DESCRIPTION
The default close handler does nothing but return zero.

The handler may close the specified file and free up any temporary resources associated with the
transfer.

PARAMETERS

£d Thefile descriptor returned when the file was opened.

RETURN VALUE
0

TCP/IP Manual, Vol. 2 rabbit.com 329

http://www.rabbit.com

ftp dflt list

int f£tp dflt list(int item, char *line, int listing, int uid, int
cwd) ;

DESCRIPTION
Returns the next file for the FTP server to list. The file nameisformatted as a string.

PARAMETERS
item Index number starting at zero for the first function call. Subsequent calls
should be one plus the return value from the previous call.
line Pointer to location to put the formatted string.
listing Boolean variable to control string form:
0: print file name, permissions, date, etc.
1: print file name only.
uid The currently logged-in user.
cwd The current working directory.

RETURN VALUE

>0: File descriptor for last file listed.
-1: Error.

330 rabbit.com FTP Server

http://www.rabbit.com

ftp dflt cd

int ftp dflt cd(int cwd, char *dir, int uid);

DESCRIPTION
Changeto new "directory." Thisiscalled when the client issuesa CWD command. The FTP serv-

er itself has no concept of what adirectory is—thisis meaningful only to the handler.

PARAMETERS
cwd Integer representing the current directory.
dir String that indicatesthe new directory that will becomethe current directory.
Theinterpretation of thisstring is entirely up to the handler. The di r string
will be passed as".." to move up one level.
uid The currently logged-in user.

RETURN VALUE

0: No such directory exists.
-1: Root directory.
>0: Anything that is meaningful to the handler.

TCP/IP Manual, Vol. 2 rabbit.com

331

http://www.rabbit.com

ftp dflt pwd

int ftp dflt pwd(int cwd, char *buf);

DESCRIPTION

Print the current directory, passed as cwd, asastring. The result is placed in bu £, whose length
may be assumed to be at least (FTP_MAXLINE-6). Thereturn valueisignored.

PARAMETERS
cwd The current directory.
buf Pointer to buffer to put the string.

RETURN VALUE
Thereturn value isignored.

332 rabbit.com FTP Server

http://www.rabbit.com

ftp dflt mdtm

unsigned long ftp dflt mdtm(int £d4d);

DESCRIPTION

This handler function is called when the server receivesthe FTP command MDTM. Thereturn val-
ue of this handler function is the number of seconds that have passed since January 1, 1980. A
return value of zero will cause the reply code 213 followed by a space and then the value
19800101000000 (yyyymmddhhmmss) to be sent by the server.

The FTP server assumes that thisreturn valueisin UTC (Coordinated Universal Time). If
SEC_TIMER isrunninginlocal time, the handler should make the necessary time zone adjust-
ment so that the return value is expressed in UTC.

The handler isonly recognized if FTP_EXTENSIONS isdefined.
PARAMETERS
£d File descriptor for the currently opened file.

RETURN VALUE

Thenumber of secondsthat have passed since January 1, 1980. Thedefault handler alwaysreturns
zero. The number of secondswill be converted to adate and time value of the form yyyymmddh-
hmmss.

TCP/IP Manual, Vol. 2 rabbit.com 333

http://www.rabbit.com

ftp dflt delete

int ftp dflt delete(char *name, int uid, int cwd);

DESCRIPTION
The default handler does not support the delete command. It Smply returnsthe error code for an
unauthorized user.

The delete handler isonly recognized by the server if FTP_ EXTENSIONS isdefined. Itiscalled
when the DELE command is received. The given file name (possibly relative to cwd) should be

deleted.

PARAMETERS
name Pointer to the name of afile.
uid The currently logged-in user.
cwd The current directory.

RETURN VALUE

0: File was successfully deleted .

FTP_ERR NOTFOUND: File not found.

FTP_ERR NOTAUTH: Unauthorized user.

FTP_ERR BADMODE: Requested option (2nd parameter) is not supported.
FTP_ERR UNAVAIL: Resourcetemporarily unavailable.

334 rabbit.com FTP Server

http://www.rabbit.com

8.3 API Functions

The API functions described here, initialize and run the FTP server.

ftp dflt is auth

int ftp dflt is auth(int spec, int options, int uid);

DESCRIPTION

Determine amount of accessto afile. If the FTP anonymous user has been set, then aso checks
that. "options" ishow to accessthefile. Currently, thisvaueisignored. If the anonymous user ID
has been set, then files it owns are globally accessible.

Returns whether the user can accessit ("owner permission") or if accessis becausethereisan
anonymous user ("world permission™).

NOTE: Thisroutine only determines accessibility of aname, not whether the user can read and/or
write the contents.

PARAMETERS
spec Handle to SSPEC file (item).
options How to accessO_ RDONLY, O WRONLY or O_RDWR. Currently this value
isignored.
uid The userI D to access as.

RETURN VALUE

0: No access.
1:uid only access.
2: anonymous access (user "anonymous' has been set).

SEE ALSO

sspec_checkaccess

TCP/IP Manual, Vol. 2 rabbit.com

335

http://www.rabbit.com

ftp init

void ftp init(FTPhandlers *handlers);

DESCRIPTION

Initializes the FTP server. You can optionally specify a set of handlers for controlling what the
server presentsto the client. Thisisdonewith function pointersinthe FTPhandlers structure.
All FTP server instances share the same list of handlers.

The FTPhandlers structure is defined as:

typedef struct {

int (*open) (char *name, int options, int uid, int cwd);
int (*read) (int f£d, char *buf, long offset, int len);
int (*write) (int f£d, char *buf, long offset, int len);
int (*close) (int £4);

long (*getfilesize) (int £d);

int (*dirlist) (int item, char *line, int listing, int uid, int
cwd) ;

int (*cd) (int cwd, char *dir, int uid);

int (*pwd) (int cwd, char *buf) ;

[long (*mdtm) (int £d) ;]

[int (*delete) (char *name, int uid, int cwd) ;]
} FTPhandlers;

If you always provide all your own handlers, then you can define FTP. NODEFAULTHANDLER
to eliminate the code for the default handlers. The handlers must be written to the specification
described in Section 8.2.2. To use adefault handler, leave the field NULL. If you pass aNULL
handlers pointer, then the al default handlerswill be used.

The defaults access the server spec list which is set up using the zserver functions
sspec_addxmemfile (), sauth adduser () €tc.

PARAMETERS
handlers NULL meansusedefaultinternal file handlers. Otherwise, you must supply
astruct of pointersto the variousfile handlers (open, read, write, close, get-
filesize, list). To not override a particular handler, leave it NULL in the
structure.
LIBRARY

FTP_SERVER.LIB

SEE ALSO
ftp_tick

336 rabbit.com FTP Server

http://www.rabbit.com

ftp load filenames

int ftp load filenames(void);

DESCRIPTION

Thisfunction is used in conjunction with the FTP_ USE_FS2 HANDLERS macro. It loadsthe
data structure (i.e., the server spec list) that keeps track of the association of filenamesto file lo-

cationsin thefile system. Theinformation isloaded from the User block, from the offsat givenin
FTP_USERBLOCK OFFSET.

The function removes any entries from the server spec list that are not FS2 files.

RETURN VALUE
0: Success
- 1: Failure (possibly due to the filenames having not yet been saved)
SEE ALSO

ftp_save filenames

TCP/IP Manual, Vol. 2 rabbit.com 337

http://www.rabbit.com

ftp save filenames

int ftp save filenames(void);

DESCRIPTION

Thisfunctionisusedin conjunctionwiththe FTP_USE_FS2 HANDLERS macro. Thisfunction
saves the data structure (i.e., the server spec list) that keeps track of the association of filenames
to filelocations in the file system. The information is saved to the User block, at the offset given
inFTP_USERBLOCK OFFSET.

RETURN VALUE

0: Success.
- 1: Failure, the information could not be saved (due to awrite error).

SEE ALSO

ftp load filenames

338 rabbit.com FTP Server

http://www.rabbit.com

ftp set anonymous

int ftp set anonymous(int uid);

DESCRIPTION

Set the "anonymous' user ID. Resources bel onging to this userl D may be accessed by any user.
A typical use of this function would be

ftp set anonymous (sauth adduser ("anonymous", "", SERVER FTP)) ;

which defines an "anonymous" login for the FTP server. This only appliesto the FTP server. The
username "anonymous' is recommended, since most FTP clients use thisfor hosts that have no
account for the user.

PARAMETER

uid The user ID to use as the anonymous user. This should have been defined
usng sauth adduser ().Pass -1 to set no anonymous User.

RETURN VALUE
Same astheuid parameter, except -1 if uid isinvalid.

LIBRARY
FTP_SERVER.LIB

SEE ALSO

sauth adduser

TCP/IP Manual, Vol. 2 rabbit.com 339

http://www.rabbit.com

ftp shutdown

void ftp_shutdown(int bGraceful);

DESCRIPTION

Closeand cancd all FTP connections. If the server isconnected to aclient, forcesthe QUIT state.
If the application hascalled tcp_reserveport (), thenit must cal

tcp clearreserve (). Foragraceful shutdown, the application must call tcp tick ()
afew moretimes.

After the FTP socketsclose, the applicationmustcall ftp_init () toagain start the server run-
ning.

PARAMETER

bGraceful (boolean) zero to immediately abort all open connections, or non-zero to
simulate the QUIT command.

RETURN VALUE
None

LIBRARY
FTP_SERVER.LIB

SEE ALSO
ftp init

ftp tick

void ftp tick(void);

DESCRIPTION

Onceftp init () hasbeencalled, ftp tick () mustbecalled periodicaly toruntheserv-
er. Thisfunction is non-blocking.

LIBRARY
FTP_SERVER.LIB

SEE ALSO
ftp_init

340 rabbit.com FTP Server

http://www.rabbit.com

8.4 Sample FTP Server

This code demonstrates a smple FTP server, using the ftp library. The user "anonymous' may download

thefile "rabbitA.gif," but not "rabbitF.gif." The user "foo" (with password "bar") may download "rab-
bitF.gif," but also "rabbitA.gif," since files owned by the anonymous user are world-readable.

File Name: Samples\tcpip\ftp server.c

##define TCPCONFIG 101
#define SSPEC NO STATIC //Required for DC 8.50 or
later
#memmap xmem
#use "dcrtcp.lib"
#use "ftp server.lib"
#ximport "samples/tcpip/http/pages/rabbitl.gif" rabbitl gif
main () {
int file, user;
/* Set up the first file and user */
file = sspec addxmemfile ("rabbitA.gif", rabbitl gif,
SERVER FTP) ;
user = sauth adduser ("anonymous", "", SERVER FTP) ;
ftp set anonymous (user) ;
sspec_setuser (file, user) ;

sspec_setuser (sspec addxmemfile ("testl", rabbitl gif,
SERVER FTP), user) ;

sspec_ setuser (sspec addxmemfile ("test2", rabbitl gif,
SERVER FTP), user) ;

/* Set up the second file and user */

file = sspec addxmemfile ("rabbitF.gif", rabbitl gif,
SERVER_FTP) ;

user = sauth adduser("foo", "bar", SERVER FTP) ;
sspec setuser (file, user);

sspec_setuser (sspec addxmemfile ("test3", rabbitl gif,
SERVER FTP), user) ;

sspec_setuser (sspec addxmemfile("test4", rabbitl gif,
SERVER FTP), user) ;

sock init () ;

ftp init (NULL) ; // use default handlers
tcp reserveport (FTP_CMDPORT) ; // Port 21
while (1) {

ftp tick();

TCP/IP Manual, Vol. 2 rabbit.com

341

http://www.rabbit.com

Each user may execute the "dir" or "Is' command to see alisting of the available files. The listing shows
only the files that the logged-in user can access.

Notice the definition for TCP_ CONF IG. When the value for this macro exceeds 100, a special configura-
tion fileis pulled in that will not be overridden by future updates of Dynamic C. In thefile

CUSTOM_ CONFIG.LIB,youmay specify any network configuration that suits your purposes. Please see
/LIB/TCPIP/TCP_ CONFIG.LIB for examplesof setting up alibrary of configuration options.

8.5 Getting Through a Firewall

If aclientisbehind afirewall, it isincumbent upon the client to request that the server do a passive open
on its data port instead of the normal active open. Thisis so that the client can then do an active open using
the passively opened data port of the server, thus getting through the firewall.

Typicaly the server would not be behind afirewall.

8.6 FTP Server Commands

The following commands are recognized by the FTP server. The reply codes sent in response to these com-
mands are detailed in Section 8.7 on page 344. They are noted here to associate them with the commands
that may cause them to be sent.

o Possible
Command Description Sl Coles
The current data transfer compl etes before the abort command is
ABOR 226
read by the server.
CDUP A special case of CWD (Change Working Directory); the parent of 250, 431
the working directory is changed to be the working directory. '
CWD Changes working directory. 250, 431
DELE Delete the specified file. 250, 450, 550
LIST leplays Ils_I of flles_requested by |t_s argument inIs-l format. This 150, 226, 425
gives extra information about the file.
T e 213, 250,
MDTM Shows the last modification time of the specified file. 450, 550
MODE Confirms the mode of datatransmission. Only stream mode is 200, 504
supported.
NLST D|§plays list of flle§ requested by its argument, Wl_th names only. 150, 226, 425
This alows an application to further process the files.
Specifies no action except that the server send an OK reply. It does
NOOP . 200
not affect any parameters or previously entered commands.
Password for the user name (sent in clear text). It is accepted only
PASS after USER returns code 331 230, 530

342 rabbit.com FTP Server

http://www.rabbit.com

L Possible
Command Description Reply Codes
Requests a passive open on a port that is not the default data port.
PASV The server responds with the host and port address on whichitis | 227, 452
listening.
Changes the data port from the default port to the port specified in
PORT the command’s argument. The argument is the concatenation of a | 200
32-bit internet host address and a 16-bit TCP port address.
PWD Prints the working directory name. 257
QUIT Closes the control connection. If adatatransfer isin progress, the 291
connection will not be closed until it has completed.
RETR Transfers a copy of the file specified in the pathname argument 150, 226,
from the server to the client. 425, 550
. . 213, 250,
SIZE Returns the size of the specified file. 450, 550
Stores afile from the client onto the server. The file will be 150, 226, 250
STOR overwritten if it already exists at the specified pathname, or it will | 425, 450,
be created if it does not exist. 452, 550
STRU Confirms .the supported structure of afile. Only file-structureis 200, 504
supported: a continuous stream of data bytes.
SYST Sends the string “RABBIT2000.” 215
TYPE Confirmsthetransfer type. The types IMAGE (binary), ASCII and 200. 504
Local with 8-bit bytes are all supported and are treated the same. '
USER User name to use for authentication. 331, 530
TCP/IP Manual, Vol. 2 rabbit.com 343

http://www.rabbit.com

8.7 Reply Codes to FTP Commands

The FTP server repliesto all of the commands that it receives. The reply consists of a 3-digit number fol-
lowed by a space and then atext string explaining the reply. All reply codes sent from the FTP server are

listed here.

Reply Code Reply Text

150 File status okay; about to open data connection.

200 Command okay.

202 Command not implemented, superfluous at this site.

211 System status, or system help reply.

213 File status

214 Help message. On how to use the server or the meaning of a particular
non-standard command. This reply is useful only to the human user.

215 System type.

220 Service ready for new user.

221 Service closing connection.

296 Qlosi ng data cor_mecti on. Requested file action successful (for example,
file transfer or file abort).

227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).

230 User logged in, proceed

250 Requested file action okay, completed.

257 "PATHNAME" created.

331 User name okay, need password.

425 Can't open data connection.

450 Requested file action not taken. File unavailable (e.g., file busy).

452 Requested action not taken. Insufficient storage space in system.

502 Command not implemented.

504 Command not implemented for that parameter.

530 Not logged in.

550 Requested action not taken. File unavailable (e.g., file not found, no
access).

The text used for the reply codes, may be dightly different than what is shown here. It will be context spe-

cific.

344

rabbit.com

FTP Server

http://www.rabbit.com

PRODUCT MANUAL

9. TFTP CLIENT

TFTP.LIB implementsthe Trivial File Transfer Protocol (TFTP). This standard protocol (internet
RFC783) is alightweight protocol typically used to transfer bootstrap or configuration files from a server
to aclient host, such as a diskless workstation. TFTP allows data to be sent in either direction between cli-
ent and server, using UDP as the underlying transport.

Thislibrary fully implements TFTP, but as aclient only.
Compared with more capable protocols such as FTP, TFTP:

e has no security or authentication
e isnot asfast because of the step-by-step protocol
e uses fewer machine resources.

Because of the lack of authentication, most TFTP serversrestrict the set of accessible filesto a small num-
ber of configuration filesin asingle directory. For uploading files, servers are usually configured to accept
only certain file names that are writable by any user. If these restrictions are acceptable, TFTP has the
advantage of requiring very little 'footprint' in the client host.

9.1 BOOTP/DHCP

In conjunction with DHCP/BOOTP and appropriate server configuration, TFTP is often used to download
akernel image to a diskless host. The target TCP/IP board does not currently support loading the BIOS in
this way, since the BIOS and application program are written to non-volatile flash memory. However, the
downloaded file does not have to be a binary executable - it can be any reasonably small file, such as an
application configuration file. TFTP and DHCP/BOOTP can thus be used to administer the configuration
of multiple targets from a central server.

Using TFTP with BOOTP/DHCP requires minimal additional effort for the programmer. Just #def ine
the symbol DHCP USE_TFTP to an integer representing the maximum allowable boot file size (1-
65535). See the description of the variables bootpsize, bootpdata and bootperror invol-
ume 1 of the TCP/IP User’s Manual for further details.

TCP/IP Manual, Vol. 2 rabbit.com 345

http://www.rabbit.com

9.2 Data Structure for TFTP

This data structureis used to send and receive. The t£tp_state structure, which isrequired for many
of the APl functionsin TFTP . LIB, may be allocated either in root data memory or in extended memory.
This structure is approximately 155 bytes long.

typedef struct tftp state {

byte state; // Current state. LSB indicates read (0)
// orwrite(1). Other bits determine
// statewithin this (see below).

long buf addr; // Physical address of buffer

word buf len; // Length of buffer

word buf used; // Amount Tx or Rx from/to buffer

word next blk; // Next expected block #, or next to Tx

word my_ tid; // UDP port number used by this host

udp Socket *sock; // UDP socket to use

| P address of remote host

ms timer value for next timeout
retransmit retry counter
miscellaneous flags (see bel ow).

//
//
//
//

longword rem ip;
longword timeout;
char retry;
char flags;

// Following fields not used after initial request has been acknowledged.
char mode; // Translation mode (see below).
char file[129]; // File name on remote host (TFTP server)
// - NULL terminated. Thisfield will be
// overwritten with a NULL-term error message

// from the server if an error occurs.

5

The following macros are valid for tftp_state- >mode.

#define TFTP_MODE_ NETASCII 0
#define TFTP_MODE_OCTET 1
#define TFTP_MODE MAIL 2

// ASCII text
// 8-bit binary
// Mail (remote file nameis email address,

// €g., user@host.blob.org)

9.3 API Functions

Any of the following functions will require approximately 600-800 bytes of free stack. The data buffer for
thefile to put or to get isalways allocated in xram (see xalloc ()).

TFTP Session

A session can be either a single download (get) or upload (put). The functions ending with 'x' are versions
that use a data structure allocated in extended memory, for applications that are constrained in their use of
root data memory.

346 rabbit.com TFTP Client

http://www.rabbit.com

tftp init

int tftp init(struct tftp state *ts);

DESCRIPTION

Thisfunction preparesfor aTFTP sessionand iscalled to completeinitialization of the TFTP state
structure. Before calling this function, somefieldsin thestructuret £tp_state must be set up
asfollows:

ts->state = <0 for read, 1 for writes>
ts->buf addr <physical address of xmem buffer>
ts->buf len <length of physical buffer, 0-65535>

ts->my tid = <UDP port number. Set 0 for defaults

ts->sock = <address of UDP socket (udp Socket *),or NULL to
use DHCP/BOOTP sockets>

ts->rem ip = <IP address of TFTP server host, or zero to use
default BOOTP host>

ts->mode = <one of the following constants:

TFTP_MODE NETASCII (ASCII text)

TFTP_MODE OCTET (8-bit binary)

TFTP_MODE MAIL (Mail)>
strcpy(ts->file, <remote filename or mail address>)

Note that mail mode can only be used to write mail to the TFTP server, and the file nameisthe e-
mail address of the recipient. The e-mail message must be ASClI-encoded and formatted with
RFC822 headers. Sending e-mail viaTFTPisdeprecated. Use SMTPinstead since TFTP servers
may not implement mail.

PARAMETERS

ts Pointertotftp state

RETURN VALUE

0: OK.
-4: Error, default socket in use.

LIBRARY

TFTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com 347

http://www.faqs.org/rfcs/rfc822.html
http://www.rabbit.com

tftp initx

int tftp_initx(long ts_addr);

DESCRIPTION

Thisfunction is called to complete initiaization of the TFTP state structure, where the structure
is possibly stored somewhere other than in the root data space. Thisisawrapper function for
tftp init (). Seethat function description for details.

PARAMETERS
ts addr Physical address of TFTP state (struct t ftp_state)
RETURN VALUE

0: 0K
-1: Error, default socket in use

LIBRARY
TFTP.LIB

348 rabbit.com TFTP Client

http://www.rabbit.com

tftp tick

int tftp tick(struct tftp state *ts);

DESCRIPTION

Thisfunctioniscalled periodically in order to take the next stepin aTFTP process. Appropriate
use of this function allows single or multiple transfers to occur without blocking. For multiple
concurrent transfers, theremust beauniquet £tp_state structure, and aunique UDP socket,
for each transfer in progress. Thisfunction cals sock _tick ().

PARAMETERS

ts Pointer to TFTP state. Thismust havebeensetupusingtftp init (),
and must be passed to each call of tftp_ tick () without ateration.

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete
- 1: Error from remote side, transfer terminated. In this case, the ts addr->filefield
will be overwritten with a NULL-terminated error message from the server.
- 2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated.
-4: (not used)
- 5: Transfer complete, but truncated -- buffer too small to receive the completefile.

LIBRARY
TFTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com 349

http://www.rabbit.com

tftp tickx

int tftp_tickx(long ts_addr);

DESCRIPTION

Thisfunction isawrapper for calling tftp tick (), wherethe structureis possibly stored
somewhere cother than in the root data space. See that function description for details.

PARAMETERS

ts addr Physical address of TFTP state (struct t ftp _state).

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete
- 1: Error from remote side, transfer terminated. In this case, the ts_addr->filefield
will be overwritten with a NULL-terminated error message from the server.
- 2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated.
-4: (not used)
- 5: Transfer complete, but truncated -- buffer too small to receive the completefile.

LIBRARY
TFTP.LIB

350 rabbit.com TFTP Client

http://www.rabbit.com

tftp exec

int tftp exec(char put, long buf addr, word *len, int mode, char
*host, char *hostfile, udp Socket *sock);

DESCRIPTION

Prepare and execute acomplete TFTP session, blocking until complete. Thisfunctionisawrapper
fortftp init () andtftp tick ().Itdoesnot return until thecompletefileistransferred
or an error occurs. Note that approximately 750 bytes of free stack will be required by this func-

tion.
PARAMETERS

put 0: get filefrom remote host; 1: put file to host.

buf addr Physical address of data buffer.

len Length of data buffer. Thisis both an input and areturn parameter. It should
beinitialized to the buffer length. On return, it will be set to the actual length
received (for aget), or unchanged (for a put).

mode Data representation: 0=NETASCII, 1=OCTET (binary), 2=MAIL.

host Remote host name, or NULL to use default BOOTP host.

hostfile Name of file on remote host, or e-mail address for mail.

sock UDP socket to use, or NULL to re-use BOOTP socket if available.

RETURN VALUE

0: OK, transfer complete.
- 1: Error from remote side, transfer terminated. Inthiscase, ts_addr->file
will be overwritten with a NULL-terminated error message from the server.
-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated
-4: sock parameter was NULL
-7: host was NULL

LIBRARY
TFTP.LIB

TCP/IP Manual, Vol. 2 rabbit.com 351

http://www.rabbit.com

352 rabbit.com TFTP Client

http://www.rabbit.com

PRODUCT MANUAL

10. SMTP MAIL CLIENT

SMTP (Simple Mail Transfer Protocol) is one of the most common ways of sending e-mail. SMTPisa
simple text conversation across a TCP/IP connection. The SMTP server usually resides on TCP port 25
waiting for clients to connect. (Define SMTP_PORT to override the default port number.)

Sending mail with the Dynamic C SMTP client library is a simple process, demonstrated in the sample
program shown in Section 10.3. Dynamic C 9 introduced SMTP authentication, described below in
Section 10.2.

10.1 Sample Conversation

The following isatypical listing of mail from the controller (ne@somewhere . com) to
someone@somewhereelse.com. The mail server that the controller istalkingtois
mail.somehost .com. Thelinesthat begin with a numeric value are coming from the mail server. The
other lines were sent by the controller. More information on the exact specification of SMTP and the
meanings of the commands and responses can be found in RFC821 at www . ietf.org.

220 mail.somehost.com ESMTP Service (WorldMail 1.3.122) ready
HELO 10.10.6.100

250 mail.somewhere.com
MAIL FROM: <me@somewhere.com>

250 MAIL FROM:<me@somewhere.com> OK
RCPT TO: <someone@somewhereelse.com>

250 RCPT TO:<someone@somewhereelse.com> OK
DATA

354 Start mail input; end with <CRLF>.<CRLF>
From: <me@somewhere.com>

To: <someone@somewhereelse.com>

Subject: test mail

test mail

250 Mail accepted
QUIT

221 mail.somehost.com QUIT

TCP/IP Manual, Vol. 2 rabbit.com 353

http://www.rabbit.com
http://www.ietf.org

You can see alisting of the conversation between your controller and the mail server by defining the
SMTP_ DEBUG macro at the top of your program. Note that there must be a blank line after the line
“Subject: test mail.”

10.2 SMTP Authentication

In most situations, Internet accessis provided by an Internet Service Provider (1SP). Usually the ISP runs
an email server that will accept emails without authentication from customers that are within their net-
work. Users outside of their network are not allowed to send email through their servers because the mail
server would quickly become a gateway for spam. With more people on the go with laptops, SMTP
authentication allows them to send email through atrusted server without being directly on the network.

An informative tutorial on SMTP authentication is available at:
www . fehcom.de/qmail/smtpauth.html

Default behavior prior to Dynamic C 9.21 was for the login to fail if authentication failed. With Dynamic
C 9.21 the SMTP library will fall back on unauthenticated login if authentication fails. To restore the
old behavior when using Dynamic C 9.21, define the macro SMTP_AUTH FAIL IF NO AUTH.

Three methods of authentication are recognized by the implementation of an SMTP client.

AUTH PLAIN
Theclient sends"AUTH PLAIN <token>" where <token> is the Base64-encoded string "user-
name\Ousername\Opassword” that will look something like:

AUTH PLAIN dGVzdABOZXNOAHR1c3RwYXNz
The server responds with a message indicating whether authentication was successful.

AUTH LOGIN
Client sends"AUTH LOGIN" command; server responds with 334 VXNIcm5hbwue6"
(Baseb4-encoded "Username:"); client responds with its Base64-encoded username; server re-
sponds with "334 UGFzc3dvemQ6"; client responds with its Base64-encoded password. At this
point, the server should respond with amessageindicating whether authenti cation was successful.
This method isonly dightly more complex than AUTH PLAIN.

AUTH CRAM-MD5
Client sends"AUTH CRAM-MD5"; server respondswith 334 <challenge>" where <challenge>
is aunique Base64-encoded challenge string (for example, "<4994.1088035610@rabbit.com>").

Theclient generates adigest using the following M D5 hashing algorithm (where password isnull-
padded to alength of 64 bytes, ipad is 0x36 repeated 64 times and opad is Ox5C repeated 64
times):

digest = MD5 ((password XOR opad), MDS5 ((password XOR ipad),
challenge))

Theclient respondswith the string " <username> <response>" Base64-encoded; <username> isin
plaintext, and <response> isthe 16-byte digest in hex form.This method isthe most secure, since

someone sniffing the connection would be unabl e to determine the cleartext password used to au-
thenticate.

354 rabbit.com SMTP Mail Client

http://www.rabbit.com
http://www.fehcom.de/qmail/smtpauth.html

10.3 Sample Sending of an E-mail

This program, smtp . ¢, sends an e-mail. To have the client query the server for authentication, define the
macro USE_SMTP_AUTH and call smtp setauth () beforecaling smtp sendmail () (or
smtp_sendmailxmem ()). If themail server does not support authentication, either do not define
USE_SMTP_AUTH or passempty strings (*”) asthe parametersto smtp setauth ().

Program Name: Samples\tcpip\smtp\smtp.c
#define TCPCONFIG 1 // pick network configuration
#define FROM "myaddress@mydomain.com"
#define TO "myaddress@mydomain.com"

#define SUBJECT "You've got mail!™"
#idefine BODY "Visit the Rabbit web site.\r\n"

/* SMTP_SERVER identifies the mail server. This can be name or |P address. * /
#define SMTP SERVER "mymailserver.mydomain.com"

#define USE_SMTP_AUTH

#memmap xmem
#use dcrtcp.lib
#use smtp.lib

main() {
sock init () ;

while (ifpending (IF DEFAULT) == IF_COMING UP) {
tcp tick (NULL) ;

}

#ifdef USE_SMTP AUTH
smtp setauth ("myusername", "mypassword") ;
#endif

smtp sendmail (TO, FROM, SUBJECT, BODY) ;

while (smtp mailtick () ==SMTP_PENDING)
continue;
if (smtp status()==SMTP_SUCCESS)

printf ("Message sent\n") ;

else
printf ("Error sending message\n") ;

TCP/IP Manual, Vol. 2 rabbit.com 355

http://www.rabbit.com

10.4 Configuration Macros
The SMTP client is configured by using compiler macros.

SMTP_ AUTH FAIL IF NO AUTH
Defaults to undefined. This macro was introduced in Dynamic C 9.21. If it isdefined, the login
will fail if authentication fails. Otherwise, the library will fall back on an unauthenticated login if

authentication fails. Prior to Dynamic C 9.21, theloginfailed if authentication failed, so themacro
is restoring that behavior.

SMTP_ DEBUG

Thismacro tellsthe SMTP codeto log eventsto the STDIO window in Dynamic C. This provides
aconvenient way of troubleshooting an e-mail problem.

SMTP DOMAIN
This macro defines the text to be sent with the HEL O client command. Many mail serversignore
theinformation supplied with the HEL O, but some e-mail serversrequirethefully qualified name
inthisfield (i.e., somemachine.somedomain.com). If you have problemswith e-mail being reject-
ed by the server, turnon SMTP_DEBUG. If itisgiving an error message after the HEL O line, talk
to the administer of the machine for the appropriate valueto placein SMTP_DOMAIN. If you do
not define this macro, it will default toMY IP ADDRESS.

#define SMTP_DOMAIN "somemachine.somedomain.com"

SMTP MAX DATALEN
Defaultsto 256. Maximum buffer size for server responses and short client requests.

SMTP_MAX PASSWORDLEN
Defaultsto 16. Maximum length of the password used in authentication.

SMTP_ MAX USERNAMELEN
Defaults to 64. Maximum length of the user name used in authentication.

SMTP_MAX SERVERLEN
Defaultsto MAX STRING, which defaults to 50. Maximum length of mail server name.

SMTP SERVER
This macro defines the mail server that will relay the controller’s mail. This server must be con-

figured to relay mail for your controller. You can either place afully qualified domain name or an
IP addressin thisfield.

#define SMTP SERVER "mail.mydomain.com"
#define SMTP_ SERVER "10.10.6.19"

SMTP TIMEOUT

This macro tellsthe SMTP code how long in seconds to try to send the e-mail before timing out.
It defaults to 20 seconds.

#define SMTP TIMEOUT 10

USE SMTP AUTH
Define this macro to enable SMTP authentication.

356 rabbit.com SMTP Mail Client

http://www.rabbit.com

10.5 API Functions

The user-callable functions described in this section are found in the Dynamic C library
Lib\...\tcpip\smtp.lib.

smtp data handler

void smtp data handler(int (*dhnd) (), void * dhnd data, word opts);

DESCRIPTION

Sets adata handler for generating mail message content. Thisfunction should be called after call-
ing smtp_sendmail () etc. It overrides any message parameter set by the
smtp_sendmail () cal, sincethe messageisgenerated dynamically by the callback function.

Note: you can use the same data handler as used for the FTP library (seethe

ftp data handler () description). Theflagsvaluesare numerically equivalent to those of
the samemeaning for ftp data handler (). The SMTP datahandler isonly used to gen-
erate data, not receiveit.

The handler is afunction that must be coded according to the following prototype:

int my handler (char *data, int len, longword offset,
int flags, void *dhnd data) ;

The data handler function must be called with the following parameters:
data Pointer to a data buffer

len The length of the above data buffer. This parameter is set to
SMTP_ MAX DATALEN (256) by default. You can override that macro to
alow larger “chunks.”

offset The byte number relative to the first byte of the entire message stream. This
is useful for data handler functions that do not wish to keep track of the cur-
rent state of the data source.

flags Contains an indicator of the current operation: SMTPDH_OUT: dataisto be
filled with the next data to send to the mail server. The maximum allowable
chunk of datais specified by 'len'. The data must not contain the sequence
<CRLF>.<CRLF> since that will confuse the process. SMTPDH_ABORT:
end of data; error encountered during SM TP operation. The mail was prob-
ably not delivered.

dhnd data The pointer that waspassedto ftp data handler().

TCP/IP Manual, Vol. 2 rabbit.com 357

http://www.rabbit.com

PARAMETERS

dhnd Pointer to data handler function, or NULL to remove the current data han-
dler.

dhnd data A pointer that is passed to the data handler function. This may be used to
point to any further datarequired by the data handler such as an open filede-
scriptor.

opts Optionsword (currently reserved, set to zero).

RETURN VALUE

Thereturn value from thisfunction should be the actual number of bytes placed in the data buffer,
or -1to abort. If Oisreturned, then thisis considered to be the end of data. You canwrite up to and
including “len” bytesinto the buffer, but at least one byte must be written otherwiseit is assumed
that no more datais following.

For SMTPDH_ABORT, the return code isignored.

SEE ALSO

smtp sendmail, smtp sendmailxmem, smtp mailtick

EXAMPLE
The program Samples/tcpip/smtp/smtp dh.c makesuseof thisfunction.

358 rabbit.com SMTP Mail Client

http://www.rabbit.com

smtp mailtick

int smtp mailtick(void);

DESCRIPTION
Repetitively call thisfunction until e-mail is completely sent.

RETURN VALUE

SMTP_SUCCESS - email sent.

SMTP_PENDING - email not sent yet call smtp mailtick again.
SMTP_TIME -e-mail not sent within SMTP_TIMEOUT seconds.
SMTP_UNEXPECTED - received an invalid response from SMTP server.
SMTP_DNSERROR - cannot resolve server name

SMTP_ ABORTED - transaction aborted (by data handler)

If usng SMTP AUTH, the following values are also possible:
SMTP_AUTH UNAVAILABLE - unable to attempt authentication|
SMTP_AUTH_ FAILED - attempts to authenticate failed

LIBRARY
SMTP.LIB

SEE ALSO

smtp sendmail, smtp status

TCP/IP Manual, Vol. 2 rabbit.com 359

http://www.rabbit.com

smtp sendmail

void smtp sendmail(char *to, char *from, char *subject, char

*message);

DESCRIPTION

Start an e-mail being sent. Thisfunction isintended to be used for short messagesthat are entirely
constructed prior to being sent.

If you have previoudly installed adata handler viasmtp data handler (), then you must
cdl smtp data handler () withaNULL datahandler, otherwise this message will not get

sent.

NOTE: The strings pointed to by the parameters must not be changed until the
entire processis completed. Also, if thefirst character of any line of the message
isaperiod (.), then this character will be deleted as part of normal mail process-
ing. Thus, to actually send aline starting with ".", you must start the line with '..'
i.e. double up an initial period.

PARAMETERS

to

from

subject

message

RETURN VALUE
None.

SEE ALSO

String containing the e-mail address of the destination. Maximum of 192
characters. Currently, only one recipient is supported.

String containing the e-mail address of the source. Maximum of 192 charac-
tersfor areturn address. If no return should be sent by receiver, then passan

empty string ("").

String containing the subject of the message. This may be NULL inwhich
case no subject line will be sent. This string may also contain embedded \r\n
sequences so that additional mail header linesmay beinserted. Thelength of
this string is unlimited.

String containing the message. (This string must not contain the byte se-
guence "\r\n\r\n" (CRLF.CRLF), asthisis used to mark the end of the e-
mail, and will be appended to the e-mail automatically.) This message must
be null terminated, and is only allowed to contain 7-bit characters. You can
pass NULL if adata handler isto be used to generate the message.

smtp mailtick, smtp status, smtp sendmailxmem

360

rabbit.com SMTP Mail Client

http://www.rabbit.com

smtp sendmailxmem

void smtp sendmai

DESCRIPTION

Start an e-mail being
extended memory (e

lxmem(char *to, char *from, char *subject, long
message, long messagelen);

sent. Thisisintended for moderately long, fixed messagesthat are stored in
.g., Via#iximport'ed file).

Seesmtp_ sendmail () for more details

PARAMETERS
to
from
subject

message

messagelen

RETURN VALUE
None

LIBRARY
SMTP.LIB

SEE ALSO

smtp _mailtick,

String containing the e-mail address of the destination.
String containing the e-mail address of the source.
String containing the subject of the message.

Physicd addressin xmem containing the message. (The message must NOT
contain the byte sequence "\r\nAr\n" (CRLF.CRLF), asthisis used to mark
the end of the e-mail, and will be appended to the e-mail automatically.)

Length of the message in xmem.

smtp_ status, smtp sendmail

TCP/IP Manual, Vol. 2

rabbit.com

361

http://www.rabbit.com

smtp setauth

int smtp setauth(char * username, char * password);

DESCRIPTION

Sets the username and password to use for SMTP AUTH (Authentication). You must #define
USE_SMTP_AUTH inyour program if you want to use SMTP AUTH on your outbound connec-
tions. To disable SMTP authentication, set both username and password to“” (empty

strings).
PARAMETERS
username Thisis copied into the SMTP state structure. Note that some SMTP servers
require afull email address while others just want a username.
password Thisis copied into the SMTP state structure.

RETURN VALUE

SMTP_OK: server name was set successfully
SMTP_USERNAMETOOLONG: the username was too long
SMTP_PASSWORDTOOLONG: the username was too long

SEE ALSO

smtp sendmail, smtp mailtick

362 rabbit.com SMTP Mail Client

http://www.rabbit.com

smtp setserver

int smtp_ setserver(char* server);

DESCRIPTION

Setsthe SMTP server. Thisvalue overrides SMTP_ SERVER and the results of any previous call
tosmtp setserver ip().

PARAMETER

server Server name string. Thisis copied into the SMTP state structure. Thisname
is not resolved to an IP address until you start calling
smtp mailtick().

RETURN VALUE

SMTP_OK: Server name was set successfully
SMTP_NAMETOOLONG: The server name was too long

SEE ALSO

smtp sendmail, smtp_ setserver ip, smtp mailtick

smtp setserver ip

int smtp setserver ip(longword server);

DESCRIPTION

Setsthe SMTP server. Thisvalue overridesthevalueset by smtp setserver (), andisused
when the | P address of the mail server is known.

PARAMETER

server Server |P address.

RETURN VALUE
SMTP_OK: server |P was set successfully

SEE ALSO

smtp sendmail, smtp setserver, smtp mailtick

TCP/IP Manual, Vol. 2 rabbit.com 363

http://www.rabbit.com

smtp status

int smtp status(void);

DESCRIPTION
Return the status of the last e-mail processed.

RETURN VALUE

SMTP_SUCCESS - email sent.

SMTP_PENDING - e-mail not sent yet call smtp_mailtick again.
SMTP_TIME - email not sent within SMTP_TIMEOUT seconds.
SMTP_UNEXPECTED - received an invalid response from SMTP server.

LIBRARY
SMTP.LIB

364 rabbit.com SMTP Mail Client

http://www.rabbit.com

PRODUCT MANUAL

11. POP3 CLIENT

Post Office Protocol version 3 (POP3) is probably the most common way of retrieving e-mail from a
remote server. Most e-mail programs, such as Eudora, MS-Outlook, and Netscape's e-mail client, use
POP3. The protocol isafairly simple text-based chat across a TCP socket, normally using TCP port 110.

There are two ways of using POP3 . LIB. Thefirst method provides araw dump of the incoming e-mail.
Thisincludes all of the header information that is sent with the e-mail, which, while sometimes useful,
may be more information than is needed. The second method provides a parsed version of the e-mail, with
the sender, recipient, subject line, and body text separated out.

In both methods, each line of e-mail has CRLF stripped from it and ‘\O' appended to it.

11.1 Configuration

The POP3 client can be configured through the following macros:

POP_BUFFER SIZE
Thiswill set the buffer sizefor POP_ PARSE EXTRA in bytes. These are the buffers that hold
the sender, recipient and subject of the e-mail. POP_ BUFFER SIZE defaultsto 64 bytes.

POP_DEBUG
Thiswill turn on debug information. It will show the actual conversation between the device and
the remote mail server, aswell as other useful information.

POP NODELETE
Thiswill stop the POP3 library from removing messages from the remote server asthey are read.
By default, the messages are deleted to save storage space on the remote mail server.

POP_PARSE EXTRA
Thiswill enablethe second mode, creating aparsed version of the e-mail asmentioned above. The
POP3 library parses the incoming mail more fully to provide the Sender, Recipient, Subject, and
Body fields as separate items to the call-back function.

TCP/IP Manual, Vol. 2 rabbit.com 365

http://www.rabbit.com

11.2 Steps to Receive E-mail.

1. pop3_init ()iscaled to provide the POP3 library with acall-back function. This call-back will be
used to provide you the incoming data. This function is usually called once.

2. pop3_getmail () iscalled to start the e-mail being received, and to provide the library with e-mail
account information.

3. pop3_tick () iscaledaslong asit returns POP_PENDING, to actualy run thelibrary. Thelibrary
will call the function you provided pop3 init () severa timesto giveyou the e-mail.

11.3 Call-Back Function

There are two types of call-back functions, which are described here.

11.3.1 Normal call-back
When not using POP_ PARSE EXTRA, you need to provide a function with the following prototype:

int storemail (int number, char *buf, int size);

The parameter number isthe number of the e-mail being transferred, usually 1 for thefirst, 2 for the sec-
ond, but not necessarily. The numbers are only guaranteed to be unique between all e-mails transferred.

The buf parameter is the text buffer containing one line of the incoming e-mail. This must be copied out
immediately, as the buffer will be different when the next line comesin, and your call-back is called again.
size isthe number of bytesin buf.

The sample program Samples\tcpip\pop3\ pop.c providesan example of this style of call-back.

11.3.2 POP_PARSE_EXTRA call-back
If POP_PARSE EXTRA isdefined, you need to provide a call-back function with the following proto-
type:

int storemail (int number, char *to, char *from, char *subject, char
*body, int size);

number, body, and size are the same as before.

to hasthe e-mail address of who this e-mail was sent to.
from has the e-mail address of who sent this e-mail.
subject hasthe subject line of the e-mail.

These new fields should be used only the first time your call-back is called with anew number field. In
subsequent calls, these fields are not guaranteed to have accurate information.

Seeparse extra.c in Section 11.5 for an example of this type of call-back.

366 rabbit.com POP3 Client

http://www.rabbit.com

11.4 API Functions

pop3 init

int pop3 init(int (*storemail) ());

DESCRIPTION

This function must be called before any other POP3 function is called. It will set the call-back
function where the incoming e-mail will be passed to. This probably should only be called once.

PARAMETERS
storemail A function pointer to the call-back function.

RETURN VALUE

0: Success.
1: Failure,

LIBRARY
POP3.LIB

TCP/IP User’s Manual rabbit.com 367

http://www.rabbit.com

pop3 getmail

int pop3 getmail (char *username, char *password, long server);

DESCRIPTION
This function will initiate receiving e-mail (a POP3 request to aremote e-mail server).
IMPORTANT NOTE - the buffersfor username and password must NOT change until

pop3_ tick () returnssomething besdes POP PENDING. These values are not saved inter-
nally, and depend on the buffers not changing.

PARAMETERS
username Theusername of the account to access.
password Thepassword of the account to access.
server The IP address of the server to connect to, as returned from resolve ().

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
POP3.LIB

368 rabbit.com POP3 Client

http://www.rabbit.com

pop3 tick

int pop3 tick(wvoid);

DESCRIPTION

A standard tick function, to run the daemon. Continue to cal it aslong asit returns
POP_PENDING.

RETURN VALUE

POP_PENDING: Transfer isnot done; cal pop3 tick again.

POP_SUCCESS: All emails were received successfully.

POP_ERROR: Unknown error occurred.

POP_TIME: Sessiontimed-out. Try again, or use POP_TIMEOUT to increase the time-out
length.

LIBRARY
POP3.LIB

TCP/IP User’s Manual rabbit.com 369

http://www.rabbit.com

11.5 Sample Receiving of E-mail
This program connects to a POP3 server and downloads e-mail fromit.

Program Name: Samples\tcpip\pop3\parse extra.c

#define

#define
#define
#define
#define
#memmap

TCPCONFIG 1

POP_HOST "mail.domain.com" // Name of your POP3 server
POP_USER "myname" / / Username for POP3 account
POP_PASS "secret" / / Password for POP3 account
POP_PARSE EXTRA

Xmem

#use "dcrtcp.lib"
#use "pop3.lib"

int n;

int storemsg(int num, char *to, char *from, char *subject,
char *body, int len) {

#GLOBAL INIT{n = -1;}

if(n != num)
n = num;
printf ("RECEIVING MESSAGE <%d>\n", n);
printf ("\tFrom: %s\n", from);

(
printf ("\tTo: %s\n", to);
printf ("\tSubject: %s\n", subject);

}

printf ("MSG DATA> '$s'\n", body) ;
return O0;

main () {

static long address;
static int ret;

sock init () ;

pop3_ init (storemsg) ; / /set up call-back
printf ("Resolving name...\n") ;
address = resolve (POP_HOST) ;
printf ("Calling pop3 getmail()...\n");
pop3 getmail (POP_USER, POP_PASS, address); // Requesttoserver
printf ("Entering pop3 tick()...\n");
while ((ret = pop3 tick()) == POP_ PENDING)
continue;
if (ret == POP_SUCCESS)
printf ("POP was successful!\n");
if (ret == POP_TIME)
printf ("POP timed out!\n") ;
if (ret == POP_ERROR)

printf ("POP returned a general error!\n");
printf ("All done!\n") ;

370

rabbit.com

POP3 Client

http://www.rabbit.com

11.5.1 Sample Conversation
The following is an example POP3 session from the specification in RFC1939. For more information see:

www.rfc-editor.org/rfc/std/std53.txt

In the following example, lines starting with “S:” are from the server, and lines starting with “C:” are from
the client.

<wait for connection on TCP port 110>

<open connections>

+0K POP3 server ready <1896.697170952@dbc.mtview.ca.us>
APOP mrose c4c9334bac560ecc979e58001b3e22fb

+0OK mrose's maildrop has 2 messages (320 octets)
STAT

+OK 2 320

LIST

+0OK 2 messages (320 octets)

1 120

2 200

RETR 1
+OK 120 octets
<the POP3 server sends message 1>

DELE 1

+0K message 1 deleted

RETR 2

+OK 200 octets

<the POP3 server sends message 2>

DELE 2

+0K message 2 deleted

QUIT

+0OK dewey POP3 server signing off (maildrop empty)
<close connections>

<wait for next connections>

NOOLOOnNnOLNLLNOALNOLNnRNNnNOLNnNNLNNMOMNnAOLNnNMOCNnNN

For debugging purposes, you can observe this conversation by defining POP_DEBUG at the top of your
program.

TCP/IP User’s Manual rabbit.com 371

http://www.rfc-editor.org/rfc/std/std53.txt
http://www.rabbit.com

372 rabbit.com POP3 Client

http://www.rabbit.com

PRODUCT MANUAL

12. SNMP

Simple Network Management Protocol (SNMP) is a popular network management tool. Traditionally,
SNMP was designed and used to gather statistics for network management and capacity planning. For
example, the number of packets sent and received on each network interface could be obtained. But
because of its ssimplicity, SNMP use has expanded into areas of interest to embedded systems. It is now
used for many vendor-specific management functions, e.g., showing a thermostat temperature, machine
tool RPM or whether the front door was | eft open.

After reading this document and studying and running the provided demo program, you will be able to:

e defineaMIB
e code and run an SNMP agent

The SNMP library, SNMP . LIB, implements version 1 of the SNMP protocol. But before we get into the
implementation details, let’s discuss SNMP from a conceptual level.

12.1 SNMP Overview

The SNMP model is client/server based. The SNMP agent is the server part, passively listening for com-
munication from an SNM P manager—the client side of things. The SNM P manager, which runs on a Net-
work Management Station (NMS), may make one of three possible requests. Get, GetNext or Set.

These requests are made via SNMP messages. SNMP allows managers and agents to exchange SNMP
messages for the purpose of sharing information about managed objects. The messages are embedded in
UDP datagrams for transmission. Their format is shown in Figure 12.12

Figure 12.12 SNMPv1 Message Format

version | community PDU(s)

version: version of SNMP being used, 1, 2 or 3.
community: used for trivial authentication.

PDU: stands for Protocol Data Unit, another name for a packet. These are generated and parsed internally.
A PDU contains the type of message (get, getnext, set, response or trap) and alist of affected objects,
called the variable binding. The variable binding isalist of name and value pairs either to get or to set.

TCP/IP Manual, Vol. 2 rabbit.com 373

http://www.rabbit.com

12.1.1 Managed Objects

A managed object can be a device or adevice characteristic: e.g., the value of atemperature gauge, the
setting of a switch or any other logical or physical component of an embedded system. Instances of
managed objects are kept in a Management Information Base (MIB). Each managed object has a unique
name, which is known as its object identifier, or OID.

The rules for naming and defining managed objects are specified by Structured Management Information
(SM1). Thisformal definition is compiled by the SNMP manager, alowing the manager to understand the
structure of the MIB on the managed device. In Section 12.2 we will look at a demo program that will
clearly illustrate the correspondence between the SM1 defined MIB used by the SNMP manager and the
MIB used by the SNMP agent.

12.1.2 SNMP Agent

An agent listens on UDP port 161 (SNMP_PORT) of its device for SNM P messages from a manager. Pro-
grammatically, the SNMP agent is fairly simple. Any complexity liesin the organization of the managed
objects that the agent accesses.

The agent sends messages back to the manager in response to the get, get-next and set requests that it
receives. For a get-next request, the agent returns the next OID in lexicographic order from the OID speci-
fied in the variable binding of the PDU. Both get and set requests are atomic. They may request acting on
multiple managed abjects, but the agent will only process the request if al of the managed objects are
accessible.

Agents may also send unsolicited messages to a manager. These unsolicited messages are called traps.
They may be used to signal the manager that something has gone wrong, (perhaps a variable has gone out
of range or alight bulb has burned out) or they may be used for informational purposes.

374 rabbit.com SNMP

http://www.rabbit.com

12.1.3 MIBs

A MIB is astructured arrangement of managed objects — a database that maps OlIDs to actual variable
instances. The MIB may be used as a stand-alone hierarchical database without SNMP if desired.

Instances of managed objects are always leaf nodes. And only leaf nodes may be accessed using SNMP.
Figure 12.13 MIB Tree Diagram from Root Node Down to MIB-Il and Enterprise

Subtrees
ccitt (0) iso (1) iso-ccitt (2)
standard (0) registration- member- identified-
authority (1) body (2) organization(3)
dod (6)

/

internet (1)

directory (1) mgmt (2) experimental (3) private (4) security (5) snmpV2 (6)

mib-2 (1) enterprise (1)
system (1) if(2) ip(4) icmp(5) tcp(6) udp (7) Rabbit Z-World Inc.
Semiconductor (12817)
(12807)

12.1.3.1 MIB-Il Subtree

MIB-II has nine groups, six of which are usually of interest: system, if, ip, icmp, udp and tcp. Accessto lots
of useful information has been standardized by MIB-I1. For example, in the system group are managed
objects named sysContact, sysName and sysL ocation. If set, they give the name and phone number of the
person responsible for the device, the device name and its physical location.

The interfaces group (if) holds information about each interface on adevice. The rest of the group names
should be familiar. For those interested in the descriptions of managed objectsin MIB-I1, read chapter 3in
a“A Practical Guideto SNMPv3 and Network Management” by David Zeltserman.

Note that Dynamic C does not currently implement any of the MIB-I1 objects, sinceit does not support
network router functionality.

TCP/IP Manual, Vol. 2 rabbit.com 375

http://www.rabbit.com

12.1.3.2 Enterprise Subtree

The enterprise subtree is of special interest because it is where you can stake out a personal piece of the
brave, new MIB world. In Figure 12.13, notice that both Rabbit Semiconductor and Z-World have nodes
on the enterprise subtree. Enterprise numbers are assigned by the Internet Assigned Numbers Authority
(IANA).

Our assigned enterprise numbers are:

e 12807 - Rabbit Semiconductor

e 12817 - Z-World Inc.

In Section 12.2.5.1 we will examine the Rabbit Semiconductor subtree.

To obtain an assigned enterprise number go to: www . iana.org/cgi-bin/enterprise.pl

12.1.4 SMI

Structure of Management Information (SMI) gives the rules for naming and defining the managed objects
that are stored in aMIB. The actual storage of instances of managed objectsis done programmatically by
the SNMP agent, with the values being stored on the managed device. The definitions of managed objects
required by SMI are compiled by SNMP managers. Thisis a standard that the manager usesin order to
know what managed objects the agent can access and where they are logically located.

Object Name (OID)

SMI specifies a hierarchical naming scheme. The OID of an object is a series of non-negative integers tra-
versing the tree to the node of the object.

Object Definition
SMI specifies the allowable data types, information organization and the encoding rules used (BER).

376 rabbit.com SNMP

http://www.rabbit.com
http://www.iana.org/cgi-bin/enterprise.pl

Object Data Types

Managed objects must be reducible to the data types defined for SNMP. The following table shows the

mappings from the SMI defined typesto the internal types used by theMIB . L.IB implementation to store

an object in the MIB tree.

SMI Defined Data Type Internal Data Type
SNMP_SHORT
INTEGER
SNMP LONG
SNMP_OCT
OCTECT STRING SNMP_FOCT
SNMP_STR
OBJECT IDENTIFIER SNMP OID
NULL SNMP NULL
IpAddress SNMP_LONG
Counter SNMP_LONG
Gauge SNMP_LONG
TimeTicks SNMP_LONG

Theinternal datatypes are specified in the following table:

Internal Type Representation

SNMP SHORT 2-byte integer in Rabbit order (little endian)

SNMP LONG 4-byte integer in Rabbit order
Null terminated string, with specified maximum length. The null

SNMP STR terminator is not counted in computing the string length. The null
isonly appended if the string is less than its maximum length.
2-byte unsigned length field, followed by data. The length field

SNMP OCT contains the actual data length, not including the 2 bytes for the
length field itself.

SNMP FOCT lee_d length binary da_\tq Thelength is always equal to the

- maximum length specified.
SNMP OID Object identifier as defined by the snmp o1id structure.

The easiest way to understand thisinformation isto look at the provided demo program as an example.

TCP/IP Manual, Vol. 2

rabbit.com

377

http://www.rabbit.com

12.2 Demo Program

The sample program SNMP1 . C implements an SNMP agent that will run on any Ethernet-enabled Rabbit-
based target. The code fragmentsin this section are from SNMP1 . C. To see the program in its entirety,
open up the source codefile located at Samples\tcpip\snmp.

#memmap xmem

// Thisisnecessary for all SNMP applications.
// It causes inclusion of SNMP.LIB and MIB.LIB
#define USE_ SNMP 1

// Thismust be defined to support trap sending
#define SNMP_ TRAPS

// Standard DCRTCP network definitions. Change to suit your site requirements.
#define TCPCONFIG 1

// Setthe IP address of the SNMP manager that will receive trap messages.
#define MANAGER IP "10.10.6.178"

// For thisdemo only, send trap every 5 seconds.
#define SEND TRAPS

// Rabbit Semiconductor (do not change)
#define SNMP ENTERPRISE 12807

#use "dcrtcp.lib"

The network definitions (TCPCONFIG) pertain to the target on which SNMP1 . C isrunning.
MANAGER_IP identifies the SNMP manager to which SNMP traps are sent.

The configuration macro SNMP_TRAP_PORT will default to UDP port 162 if it is not defined in the ini-
tialization code of the application.

378 rabbit.com SNMP

http://www.rabbit.com

12.2.1 Creating Managed Objects

The variable definitions in the following code fragment are the managed objects that the agent will storein
aMIB.

// Managed variables. Read/write.
int rw_int;

long rw long;

char rw fixed[20];

char rw _str[20];

char rw oct[22];
snmp_oid rw_oid;
longword trapdest ip;
longword rw_tt;

// Managed variables. Read-only.
int r int;

long r long;

char r fixed[20];

char r str[20];

char r oct[22];
snmp_oid r oid;

The datastructure snmp _oid isaninternal datastructure defined inMIB.LIB. Itisusedto hold the OID
of amanaged object. Another ubiquitous data structure, snmp_parms, isalso defined inMIB.LIB. Itis
used to pass parameters to most of the API functions described in Section 12.4.

TCP/IP Manual, Vol. 2 rabbit.com 379

http://www.rabbit.com

12.2.2 Callback Functions

Callback functions provide away to customize data handling. The callback isinvoked by the SNMP agent
for each get or set request. If there is no callback for a particular object, then accessto that object isaways
granted (according to the read/write masks).

The callback function should be defined as follows:

int my callback (snmp parms *p, int wr, int commit, wvoid *v,
word *len, word maxlen)

PARAMETERS

p snmp _parms contains most of the information about the access. It is set
up with the full OID of the object, plusits current value.

wr This parameter is non-zero if thisis awrite access, otherwise it isaread ac-
cess.

commit This parameter implements a 2-stage query/commit process. It is necessary
because any single SNM P request must be performed fully or not at dl, i.e.,
the agent will only processtherequest if accessto al of the managed objects
in the variable binding is granted.

Read Request:
commi t isaways zero for read requests. The callback is only invoked
once, not twice asit is for write requests.

Write Request:

When commit isegua to zero, the agent is checking the availability
of the managed object. The callback should return zero to continue or
non-zero to deny access. If at least one callback function denies access,
no change will be made to any object in the transaction, and none of the
callbackswill be called with commi t equal to true.

When commi t isnot equal to zero, the callback function should skip
checking the availability of the managed object (that was done thefirst
time around) and just perform the desired side-effects associated with
the write access. The callback’s return value will be ignored.

v Void pointer to atemporary location that may be altered by the callback. If
the managed object isan integer, v pointsto alongword. If itisan OID, then
v points to a structure of type snmp_oid. Otherwise, it pointsto the first
character of atemporary buffer containing the string.

len Pointsto the length of the string that is pointed to by v. Note that thisisused
by the SNMP agent to determine the string length.

maxlen The maximum allowable length of the buffer pointed to by v.

380 rabbit.com SNMP

http://www.rabbit.com

RETURN VALUE

The non-zero return value may be chosen from SNMP_ERR_ * definitions, in which casethe val-
ueis used asthe error type for the response. Otherwise, SNMP_ERR_genErr iSused.

Read callbacks are used for SNMP get/get-next requests, aswell asimmediately after SNMP set
requests, where the updated value of the variableis read back for generating the response. The
return code for read callbacksis currently ignored, but should be set to zero for OK or non-zero
for invalid (if applicable), to allow upward compatibility.

12.2.2.1 Callback Function Example

A callback function may be used for special actions that must be taken when a variable is written by the
SNMP agent, such as creating entire table rows. Another use is to transform between internal and external
representations. For example, the callback function shown below demonstrates how to scale avariable
from internal unitsinto the units expected by the SNMP manager. In this case, the variable appears as
1/10th of itsinternal value. Note that the transformation needs to work both waysif the variable iswritable
by the SNMP manager.

int scale(snmp parms *p, int wr, int commit, long *v,
word *len, word maxlen) {

printf ("Callback: wr=%d commit=%d v (in)=%1d ", wr, commit,
*v) ;
if (wr) {
// On write by agent, we ensure that the variable is within bounds.
if (*v > 200000000)
return SNMP ERR badValue;
if (*v < -200000000)
return SNMP ERR badValue;
// OK, scaleit up to internal representation.
*yv *= 10;
}
else
// Read by the agent. Convert internal to external
*yv /= 10;

printf ("v (out)=%1d\n", *Vv);
return O;

}

The callback function has the opportunity to manipulate the value (including its length) as well as say
whether the write operation is allowed or not.

TCP/IP Manual, Vol. 2 rabbit.com 381

http://www.rabbit.com

12.2.3 Creating Communities
Before the MIB is created, variables are defined and some initialization takes place.

int main ()

{

auto
auto
auto
auto
auto

snmp_parms _p;
snmp_parms *p;

word tt;

word trapindices][2];
word monindex;

// Set the community passwords

snmp__

set dflt communities("public", "private",

// Setp tobeapointerto p, for caling convenience.

p:

& pj

// Set parameter structure to default initial state (required).

snmp_

init parms(p) ;

"trap n) ;

There are three communities defined in this SNM P agent. The public and private communities are defined
by default and the trap community is defined with the inclusion of #define SNMP_TRAPS at the
beginning of the program. The configuration macro SNMP_MAX COMMUNITIES limits the number of
distinct community names. It will be set to 3 in this SNMP agent. It must be at least 1.

To add another community, call the API function snmp_add _community (). Thereturn value of this
function is used to set the password for the new community, by passing it as a parameter to
snmp set community ().Each new community requires SNMP_ MAX COMMUNITIES to be

increased by 1.

382

rabbit.com

SNMP

http://www.rabbit.com

12.2.4 Creating the MIB
The MIB is created by the following code:

// define the root of this MIB tree

p = snmp append parse stem(p, "3.1.1");

// make the following managed objects both readable and writable

p = snmp_set access(p, SNMP PUBLIC MASK|SNMP PRIVATE MASK, SNMP PRIVATE MASK) ;

p = snmp add int(p, "1.1.0", &rw_int) ;
monindex = snmp last index(p) ; // Saveindex 4 later monitor call
p = snmp set callback(p, scale); // Setup for callback function
p = snmp add long(p, "1.2.0", &rw long); // Associate callback with var
p = snmp_ set callback(p, NULL) ; // Don't associate with other vars
= snmp_add foct(p, "1.3.0", rw fixed, 20);
= snmp_add str(p, "1.4.0", rw str, 20);
= snmp add oct(p, "1.5.0", rw oct, 22);
= snmp add objectID(p, "1.6.0", &rw oid) ;
"1.7.0", &trapdest ip);

= snmp_ add timeticks(p, "1.8.0", &rw_ tt);

/ make the following managed objects read only
= snmp_set access(p, SNMP_ PUBLIC MASK|SNMP PRIVATE MASK, O0);

= snmp_add_int (p,
rapindices[0] =

"2.1.0", &r int) ;

p
p
p
p
p = snmp add ipaddr (p,
p
/
p
p
t snmp_ last index(p) ;

// saveindex for trap message

p = snmp add long(p, "2.2.0", &r long) ;

p = snmp add foct(p, "2.3.0", r fixed, 20);

p = snmp add str(p, "2.4.0", r str, 20);

p = snmp add oct(p, "2.5.0", r oct, 22);

trapindices[1] = snmp last index(p) ; // saveindex for trap message
p = snmp add objectID(p, "2.6.0", &r oid);

All of the API functions that were used to create the MIB are described in Section 12.4. A pointer to the
parameter structure, snmp parms, was passed to all functions, and also set to the return value. Thisis
the recommended way of doing the MIB tree setup, sinceif any step failsit will return NULL. Passing the
NULL on to subsequent functions is harmless, and avoids the need to do error checking after each call.
Only at the end of sequence should “p” be tested for NULL.

Notice that the “root” of the MIB treeis set to

SNMP_ENTERPRISE.oemExperiments.demos.rabbitsemiDemoSNMP1

using the call:

p = snmp append parse stem(p, "3.1.1");

TCP/IP Manual, Vol. 2 rabbit.com 383

http://www.rabbit.com

The entire MIB tree can be rooted at a different point simply by changing this one call. But wait, you may
well ask, wheredid the oemExperiments.demos . €etc., comefrom? Beforel answer that, let'slook at
atree diagram of the MIB that was created in the previous code fragment.

Theinitial OID stemissetto “43.6.1.4.1.SNMP_ENTERPRISE” by thecall to snmp_init parms ().
Thefirst two levelsin the tree, “iso.org” (1.3) are condensed to “43" to save transmitting an extra byte.
Thefirst 1in“1.3.6.1.4.1" is multiplied by 40 then added to the second number “3,” resulting in
1*40+3=43 or 0x2b.

Thisinitial OID corresponds to the Rabbit Semiconductor node (rabbitsemi) on the enterprise subtree.
Leaf nodes are created using the snmp _add_* macros. After the leaf node for rw_tt is created, access
is set to read-only for the remainder of the managed objects. Addition of each object requires the addi-
tional levels below the “root” OID specified inthe call to snmp append parse stem().By con-
vention, objects with a single instance, i.e., not tabular, always have a zero at their lowest level.

enterprise (1)

Rabbit Z-World Inc.
Semiconductor (12817)
(12807)

|
(f)
(1)

/\
/

(1)

rw_int (1.0) rw_long (2.0) . .. rw_tt (8.0) r_int (r_long (2.0) ... r_oid (6.0)

But we still don’'t know where the oemExperiments.demos . rabbitsemiDemoSNMP1 part
comes in, unless you cheated and already looked in the text files that were named in the instructions at the
beginning of SNMP1 . C. Thesefiles:

e RABBITSEMI-SMI.txt - top level Rabbit Semiconductor

e RABBITSEMI-PRODUCTS-MIB. txt - listing of products (boards)

e RABBITSEMI-DEMO-SNMPL1.txt - describes this demo.

contain the SM1 definitions that are used by the SNM P manager.

384 rabbit.com SNMP

http://www.rabbit.com

12.2.5 Defining Managed Objects with SMI
The SNMP manager must compile the relevant . txt filesthat defineaMIB that is compatible with the
structure of the MIB defined by the SNM P agent.

12.2.5.1 Defining the Rabbit Subtree
Thetext file RABBITSEMI-SMI . txt definesthetop level of the Rabbit Semiconductor subtree.

RABBITSEMI-SMI DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY,
OBJECT-IDENTITY,
enterprises

FROM SNMPv2-SMI;

rabbitsemi MODULE-IDENTITY
- - 2 dashes are the comment marker

- - theinformation that should be here may be seenin RABBITSEMI-SMI . txt

::= { enterprises 12807 } -- assigned by IANA

The MODULE - IDENTITY macro hames rabbitsemi as node 12807 under enterprises.

rabbitsemiProducts OBJECT-IDENTITY

STATUS current

DESCRIPTION
"rabbitsemiProducts is the root OBJECT IDENTIFIER from

which sysObjectID values are assigned. Actual wvalues
are defined in RABBITSEMI-PRODUCTS-MIB."

:= { rabbitsemi 1 }

The OBJECT-IDENTITY macro names rabbitsemiProducts as node “ 1" under the rabbitsemi node.
Studying the rest of the definitionsin thisfile, you should be able to create the following tree diagram:

TCP/IP Manual, Vol. 2 rabbit.com 385

http://www.rabbit.com

enterprise (1)

T rabbitsemi - - Z-World Inc.
rabbitsemiProducts (1) rabbitsemiChipsets (9)
rabbitsemiMgmt (2) rabbitsemiExperiments (8)
oemExperiments (3) rabbitsemiConfig (7)
oemAssigned (4) rabbitsemiAgentCapability (6)

rabbitsemiModules (5)

demos (1) processor (1) communication (2)

12.2.5.2 Defining the Demo MIB

ThefileRABBITSEMI -DEMO-SNMP1 . txt definesanother level in the MIB and then defines the | eaf
nodes that will hold the values of the managed objects for this demo. The |leaf nodes correspond to the
variable definitions in the code shown in Section 12.2.1.

RABBITSEMI-DEMO-SNMP1 DEFINITIONS ::= BEGIN

IMPORTS
MODULE-IDENTITY,
OBJECT-TYPE,
NOTIFICATION-TYPE,
IpAddress,
TimeTicks

FROM SNMPv2-SMI

DisplayString
FROM SNMPv2-TC

demos
FROM RABBITSEMI-SMI ;

rabbitsemiDemoSNMP1 MODULE-IDENTITY
-- Look in RABBITSEMI -DEMO-SNMP1 . txt for the details that belong here.

::= { demos 1 }

demoRWObjects OBJECT IDENTIFIER ::= { rabbitsemiDemoSNMP1l 1 }

demoROObjects OBJECT IDENTIFIER { rabbitsemiDemoSNMP1 2 }

386 rabbit.com SNMP

http://www.rabbit.com

At this point, the correspondence between 12807. 3.1.1 and SNMP_ENTERPRISE.oemExperi-
ments.demos.rabbitsemiDemoSNMP1 becomes apparent.

The remainder of RABBITSEMI -DEMO-SNMP1 . txt contains definitions for the rest of the MIB that
will be used in the demo. Here are the first two leaf nodes:

rw-int OBJECT-TYPE
SYNTAX INTEGER (-32768..32767)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A read/write short integer value."
::= { demoRWObjects 1 0 }

rw-long OBJECT-TYPE
SYNTAX INTEGER (-200000000..200000000)
MAX-ACCESS read-write
STATUS current
DESCRIPTION
"A read/write long integer value."
::= { demoRWObjects 2 0 }

The OBJECT-TY PE macro defines leaf nodes on the MIB tree. The SYNTAX line defines the data type of
the managed object stored at the leaf node and gives the allowable range of values.

TCP/IP Manual, Vol. 2 rabbit.com 387

http://www.rabbit.com

The tree diagram for this demo looks like this:

rabbitsemi

(12807)

rabbitsemiProducts (1) oemExperiments (3) rabbitsemiChipsets (9)

demos(1)

rabbitsemiDemoSNMP1 (1)

demoRWObijects (1)

— rw-int (1.0)
— rw-long (2.0)
L rw-foct (3.0)
| rw-str (4.0)
L rw-oct (5.0)
— rw-oid (6.0)
— rw-ipaddr (7.0)

— rw-timeticks (8.0)

demoROObjects (2)

— ro-int (1.0)
— ro-long (2.0)
— ro-foct (3.0)
— ro-str (4.0)
— ro-oct (5.0)
— ro-oid (6.0)

388

rabbit.com

SNMP

http://www.rabbit.com

12.2.6 Running the SNMP Agent

Now that we' ve seen how the SNM P manager uses an SMI defined MIB to recognize the MIB controlled
by the SNMP agent, let’s ook at the rest of the sample program sNMP1 . C (our SNMP agent for this
demo).

After the MIB is defined, the managed objects are initialized, the MIB tree is checked to make sure it was
constructed without error and the network is started.

// Initidlize the variables.
rw_int = 1001;
rw_long = 1000002;

memcpy (rw fixed, "rw fixed abcdefghijk", 20);
strcepy (rw _str, "rw str");

memcpy (rw_oct, "\x06\x00rw oct", 8);

memcpy (&rw_oid, & p, sizeof (snmp oid)) ;

trapdest ip = aton (MANAGER IP) ;
rw_tt = snmp_ timeticks () ; // Set base epoch

r int = 2001;
r long = 2000002;

memcpy
strcpy
memcpy
memcpy

r fixed, "r fixed abcdefghijkl", 20);
r str, "r_ str");

r oct, "\x05\x00r oct", 7);

&r oid, & p, sizeof (snmp_ oid)) ;

—_— o~ o~ —~

// Finaly, we check that the MIB tree was constructed without error.

// |f there was any error, p will be set to NULL.

if (ip)
printf ("There was an error constructing the MIB.\n") ;
exit (1) ;

}

// Monitor the rw_int variable (whose MIB tree index was saved in monindex).
// trapindices was set up with the indicesfor r_int and r_oct.

snmp monitor (monindex, 0, 3000, 1, 16, 6, &trapdest ip,
SNMP_TRAPDEST, 30, 2, trapindices);

// Seewhat we've got.
snmp_print tree() ;

printf ("MIB tree: used %$1d out of %1d bytes\n", snmp used(),
(long) SNMP_MIB_SIZE) ;

// Now start up the network
sock init () ;

TCP/IP Manual, Vol. 2 rabbit.com 389

http://www.rabbit.com

The SNMP handler is called the same way al the other TCP/IP handlers are called—by tcp tick ().

tt = SET SHORT TIMEOUT (5000) ;

for (;;) {
if (_CHK SHORT TIMEOUT (tt)) {

#ifdef SEND TRAPS

snmp_trap (trapdest ip, SNMP TRAPDEST, 20, 2,trapindi-
ces) ;
#endif

tt = SET SHORT TIMEOUT (5000) ;

}

tcp tick (NULL) ;

}

Themacros SET SHORT TIMEOUT and CHK SHORT TIMEOUT aredefinedinnet.lib. They
arebased on MS_TIMER and offer a consistent way of setting time outs of 1msthru 32 seconds using only
16-bit arithmetic. This SNMP agent will send a trap message every 5 seconds.

12.3 Configuration Macros

These macros may be defined in the initialization code of the SNM P agent before the inclusion of
dcrtep.lib.

SNMP DFLT READMASK

The mask used to grant read access. The default is 0x03, which gives read access to both the pri-
vate and public communities.

SNMP DFLT WRITEMASK

Themask used to grant write access. The default is 0x02, which gives write accessto only the pri-
vate community.

SNMP INTERFACE

Specify the network interface to listen for SNMP messages. May be set to afixed interface, or
IF ANY tolistenonall interfaces. The defaultis IF_ DEFAULT.

SNMP_TOS
Specifiesthe |P TOS for SNMP. The default iSTPTOS RELIABLE.

SNMP MIN TRAP INTVL

Minimum interval between transmission of trap messages, specified in milliseconds. Helps pre-
vent inadvertent network overload. Must not be more than 30,000 milliseconds. The default is
1000 ms.

390 rabbit.com SNMP

http://www.rabbit.com

SNMP MAX MONITOR
Maximum number of monitored variables. Each monitored variable requires
(SNMP_MAX MON_ DATA*?2) + 33 bytes of root data.

SNMP MAX MON DATA
Maximum number of additional variables sent with amonitor trap. The default is 2.

SNMP MAX DATA

Largest size of SNMP datagram supported (input or output). This must be at |east 484 bytesto
conform with RFC1157. Currently, this should not be larger than the default value since outgoing
fragmentation is not supported. The default valueis (MIN MTU-28).

SNMP MAX NAME
Maximum size of an encoded object identifier (OID). The default is 32.

SNMP MAX STRING
Thelargest octet string that may be retrieved or set via SNMP. Making thislarger only affectsthe
amount of stack space used by the SNMP handler functions. It does not limit internal storage of
string valuesin the MIB tree. The largest practical size would be afew bytesless than
SNMP_MAX DATA.Theminimumallowablesizeis(2*SNMP_MAX NAME). Thedefaultis128.

SNMP_ MAX BINDINGS
The maximum number of variables supported in any one message. This has abearing on stack
space usage. Each additional binding will require 4 more bytes of stack. The default is 32.

SNMP MAX COMMUNITY NAME
The maximum string length of community names (i.e., passwords). The default is 16.

SNMP MAX COMMUNITIES

The number of communities recognized by the SNMP agent. The defaultis 2, or 3 if trapsare sup-
ported.

SNMP MIB SIZE
Defines the maximum size of the MIB tree structure resident in xmem. The default size is 4096
bytes. The default allows for about 100 objects.

SNMP_PORT
The UDP port that the agent will listen on. The default is 161.

SNMP TRAP PORT
The UDP port that the agent will send trapsto on the SNMP manager. The default is 162.

SNMP TRAPS
Must be defined in the application to support trap sending.

USE_MIB
Defining this macro is only necessary if MIB functiondity is being used without SNMP.

TCP/IP Manual, Vol. 2 rabbit.com 391

http://www.rabbit.com

12.4 API Functions

This section describes all of the API functions availablein SNMP.LIB and MIB.LIB.

snmp_add

snmp_add community

snmp_append binary oid

snmp_append binary stem

snmp_append_ oid

snmp_append parse oid

snmp append parse stem

snmp_append_ stem
snmp_community mask
snmp_community name
snmp_copy oid
snmp_delete

snmp_ format oid
snmp_ get

snmp_get indexed
snmp_get next
snmp_init parms
snmp_last index
snmp_ last int
snmp_last len
snmp_last long
snmp_last maxlen
snmp_last mem
snmp_last objectID
snmp_last snmp type
snmp_last type

snmp_last xmem

snmp monitor

snmp_ print tree
snmp set access
snmp_ set callback
snmp_set community
snmp_set dflt communities
snmp_set foct
snmp_ set int
snmp_set long
snmp_set objectID
snmp_set oct
snmp_set oid

snmp_ set parse oid
snmp_set parse stem
snmp_set stem
snmp_set str

snmp_ start

snmp_ stop

snmp_ time since
snmp_ timeticks
snmp_ trap
snmp_unmonitor
snmp_up oid
snmp_up_ stem
snmp_used

snmp_xadd

392

rabbit.com

SNMP

http://www.rabbit.com

snmp add

snmp parms *snmp add(snmp parms *p, char *n, word type, void *v,
word maxlen) ;

DESCRIPTION

Add an object into the MIB tree. The parameter structure *p must be set up using
snmp_init parms () andother functionssuchassnmp set stem() toindicatethe ob-
ject ID of the object to be added.

Thisfunction is used to add objects which reside in root data storage. The object must persist at
the specified location (v) at least until the object isdeleted using snmp_delete ().

Typically, the object may aready exist in some preexisting application (e.g., asafield in some
structure). The object may be used exactly as an ordinary variable or field, except that its value
may change whenever tcp tick () iscalled and there happensto have been an SNMP SET
request on that object. (If SNMP is not being used, the abject will not be modified by any of the
MIB.LIB functions.)

snmp_add () and snmp_xadd () arethe most general functions. Cleaner code can result
from using the equivaent macro invocations. There are 10 macro invocations of snmp_add and
snmp_xadd. The macros ensure that the correct type and length parameters are passed.

Themacrosfor snmp_add () are:

snmp_add_int(p,n,1i)
snmp_add_uint (p,n,1i)
snmp_add long(p,n,i)
snmp_add_ ipaddr (p,n,i)
snmp_add timeticks(p,n,i)
snmp_add ulong(p,n, i)
snmp_add_str(p,n,s,m)
snmp_add_oct (p,n,s,m)
snmp add foct(p,n,s,m)
snmp_add_objectID(p,n,s)

where parameters p and n are asfor thisfunction; i isan integer or long integer address; s isa
char *;andm isamaximum length.

TCP/IP Manual, Vol. 2 rabbit.com 393

http://www.rabbit.com

snmp add (continued)

PARAMETERS

p Pointer to parameter structure to set. If NULL, does nothing but return
NULL.

n Optional extraOID level totemporarily appendtothe OID in *p. If -1, this
isnot done. Otherwise, the level is appended; the value added; then the ex-
tralevel removed. Itisnot possibleto specify OID levelsgreater than 231
1

type Type of value to add. Thisis a composite of the internal type (indicating
the memory layout) and the type visible to SNMP agents. The possible
composite types are selected from the following list:
SNMP_INTEGER AS SHORT (SNMP_P_ INTEGER<<4 | SNMP_SHORT)
SNMP_INTEGER AS LONG (SNMP_P_INTEGER<<4 | SNMP_LONG)
SNMP_INTEGER SNMP_INTEGER_AS LONG
SNMP_OCTETSTR_VARIABLE (SNMP_P_OCTETSTR<<4 | SNMP_OCT)
SNMP_OCTETSTR_NULLTERM (SNMP_P_OCTETSTR<<4 | SNMP_STR)
SNMP_ASCIISTR SNMP_OCTETSTR NULLTERM
SNMP_OCTETSTR_FIXED (SNMP_P OCTETSTR<<4 | SNMP_FOCT)
SNMP_OBJECT ID (SNMP_P 0OID<<4 | SNMP_OID)
SNMP_IPADDR AS OCT (SNMP_P_ IPADDR<<4 | SNMP_FOCT)
SNMP_IPADDR AS LONG (SNMP_P_ IPADDR<<4 | SNMP_ LONG)
SNMP_COUNTER_AS SHORT (SNMP_P_ COUNTER<<4 | SNMP_SHORT)
SNMP_COUNTER_AS LONG (SNMP_P_ COUNTER<<4 | SNMP_LONG)
SNMP_COUNTER SNMP_COUNTER_AS LONG
SNMP_GAUGE_AS_ SHORT (SNMP_P GAUGE<<4 | SNMP_SHORT)
SNMP_GAUGE_AS_LONG (SNMP_P GAUGE<<4 | SNMP_LONG)
SNMP_GAUGE SNMP_GAUGE AS LONG
SNMP_TIMETICKS (SNMP_P TIMETICKS<<4 | SNMP_LONG)

394 rabbit.com SNMP

http://www.rabbit.com

snmp add (continued)

maxlen

RETURN VALUE

Pointer to the actual object in root data storage. This storage becomes man-
aged by SNMP/MIB, whichiswhy it must be static. To alter the value of the
object, it is permissible (in fact recommended) to ssmply update the object
directly. Note that it is this pointer value that is stored in the MIB tree, not a
copy of the object. Note that variable-length octet strings are stored in a spe-
cia format: the 1st two bytes of the location are used to store the current
length. The specified maximum length, maxlen, includes the length of this
2-byte prefix. The actual length of the object can thus be no more than the
maxlen - 2.

Maximum permissible length of the object. Thisis applicableto variable
length objects, since SNMP needsto know the allowable size boundsfor the
object to avoid overwriting past the end of the all ocated space for the object.

Returns p unlessp isNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp set stem, snmp set parse stem,
snmp_append_stem, snmp_ append parse stem, snmp_set access,
snmp_set callback, snmp up stem, snmp xadd, snmp delete,
snmp_get, snmp last index

TCP/IP Manual, Vol. 2

rabbit.com

395

http://www.rabbit.com

snmp add community

int snmp add community(char *cname, byte mask);

DESCRIPTION

Add anew community with agiven access mask to thetable of community names. The size of the
tableisspecifiedusing SNMP_MAX COMMUNITIES. Thefirst3communitiesareautomaticaly
defined thus do not need to be added using this function.

PARAMETERS
cname Community name as a null-terminated string with a maximum length of
SNMP MAX COMMUNITY NAME.
mask This specifiesthe access groups (one or more of 8 groups) to which thiscom-

munity belongs. Three groups are predefined:
SNMP PUBLIC MASK - public group with read-only access
SNMP_PRIVATE MASK - private group with read/write access
SNMP_TRAPDEST MASK - trap group with no access

RETURN VALUE
-1: Noroomin table.

=>0: Number of entriesin community table, after current addition. This isthe community index,
which isrequired for other API functions.

LIBRARY
SNMP.LIB

SEE ALSO

snmp_set dflt communities, snmp set community,
snmp_community name, snmp community mask

396 rabbit.com SNMP

http://www.rabbit.com

snmp append binary oid

snmp oid *snmp append binary oid(snmp oid *oid, word len,
char *bname);

DESCRIPTION

Append the object I D encoded asastring of bytesto the OID currently setin *oid. Thisfunction
may be used when all levelsin the OID string are numbers between 0 and 255 inclusive. Each
OID level issimply the binary value of each byte pointed to by bname. The number of levels(i.e.,
bytes) is specified by 1en. For example, to append "255.6.0.1" make the following call:

snmp_append binary oid(oid, 4, "\xFF\x06\x00\x01");

Thisfunction isidentical to snmp append binary stem(), except that it usesan
snmp_oid structure.

PARAMETERS
oid Pointer to snmp_oid structure to set. If NULL, does nothing but return
NULL.
len Number of bytesin bname.
bname Pointer to first byte of OID.

RETURN VALUE
Returns oid unlessthe OID string istoo long to fit in the snmp oid structure in which case
NULL isreturned. If oid isNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp append oid, snmp append binary stem,
snmp_ set stem

TCP/IP Manual, Vol. 2 rabbit.com 397

http://www.rabbit.com

snmp append binary stem

snmp parms * snmp append binary stem(snmp parms *p, word len, char
*bname) ;

DESCRIPTION

Append the object ID encoded as a string of bytesto the OID currently set in *p. This function
may be used when all levelsin the OID string are numbers between 0 and 255 inclusive. Each
OID level issimply the binary value of each byte pointed to by bname. The number of levels(i.e.,
bytes) is specified by 1en. For example, to append "255.6.0.1" make the following call:

snmp_append binary stem(p, 4, "\xFF\x06\x00\x01");

Thisfunction isidentical to snmp append binary oid (), exceptthat it usesan
snmp_parms Structure.

PARAMETERS
P Pointer to parameter structure to set. If NULL, does nothing but return
NULL.
len Number of bytesin bname.
bname Pointer to first byte of OID.

RETURN VALUE

Returnsp unlessthe OID string istoo long to fit in the parameter structure in which case NULL
isreturned. If p iSNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp append oid, snmp append parse_ stem,
snmp_set stem

398 rabbit.com SNMP

http://www.rabbit.com

snmp append oid

snmp oid * snmp append oid(snmp oid *oid, word len, char *eos);

DESCRIPTION

Thisfunctionisidentical to snmp_append_stem, except that it usesan snmp _oid structure.
See documentation for snmp _set stem () for an explanation of OID encoding.

PARAMETERS
oid Pointer to snmp _oid structure to set. If NULL, does nothing but return
NULL.
len Length of eos.
eos Encoded OID dtring.

RETURN VALUE

Returns oid unlessthe OID string istoo long to fit in the snmp oid structure in which case
NULL isreturned. If oid iSNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp set oid, snmp append parse oid,
snmp_append_stem

TCP/IP Manual, Vol. 2 rabbit.com 399

http://www.rabbit.com

snmp append parse oid

snmp oid * snmp append parse oid(snmp oid *oid, char *name);

DESCRIPTION

Appendsthe specified OID string, expressed in dotted decimal format, to the OID currently setin
the OID structure. Thisfunctionisidentical to snmp_append parse stem (), except that
itusesan snmp_oid structure.

PARAMETERS
oid Pointer to snmp_oid structureto set. If NULL, does nothing but return
NULL.
name OID dtring in dotted decimd notation e.g., "7.5.99"

RETURN VALUE

Returnsoid unlessthe OID string istoo long to fit in the snmp oid structurein which case
NULL isreturned. If oid iSNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp append oid, snmp append parse stem,
snmp set stem

400 rabbit.com SNMP

http://www.rabbit.com

snmp append parse stem

snmp parms * snmp append parse stem(snmp parms *p, char *name);

DESCRIPTION

Appendsthe specified OID string, expressed in dotted decimal format, to the OID currently setin
the parameter structure. Thisfunction isidentical to snmp_append parse oid (), except
that it usesan snmp_parms structure.

PARAMETERS
P Pointer to parameter structure to set. If NULL, does hothing but return
NULL.
name OID gtring in dotted decimd notation e.g., "7.5.99"

RETURN VALUE

Returnsp unlessthe OID string istoo long to fit in the parameter structure in which case NULL
isreturned. If p iSNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp set stem, snmp set parse stem

TCP/IP Manual, Vol. 2 rabbit.com

401

http://www.rabbit.com

snmp append stem

snmp parms * snmp append stem(snmp parms *p, word len, char *eos);

DESCRIPTION

Appends the encoded object identifier string to the OID already setin *p. See
snmp_set stem () for adescription of OID encoding. Thisfunction isidentical except that
it appends rather than replaces the OID.

PARAMETERS
P Pointer to parameter structure to append to. If NULL, does nothing but re-
turn NULL.
len Length of eos.
eos Encoded OID string.

RETURN VALUE

Returnsp unlessthe OID string istoo long to fit in the parameter structure in which case NULL
isreturned. If p iISNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_1init parms, snmp set stem, snmp append parse stem,
snmp_append_ oid

402 rabbit.com SNMP

http://www.rabbit.com

snmp community mask

int snmp community mask(word c_index);

DESCRIPTION
Return the community access mask of the specified community.

PARAMETERS

c_index Community table index. Thisisthe vaue returned by
snmp_add_community (), or may be SNMP PUBLIC
SNMP_PRIVATE or SNMP_TRAPDEST for the predefined default com-
munities.
RETURN VALUE

- 1: The index was outside the table bounds.
0..255: The requested bit mask.

LIBRARY
SNMP.LIB

SEE ALSO

snmp_add_community, snmp set dflt communities,
snmp_set community, snmp community name

TCP/IP Manual, Vol. 2 rabbit.com 403

http://www.rabbit.com

snmp community name

char * snmp community name(word c_index, int *length);

DESCRIPTION
Return the name and, optionally, the length of the specified community.

PARAMETERS
c_index The community table index is the value returned by
snmp_add_community (), or may be SNMP PUBLIC
SNMP_PRIVATE or SNMP_TRAPDEST for the predefined default com-
munities.
length If not NULL, then the addressed location will be set with the community

name string length.

RETURN VALUE

NULL: the index was outsi de the table bounds.

Otherwise, a pointer to the community nameis returned. The data at this|ocation should not be
modified.

LIBRARY
SNMP.LIB

SEE ALSO

snmp_add_community, snmp set dflt communities,
snmp_set community, snmp_ community mask

404 rabbit.com SNMP

http://www.rabbit.com

snmp copy oid

snmp oid * snmp copy oid(snmp parms *p, snmp oid *n);

DESCRIPTION
Copy the current object ID "stem" from *p into *n.

PARAMETERS
P Parameter structure that was previoudly initialized by callsto
snmp_init_parms (), snmp_set_stem() etC.
n Object ID structure to befilled in with current stem from *p. Must not be

NULL.

RETURN VALUE
If p WwasNULL returns NULL, otherwise returns n.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp set stem, snmp_ append stem

TCP/IP Manual, Vol. 2 rabbit.com

405

http://www.rabbit.com

snmp delete

snmp parms * snmp delete(snmp parms *p);

DESCRIPTION

Deleteanode, or asubtree, of the MIB tree. The object ID to deleteis specifiedin *p. All objects
whose OID has a completeinitial match with the specified OID will be deleted.

Note that the indices which may have been retrieved for a deleted object will no longer be valid.

PARAMETERS

P Pointer to parameter structure whose stem is set up with the OID to delete.
If NULL, doesnothing but return NULL.

RETURN VALUE

Returnsp unlessit isNULL on entry, then nothing is done except to return NULL. If no objects
were deleted, then the function also returns NUL L.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp set stem, snmp set parse stem,
snmp_append stem, snmp append parse stem, snmp up_ stem,
snmp_add, snmp xadd, snmp last index

406 rabbit.com SNMP

http://www.rabbit.com

snmp format oid

char * snmp format oid(snmp oid *oid);

DESCRIPTION
Debugging only: format OID in dotted decimal and return static buffer.

PARAMETERS

oid oid to format.

RETURN VALUE
Address of string in static storage.

LIBRARY
MIB.LIB

TCP/IP Manual, Vol. 2 rabbit.com 407

http://www.rabbit.com

snmp get

snmp parms * snmp get(snmp parms *p);

DESCRIPTION

Retrieves the object whose OID is set in *p. Theretrieved object information is stored back in
*p, and can be examined using the snmp _last * () seriesof functions.

PARAMETERS

P Parameter structure that was previoudly initialized by calsto
snmp_init parms(),snmp_ set stem() €tC.

RETURN VALUE
NULL if p wasNULL, or if thereis no object with the given OID. Otherwise, returns p.

LIBRARY
MIB.LIB

SEE ALSO

snmp_1init parms, snmp set stem, snmp_ append stem,

snmp_get indexed, snmp get next, snmp last int,

snmp_last long, snmp last mem, snmp_ last xmem, snmp last type,
snmp_last len

408 rabbit.com

SNMP

http://www.rabbit.com

snmp get indexed

snmp parms * snmp get indexed(snmp parms *p, word i);

DESCRIPTION

Retrieves the object whose MIB treeindex isgiven by i. The object informationisstored in *p,
and can be examined using the snmp_last * () seriesof functions. The object ID of the re-

trieved object may be obtained by calling snmp _copy oid (). Theobject ID isautomatically
setin*p,s0snmp_get next () can be called repeatedly to retrieve higher objectsin ascend-
ing sequence of object ID.

See documentation for snmp_last index () for information on MIB treeindices.

PARAMETERS
P Parameter structure that was previoudly initialized by calsto
snmp_init parms (), snmp_set stem() €fC.
i Index of object, e.g., from snmp_last index ().

RETURN VALUE
NULL if p wasNULL, or if thereis no next object. Otherwise, returns p.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp_ set stem, snmp_ append stem,

snmp_copy oid, snmp get, snmp get next, snmp last index,
snmp_last_ int, snmp_ last long, snmp last mem, snmp_ last xmem,
snmp_last type, snmp last len

TCP/IP Manual, Vol. 2 rabbit.com

409

http://www.rabbit.com

snmp get next

snmp parms * snmp get next(snmp parms *p);

DESCRIPTION

Retrieves the next object in lexicographically ascending sequence. The object information is
stored in *p, and can be examined using the snmp _last * () seriesof functions. The object
ID of theretrieved object may be obtained by calling snmp copy oid (). Theobject IDisau-
tomatically setin *p, so thisfunction can be called repeatedly to retrieve all objectsin ascending
sequence of abject ID.

PARAMETERS

P Parameter structure that was previoudly initialized by calsto
snmp_init_parms (), snmp_set_stem() etC.

RETURN VALUE
NULL if p wasNULL, or if thereis no next object. Otherwise, returns p.

LIBRARY
MIB.LIB

SEE ALSO

snmp_1init parms, snmp set stem, snmp_ append stem,

snmp_copy oid, snmp get, snmp get indexed, snmp last int,
snmp_last long, snmp last mem, snmp last xmem, snmp last type,
snmp_last len

410 rabbit.com SNMP

http://www.rabbit.com

snmp init parms

snmp parms * snmp init parms(snmp parms *p);

DESCRIPTION

Initialize the parameter structure p. Thisis used to set *p to aknown state prior to calling other
functionsinthe MIB group. If p isnot NULL, itisset to al binary zeros. Theinitia OID stemis
then set t0 "43.6.1.4.1" or, if SNMP_ENTERPRISE isdefined, it isset to
"43.6.1.4.1.SNMP_ENTERPRISE". Notethat theleading "43" isthe standard compression of
"1.3." The current read and write masks are set to SNMP_DEFAULT READMASK and

SNMP_ DEFAULT WRITEMASK respectively. The current index isset to NULL.

PARAMETERS

P Pointer to parameter structuretoinitidize. If NULL, does nothing but return
NULL.

RETURN VALUE
Always returns p.

LIBRARY
MIB.LIB

TCP/IP Manual, Vol. 2 rabbit.com 411

http://www.rabbit.com

snmp last index

word snmp last index(snmp parms *p);

DESCRIPTION

Returnthe MIB treeindex for the last object added or retrieved. Indices arethe most efficient way
to access objectsinthe MIB tree, however the efficiency comesat aprice: itispossiblefor indices
to becomeinvaid if the snmp delete () functionisever used.

Once an object is created using snmp_add_* () , itsindex is guaranteed to remain valid until
the same object isdeleted using snmp _delete (). After such time, the index may refer to an
unused tree entry (and thus be garbage) or another object may be created which will re-use the
same index.

Itis safeto storeindices of objects which are never deleted. Otherwise, the programmer must ex-
ercise caution.

Anindex valueof SNMP_NULL (which isnot the same as zero!) indicatesanull index, e.g., “ not
found” or “unknown.”

PARAMETERS

P Parameter structurethat was previously setby acall tosnmp_add_* () or
snmp_get () Or snmp_get next ().

RETURN VALUE

SNMP_NULL if p wasNULL, otherwise returnsthe index. The returned index may be garbage if
no object was added or retrieved by previous calls.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp get, snmp get next, snmp get indexed,
snmp_add, snmp xadd, snmp_ delete

412 rabbit.com SNMP

http://www.rabbit.com

snmp last int

int snmp last int(snmp parms *p);

DESCRIPTION

Return the short integer value of the last object retrieved from the MIB tree. The object must be
of ashort integer type, and may bein either xmem or root storage. If the object isin fact along

integer, then the return value will reflect only the low 16 bits of the value. If the object is of any
other type the returned value will be garbage.

PARAMETERS

p Parameter structure that was used previoudly in acall to aretrieval function
suchassnmp_get indexed (), snmp get () or
snmp_get next ().

RETURN VALUE

Returnsthe object value. Result will be garbageif the object isnot ashort integer type, or if p was
NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp get, snmp get next, snmp get indexed,
snmp_last long, snmp last mem, snmp last xmem, snmp last type,
snmp_last len

TCP/IP Manual, Vol. 2 rabbit.com 413

http://www.rabbit.com

snmp last len

word snmp last len(snmp parms *p);

DESCRIPTION

Return the current length of thelast object retrieved from the MIB tree. The object may be of any
type, and may bein either xmem or root storage. The current length may be less than or equal to
theresult fromsnmp_last maxlen().

PARAMETERS

P Parameter structure that was used previously in acall to aretrieval function
suchassnmp get indexed (), snmp get () or
snmp_get next ().

RETURN VALUE
Returns the object length. Result will be garbage if p was NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp get, snmp get next, snmp get indexed,
snmp_last int, snmp last long, snmp last mem, snmp last xmem,
snmp_last type, snmp last maxlen

414 rabbit.com SNMP

http://www.rabbit.com

snmp last long

long snmp last long(snmp parms *p);

DESCRIPTION

Return thelong integer value of the last object retrieved from the MIB tree. The object must be of
along integer type, and may bein either xmem or root storage. If the object is of any other type
(including short integer) the returned value will be garbage.

PARAMETERS

P Parameter structure that was used previously in acall to aretrieval function
suchas snmp get indexed (), snmp get () or
snmp_get next ().

RETURN VALUE
Returnsthe object value. Result will be garbage if the object isnot along integer type, or if p was
NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp get, snmp get next, snmp get indexed,
snmp_last int, snmp_ last mem, snmp_ last xmem, snmp_ last type,
snmp_last len

TCP/IP Manual, Vol. 2 rabbit.com 415

http://www.rabbit.com

snmp last maxlen

word snmp last maxlen(snmp parms *p);

DESCRIPTION

Return the maximum length of the last object retrieved from the MIB tree. The object may be of
any type, and may bein either xmem or root storage. The current length (from
snmp last len()) may belessthan or equal to the result from this function.

PARAMETERS

P Parameter structure that was used previously in acall to aretrieval function
suchassnmp get indexed (), snmp get () or
snmp_get next ().

RETURN VALUE
Returns the maximum permissible object length. Result will be garbage if p was NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp get, snmp get next, snmp get indexed,
snmp_last int, snmp last long, snmp last mem, snmp last xmem,
snmp_last type, snmp last len

416 rabbit.com SNMP

http://www.rabbit.com

snmp last mem

char * snmp last mem(snmp parms *p);

DESCRIPTION

Return thelogical address of thelast object retrieved from the MIB tree. The object may be of any
type, however, it must NOT have been defined as an xmem object.

PARAMETERS

P Parameter structure that was used previously in acall to aretrieval function
suchassnmp_get indexed (), snmp get () or
snmp_get next ().

RETURN VALUE

If p wasNULL, or the object isin xmem storage, returns NULL. Otherwise, thelogical (near) ad-
dress of the object is returned.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp get, snmp get next, snmp get indexed,
snmp_last int, snmp last long, snmp last xmem, snmp last type,
snmp_last len

TCP/IP Manual, Vol. 2 rabbit.com

417

http://www.rabbit.com

snmp last objectID

snmp parms * snmp last objectID(snmp parms *p, snmp oid * oid);

DESCRIPTION
Copy thelast OID object which was retrieved from the MIB treeinto *oid.

PARAMETERS
p Parameter structure that was used previoudly in acall to aretrieval function
suchassnmp_get indexed (), snmp get () or
snmp_get next ().
oid Pointer to an snmp_oid structure, to which the result is copied.

RETURN VALUE

NULL: if p wasNULL or the last object retrieved was not an object-I1D object.
p: otherwise.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp get, snmp get next, snmp get indexed,
snmp_last int, snmp last long, snmp last mem, snmp last xmem

418 rabbit.com SNMP

http://www.rabbit.com

snmp last snmp type

word snmp last snmp type(snmp parms *p);

DESCRIPTION

Return the SNMPtype of thelast object retrieved from the MIB tree. Each object hastwo “types.”

The SNMP type indicates the type of object to external entities using SNMP to examine objects
onthisagent. Theinternal type(seesnmp_last type ())indicatesthememory layout for the
object inthe MIB tree. The same memory layout may be used for different SNMP types, and vice
versa.

PARAMETERS

P Parameter structure that was used previously in acall to aretrieval function
suchassnmp_get indexed (), snmp get () or
snmp_get next ().

RETURN VALUE
SNMP type of the object. The currently supported types are:

SNMP_P_INTEGER
SNMP_P_OCTETSTR
SNMP_P_OID
SNMP_P_IPADDRO
SNMP_P_COUNTER
SNMP_P GAUGE
SNMP_P_TIMETICKS

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp get, snmp get next, snmp get indexed,
snmp_last int, snmp last long, snmp last mem, snmp last xmem,
snmp_last type, snmp last len

TCP/IP Manual, Vol. 2 rabbit.com 419

http://www.rabbit.com

snmp last type

snmp type snmp last type(snmp parms *p);

DESCRIPTION

Returnsthe internal type of the last object retrieved from the MIB tree. Each object has two
“types.” TheSNMPtype(seesnmp_last snmp_ type ())indicatesthetype of object to ex-
ternal entities using SNM P to examine objects on this agent. Theinternal type indicatesthe mem-
ory layout for the object in the MIB tree. The same memory layout may be used for different

SNMP types, and vice versa.
PARAMETERS
P Parameter structure that was used previoudly in acall to aretrieval function

suchassnmp_get indexed (), snmp get () or
snmp_get next ().

RETURN VALUE
Internal type of the object. The currently supported types are

SNMP_SHORT - 16-bit integer

SNMP_LONG - 32-bit integer

SNMP_STR - null-terminated string

SNMP_OCT - variable length binary (octet) string
SNMP_FOCT - fixed length binary string
SNMP_O1ID - Object ID

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp get, snmp get next, snmp get indexed,
snmp_last int, snmp last long, snmp last mem, snmp last xmem,
snmp_last snmp type, snmp_last len

420 rabbit.com SNMP

http://www.rabbit.com

snmp last xmem

long snmp last xmem(snmp parms *p);

DESCRIPTION

Return the physical address of the last object retrieved from the MIB tree. The object may have
been defined to reside in either xmem or root data space, and may be of any type.

PARAMETERS

P Parameter structure that was used previously in acall to aretrieval function
suchassnmp_get indexed (), snmp get () or
snmp_get next ().

RETURN VALUE
If p wasNULL, returns 0. Otherwise, returns the physical (20-bit linear) address of the object.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp get, snmp get next, snmp get indexed,
snmp_last int, snmp last long, snmp last mem, snmp last type,
snmp_last len

TCP/IP Manual, Vol. 2 rabbit.com

421

http://www.rabbit.com

snmp monitor

int snmp monitor (word index, long minval, long maxval, word
minintvl, word maxintvl, word nmesg, longword *ipaddr, word
¢ _index, int trap num, word noids, word *indices);

DESCRIPTION

Setsup automatic monitoring of aspecified managed object. Thismonitorsthe object (which must
be integer type), so that if the object goes outside the specified lower and upper bound, trap mes-
sageswill be sent.

This function overcomes some of the limitations of the normal snmp_trap () mechanism, in
that it performs automatic retransmissions to practically ensure that the network management
agent notices the condition.

The managed object must exist in the MIB tree, and must not be deleted while it is being moni-
tored. Any given object can only be monitored once. If the object is aready being monitored, a
call to thisfunction with the same object (index) will change the monitor settings for that object.

You must #define SNMP_ TRAPS to usethisfunction.

The maximum number of different objects which may be monitored is specified by
SNMP_MAX MONITOR.

When an object is monitored, it is periodically examined (at intervals of
SNMP_MIN TRAP INTVL milliseconds). If, at the time of examination, the object is outside
the specified bounds then trap message are initiated. After the first message is sent, another mes-
sagewill besentminintvl secondslater. Subsequent messages are sent at doubling timeinter-
vals up to amaximum of maxintvl. A maximum of nmesg messages will be sent for any
“event.” Thetimeintervals and message counters are reset as soon as the object goes back inside
the specified range.

422 rabbit.com SNMP

http://www.rabbit.com

snmp monitor (continued)

PARAMETERS

index

minval

maxval

minintvl

maxintvl

nmesg

ipaddr

c_index

trap num

noids

indices

MIB treeindex of the object to monitor. This value may be obtained when
the object is created, by caling snmp last index().

Minimum allowed value of object.

Maximum allowed value of object. If theobject is stored with an SNMPtype
of SNMP_P_INTEGER, then the comparisons are done using signed arith-
metic. All other SNM P types are assumed to be unsigned, so unsigned arith-
metic is performed.

Minimum interval, in seconds, between successive trap messages if the ob-
ject goes outside the specified bounds.

Maximum interval, in seconds, between messages.

Maximum number of messages to send while an object is outside bounds.
The message count is reset when the variable goes back inside bounds.

Address of the IP address of the network management agent to which trap
messages should be directed. A pointer is used for this parameter to allow
sharing the same destination address between multiple monitor calls. The
pointer must point to static storage.

Community table index. Thisisthe vaue returned by
snmp_add_community (), or may be SNMP TRAPDEST for the pre-
defined default trap destination community.

Trap number to use. This must be >0. Negative numbers are reserved for
SNMP predefined trap types. Otherwise, generic traps are sent.

Number of MIB treeindicesin the following list (may be zero). This must
be lessthan or equal SNMP_MAX BINDINGS.

Array of MIB treeindices. Each dlement in thisarray isthe MIB tree index
of an object to send with the trap message. Tree indices may be obtained us-
ingsnmp_last index () and other MIB functions.

TCP/IP Manual, Vol. 2

rabbit.com

423

http://www.rabbit.com

snmp monitor (continued)

RETURN VALUE
- 1: Insufficient room in monitor table.

- 2: Inappropriate object specified for monitoring (i.e., it isnot an integer type). Thiswill only be
returned if SNMP_DEBUG is defined, otherwise the check is not performed.

0..SNMP_MAX MONITOR-1: The monitor tableindex used for this object

LIBRARY
SNMP.LIB

SEE ALSO

snmp_unmonitor, snmp trap

424 rabbit.com SNMP

http://www.rabbit.com

snmp print tree

void snmp print tree(void);

DESCRIPTION

Debugging function only. Prints entire MIB tree. Leaf nodes are printed with their OID number
and value. Non-leaf nodes are printed with their OID fragment suffixed with".". For simplicity, this
function recurses.

LIBRARY
MIB.LIB

TCP/IP Manual, Vol. 2 rabbit.com 425

http://www.rabbit.com

snmp set access

snmp parms *snmp set access(snmp parms *p, byte rm, byte wm);

DESCRIPTION
Set the read and write masks for access control of the next object to be added. Read/write masks
areonly applicableif SNMPisused. Thefunctionsin thislibrary for accessing objects do not ap-
ply the access masks. Thisremainsin effect for all further additions until changed by a new call
tosnmp set access().

The rm and wm are bit 8-bit bitmasks. A bit “n” isset if the communities whose access mask have
the “n"th bit set are allowed to access the object in that mode (read or write). By default, bit O is
set for the PUBLIC community's access mask and bit 1 is set for the PRIVATE community. Typ-
icaly, objectsare created with rm = 3 and wm = 2, giving both public and private read access, but
only private has write access.

PARAMETERS
P Pointer to parameter structure to set. If NULL, does nhothing but return
NULL.
rm Read access mask.
wm Write access mask.

RETURN VALUE
Returnsp unless p isNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms

426 rabbit.com SNMP

http://www.rabbit.com

snmp set callback

snmp parms * snmp set callback(snmp parms *p, snmp callback cb);

DESCRIPTION
Set the callback function for the next object to be added. Thisremainsin effect for all further ad-
ditions until cancelled by passing NULL for the callback function.

Use of the callback function is described in the printed documentation. It is only applicable if
SNMPisbeing used. The functionsin MIB . LIB do not invoke the callback.

PARAMETERS
P Pointer to parameter structure to set. If NULL, does hothing but return
NULL.
cb Pointer to callback function, or NULL to cancel.

RETURN VALUE
Returnsp unlessp iSNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms

TCP/IP Manual, Vol. 2 rabbit.com 427

http://www.rabbit.com

snmp set community

int snmp set community(word c¢_index, char *cname, byte mask);

DESCRIPTION
Changes the name (password string) and access mask for the community indexed by ¢ _index.

PARAMETERS

c_index Community table index. Thisisthe vaue returned by
snmp_add_community (), or may be SNMP PUBLIC,
SNMP_PRIVATE or SNMP_TRAPDEST for the predefined default com-
munities.

cname Community name as a null-terminated string with maximum length of
SNMP MAX COMMUNITY NAME.

mask Access mask. This specifies the access groups (one or more of 8 groups) to

which this community belongs. Three groups are predefined:
SNMP_PUBLIC MASK - public group with read-only access
SNMP_PRIVATE MASK - private group with read/write access
SNMP_ TRAPDEST MASK - trap group with no access.

RETURN VALUE

- 1: the supplied index was outside the table bounds.
Otherwise, returnsthe ¢ index parameter.

LIBRARY
SNMP.LIB

SEE ALSO

snmp_add_community, snmp set dflt communities,
snmp_community name, snmp community mask

428 rabbit.com SNMP

http://www.rabbit.com

snmp set dflt communities

int snmp set dflt communities(char *public, char *private, char
*trapdest);

DESCRIPTION

Setsthe name (i.e., password string) of the first 3 default communities. These communities are
assigned the following access masks.

e public: SNMP PUBLIC_ MASK - read-only access
e private: SNMP_PRIVATE MASK - read/write access

e frapdest: SNMP TRAPDEST MASK - no local access, used when sending traps to the net-
work management agent.

This function should be called once, when the application isinitialized.

All parameters are null-terminated strings, with a maximum length of
SNMP MAX COMMUNITY NAME.

PARAMETERS
public Public access password.
private Private access password.
trapdest Trap password sent with trap messages.

RETURN VALUE
0

LIBRARY
SNMP.LIB

SEE ALSO

snmp_add_community, snmp set community, snmp community name,
snmp_community mask

TCP/IP Manual, Vol. 2 rabbit.com 429

http://www.rabbit.com

snmp set foct

snmp parms * snmp set foct(snmp parms *p, char *s);

DESCRIPTION

Set the value of afixed-length object. The OID of the object must be setin *p. If the object isnot
in fact afixed-length binary object, then NULL will be returned and there will be no ateration of
thevalue. s isaways assumed to point to an area of storage of the required length.

Seesnmp_set int () for other general considerations.

PARAMETERS
P Parameter structure that was previoudly initialized by callsto
snmp_init_parms (), snmp_set_stem() etC.
s New value for the object.

RETURN VALUE

NULL if p wasNULL, or if thereisno object with the given OID, or if the object was not stored
with “foct” internal type. Otherwise, returns p.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp_ set stem, snmp_ append stem,
snmp_get indexed, snmp get, snmp add, snmp xadd, snmp_ set int,
snmp_set long, snmp_set oct, snmp set str, snmp_ set objectID

430 rabbit.com SNMP

http://www.rabbit.com

snmp set int

snmp parms * snmp set int(snmp parms *p, int i);

DESCRIPTION

Set the value of ashort integer object. The OID of the object must besetin *p. If the object isnot
infact ashort integer, then NULL will be returned and there will be no ateration of thevaue. The
object may reside in either root or xmem data space.

Thisfunction only needsto be called when the address of the object itself is not known. Typicaly,
thiswould bein functions which perform general processing of MIB objects. If the address of the
object isknown, it is far more efficient to update the object directly.

PARAMETERS
P Parameter structure that was previoudly initialized by calsto
snmp_init parms (), snmp_set stem() €fC.
i New value for the object.

RETURN VALUE

NULL if p wasNULL, or if there is no object with the given OID, or if the object was not stored
with short integer internal type. Otherwise, returns p.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp set stem, snmp append stem,
snmp_get indexed, snmp get, snmp add, snmp xadd, snmp set long,
snmp_set str, snmp set oct, snmp set foct, snmp set objectID

TCP/IP Manual, Vol. 2 rabbit.com

431

http://www.rabbit.com

snmp set long

snmp parms * snmp set long(snmp parms *p, long L);

DESCRIPTION

Set the value of along integer object. The OID of the object must be setin *p. If the object is not
in fact along integer, then NULL will be returned and there will be no alteration of the value.

Seesnmp set int () for other general considerations.

PARAMETERS
P Parameter structure that was previoudly initialized by calsto
snmp_init parms (), snmp_set stem() €fC.
L New vaue for the object.

RETURN VALUE

NULL if p wasNULL, or if there is no object with the given OID, or if the object was not stored
with long integer internal type. Otherwise, returns p.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp set stem, snmp append stem,
snmp_get indexed, snmp get, snmp add, snmp xadd, snmp set int,
snmp_set str, snmp set oct, snmp set foct, snmp set objectID

432 rabbit.com SNMP

http://www.rabbit.com

snmp set objectID

snmp parms *snmp set objectID(snmp parms *p, snmp oid *oid);

DESCRIPTION

Set the value of an object-ID object. The OID of the object must be setin *p. If the object is not
in fact an OID, then NULL will be returned and there will be no alteration of the value.

Seesnmp set int () for other general considerations.

PARAMETERS
P Parameter structure that was previoudly initialized by calsto
snmp_init parms (), snmp_set stem() €fC.
oid New value for the object.

RETURN VALUE

NULL if p wasNULL, or if there is no object with the given OID, or if the object was not stored
with object-1D internal type. Otherwise, returns p.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp set stem, snmp append stem,
snmp_get indexed, snmp get, snmp add, snmp xadd, snmp set int,
snmp_set str, snmp set oct, snmp set foct, snmp set long

TCP/IP Manual, Vol. 2 rabbit.com

433

http://www.rabbit.com

snmp set oct

snmp parms * snmp set oct(snmp parms *p, word len, char *s);

DESCRIPTION

Set the value of avariable-length object. The OID of the object must be setin *p. If the object is
not in fact an octet string, then NULL will be returned and there will be no alteration of the value.
If 1en istoo long for the specified maximum storage length for this object, the datais truncated
to fit.

Seesnmp_set int () for other general considerations.

PARAMETERS
P Parameter structure that was previoudly initialized by calsto
snmp_init parms(),snmp_ set stem() €tC.
len New length for the object.
s New valuefor the object. This pointsto the actual object data, not the 2-byte

length prefix.

RETURN VALUE

NULL if p wasNULL, or if there is no object with the given OID, or if the object was not stored
with variable length octet string type. Otherwise, returns p.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp_ set stem, snmp_ append stem,
snmp_get indexed, snmp get, snmp add, snmp xadd, snmp_ set int,
snmp_set long, snmp set str, snmp set foct, snmp set objectID

434 rabbit.com SNMP

http://www.rabbit.com

snmp set oid

snmp oid * snmp set oid(snmp oid *oid, word len, char *eos);

DESCRIPTION

Thisfunctionisidentical to snmp_set_stem (), except that it usesan snmp_oid structure.
See documentation for snmp set stem().

PARAMETERS
oid Pointer to snmp _oid structureto set. If NULL, does nothing but return
NULL.
len Length of eos.
eos Encoded OID dtring.

RETURN VALUE

Returns oid unlessthe OID string istoo long to fit in the snmp oid structure in which case
NULL isreturned. If oid iSNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp append oid, snmp set parse oid,
snmp_set stem

TCP/IP Manual, Vol. 2 rabbit.com 435

http://www.rabbit.com

snmp set parse oid

snmp_oid * snmp_ set parse_ oid(snmp_oid *oid, char *name);

DESCRIPTION

Thisfunction isidentical to snmp _set parse stem(), except that it usesan snmp oid
structure. See documentation for snmp _set parse stem().

PARAMETERS
oid Pointer to snmp _oid structureto set. If it iISNULL, does nothing but return
NULL.
name OID dtring in dotted decimd notation e.g., "43.6.1"

RETURN VALUE

Returnsoid unlessthe OID string istoo long to fit in the snmp oid structurein which case
NULL isreturned. If oid iSNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_1init parms, snmp append oid, snmp set parse stem,
snmp_set stem

436 rabbit.com SNMP

http://www.rabbit.com

snmp set parse stem

snmp parms * snmp set parse stem(snmp parms *p, char *name);

DESCRIPTION

If pisnot NULL, setthe OID stemin *p to the OI D expressed in dotted decimal notationin name.
Thisfunctioniseasier to usethan snmp_set stem (), but hasthe disadvantage of being less
efficient. Apart from the method of expressing the OID, the semantics areidentical to
snmp_set stem().

PARAMETERS
P Pointer to parameter structure to set. If NULL, does hothing but return
NULL.
name OID dtring in dotted decimd notation e.g., "43.6.1"

RETURN VALUE

Returns p unlessthe OID string istoo long to fit in the parameter structure in which case NULL
isreturned. If p iISNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_1init parms, snmp set stem, snmp set parse oid

TCP/IP Manual, Vol. 2 rabbit.com

437

http://www.rabbit.com

snmp set stem

snmp parms *snmp set stem(snmp parms *p, word len, char *eos);

DESCRIPTION

If p isnot NULL, the OID stem is set to the encoded OID string specified by eos (with length
len). eos must beafully qualified OID, encoded using the internal representation (RLER).

RLER encoding is performed as follows: each OID level isan unsigned number between 0 and
2%2_1inclusive. Reading from left to right, each level is encoded and written |eft to right. If the
level islessthan 254, it iswritten as a single byte with that value. Otherwise, if it islessthan
65536, it iswritten as OXFE yy zz OxFE whereyy isthe M SB of the 16-bit valueand zz isthe LSB.
Otherwise the number is> 65536 and it iswritten as 6 bytes: OXFF ww xx yy zz OXFF where ww
isthe MSB of the 32-bit number and zz isthe LSB. Thetotal length of the constructed string is
passedin len.

Note that there are other functions which provide easier ways of setting the object 1D in the pa-
rameter structure.

Thisfunction, and related functions, serve the purpose of setting the “ current object identifier” in
the parameter structure. Thisis necessary for other functions, such as snmp _add_int (),
which need to know the applicable object identifier.

PARAMETERS
P Pointer to parameter structure to set. If NULL, does nothing but return
NULL.
len Length of eos.
eos Encoded OID dtring.

RETURN VALUE

Returnsp unlessthe OID string istoo long to fit in the parameter structure in which case NULL
isreturned. If p iISNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp append stem, snmp set parse stem,
snmp_set oid

438 rabbit.com SNMP

http://www.rabbit.com

snmp set str

snmp parms * snmp set str(snmp parms *p, char *s);

DESCRIPTION

Set the value of an ascii string object. The OID of the object must be setin *p. If the object is not
infact astring, then NULL will bereturned and therewill be no alteration of the value. If the string
istoo long for the specified maximum storage length for this object, then the string istruncated to
fit. Thismay result in the object having no null terminator.

Seesnmp_set int () for other general considerations.

PARAMETERS
P Parameter structure that was previoudly initialized by calsto
snmp_init_parms (), snmp_set_stem() etC.
s New value for the object.

RETURN VALUE

NULL if p wasNULL, or if there is no object with the given OID, or if the object was not stored
with string internal type. Otherwise, returns p.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp_ set stem, snmp_ append stem,
snmp_get indexed, snmp get, snmp add, snmp xadd, snmp_ set int,
snmp_set long, snmp set oct, snmp set foct, snmp set objectID

TCP/IP Manual, Vol. 2 rabbit.com

439

http://www.rabbit.com

snmp start

int snmp start(void);

DESCRIPTION
Restart the SNMP subsystem after calling snmp_stop () .

RETURN VALUE
0

LIBRARY
SNMP.LIB

SEE ALSO

snmp_stop

snmp stop

int snmp stop(void);

DESCRIPTION

Temporarily suspends network accessto the SNM P subsystem. Incoming SNM P messagesarere-
ceived but ignored whilein the stopped state. I the stopped state is maintained for lessthan about
1 second, then external agentswill retransmit the request. Otherwise, they may give up.

Thisfunction is used when there is a substantial amount of MIB tree processing to be performed
locally, and it isalso desired to prevent asynchronous access to the MIB tree (e.g., to prevent race
conditions).

RETURN VALUE
0

LIBRARY
SNMP.LIB

SEE ALSO

snmp_ start

440 rabbit.com SNMP

http://www.rabbit.com

snmp time since

longword snmp time since(longword epoch) ;

DESCRIPTION
Return the number of SNMP “timeticks” elapsed since a specified “epoch.”

PARAMETERS

epoch The reference epoch. This should be a value obtained by a previous call to
snmp_timeticks ().

RETURN VALUE

Number of 1/100 second intervals since epoch. Thisvalue counts from 0 to 231

around to zero.

-1, then wraps

LIBRARY
SNMP.LIB

SEE ALSO

snmp_timeticks

snmp timeticks

longword snmp timeticks(void);

DESCRIPTION
Return the current SNMP "timeticks' count.

RETURN VALUE

Number of 1/100 second intervals since the application started. This value counts from 0 to 231-

1, then wraps around to zero.

LIBRARY
SNMP.LIB

SEE ALSO

snmp_time since

TCP/IP Manual, Vol. 2 rabbit.com 441

http://www.rabbit.com

snmp trap

int snmp trap(longword ipaddr, word c_index, int trap num,
word noids, word *indices);

DESCRIPTION

Send an SNMPv1 trap message. Traps are unsolicited messages sent to a network management
agent, for example to inform the agent about an unusua condition. Traps are not delivered reli-
ably, i.e., themessage may belost inthe network. Thereis no acknowledgement of trap receipt by
the agent.

You must #define SNMP_ TRAPS to usethisfunction.

PARAMETERS

ipaddr | P address of network management agent.

c_index Community table index. Thisisthe vaue returned by
snmp_add_community (), or may be SNMP TRAPDEST for the pre-
defined default trap destination community.

trap num Trap number to use. This must be > 0. Negative numbers are reserved for
SNMP predefined trap types. Otherwise, generic traps are sent.

noids Number of MIB treeindicesin the following list (may be zero). This must
be lessthan or equal SNMP_MAX BINDINGS.

indices Array of MIB treeindices. Each element in thisarray isthe MIB tree index

of an object to send with the trap message. Tree indices may be obtained us-
ingsnmp_last index () and other MIB functions.

RETURN VALUE

-1: error, trap not sent because there was an error constructing the message (probably because too
many or too long variables were specified), or because the message could not be sent using UDP.
Otherwise, length of constructed message returned.

LIBRARY
SNMP.LIB

SEE ALSO

snmp_monitor

442 rabbit.com SNMP

http://www.rabbit.com

snmp unmonitor

int snmp unmonitor(word index);

DESCRIPTION

Stop monitoring the object that was previoudy monitored by snmp_monitor () . Thisfunction
must be used if the object being monitored isto be deleted from the MIB tree.

You must #define SNMP_ TRAPS to usethisfunction.
PARAMETERS

index MIB treeindex of the object to unmonitor.

RETURN VALUE
-1: the object is not currently being monitored.

Otherwise returns the monitor table index.

LIBRARY
SNMP.LIB

SEE ALSO

snmp_monitor, snmp trap

TCP/IP Manual, Vol. 2 rabbit.com 443

http://www.rabbit.com

snmp up oid

snmp oid * snmp up oid(snmp oid *oid, word levels);

DESCRIPTION

Thisfunction isidentical to snmp_up_stem, except that it usesan snmp_o1d structure. See doc-
umentation for snmp_up_stem().

PARAMETERS
oid Pointer to snmp_oid structure to set. If NULL, does nothing but return
NULL.
levels Number of levelsto truncate on right of current OID. If thisis greater than

the current number of levels, the OID is set to empty.

RETURN VALUE
Returns oid unless NULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp set stem, snmp up stem

444 rabbit.com SNMP

http://www.rabbit.com

snmp up stem

snmp parms * snmp up stem(snmp parms *p, word levels);

DESCRIPTION
Truncatethelast nlevelsinthe OID currently setin *p. Thismove "up" towardsthefirst level in
the OID.

PARAMETERS
P Pointer to parameter structure to set. If NULL, does hothing but return

NULL.
levels Number of levelsto truncate on right of current OID. If thisis greater than

the current number of levels, the OID is set to empty.

RETURN VALUE
Returnsp unlessp isNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp set stem

TCP/IP Manual, Vol. 2 rabbit.com

445

http://www.rabbit.com

snmp used

long snmp used(void);

DESCRIPTION

Obtain information about the amount of memory used by the MIB tree. The value returned may
be used asthe setting for SNMP_MIB_SIZE if the application does not dynamically add objects
during normal execution.

RETURN VALUE
Number of bytes of xmem currently used by the MIB tree.

LIBRARY
MIB.LIB

446 rabbit.com SNMP

http://www.rabbit.com

snmp xadd

snmp parms * snmp xadd(snmp parms *p, char *n, word type, long xs,
word maxlen) ;

DESCRIPTION

Thisfunction isidentical to snmp add (), except that the object resides in xmem storage. In-
stead of avoid * address, an xmem (20-bit linear) addressis stored.

In common with snmp_add () , thereis aso a set of macros, the use of which may result in
cleaner code. The macro names are identical to those for snmp add, except that the names all
start with "snmp_xadd.”

PARAMETERS

P Pointer to parameter structure to set. If NULL, does hothing but return
NULL.

n Optiond extraOID level to temporarily appendtothe OID in *p. If -1, this
isnot done. Otherwise, thelevel isappended; the value added; then the extra
level removed. It isnot possible to specify OID levels greater than 2311,

type Type of value to add. See descriptionin snmp_add () .

xs xmem address of the actual object in xmem data storage. The same consid-
erations apply to this address as they do for the near pointers used by
snmp_add ().

maxlen Maximum permissible length of the object.

RETURN VALUE
Returnsp unlessp iSNULL on entry, then nothing is done except to return NULL.

LIBRARY
MIB.LIB

SEE ALSO

snmp_init parms, snmp set stem, snmp_ set parse stem,
snmp_append stem, snmp append parse stem, snmp set access,
snmp_set callback, snmp up stem, snmp add, snmp delete,
snmp_get, snmp last index

TCP/IP Manual, Vol. 2 rabbit.com 447

http://www.rabbit.com

448 rabbit.com SNMP

http://www.rabbit.com

RABBIT. == PRODUCT MANUAL

13. TELNET

Thelibrary vserial . 1ib implements the telecommunications network interface known astelnet. The
implementation is atelnet-to-serial and serial-to-telnet gateway. This chapter is divided into two parts. The
first part describesthe library from Dynamic C version 7.05 and | ater. The second part describesthe library
prior to 7.05.

13.1 Telnet (Dynamic C 7.05 and Later)

Thisimplementation is more general than the previous one. Any of the four serial ports can be used and
other 1/0 streams can be added. Multiple connections are supported by the use of unique gateway identifi-
ers.

13.1.1 Setup

To use a serial port, the circular buffers must be initialized. For instance, if serial port A isused by an
application, then the following macros must be defined in the program:

#define AINBUFSIZE 31
#define AOUTBUFSIZE 31

It might be necessary to have bigger buffers for some applications.

13.1.1.1 Low-Level Serial Routines
A tableto hold the low-level 1/O routines must be defined astype vSerialSpec.

typedef struct ({

int id; // unique ID to match with calls to listen/open
int (*open) () ; // seria port routines, or

int (*close) () ; // seria port compatible routines.

int (*tick) () ;

int (*rdused) () ;

int (*wrFree) () ;

int (*read) ()

int (*write) () ;
} VSerialSpec;

TCP/IP Manual, Vol. 2 rabbit.com 449

http://www.rabbit.com

For each serial port A, B, C and D, thereis a pre-defined macro in VSERIAL . LIB:

#define VSERIAL PORTA(id) { (id), serAopen, serAclose, NULL,
serArdUsed, serAwrFree, serAread, serAwrite }

The parameter passed to VSERIAL PORTA isthe unique gateway identifier mentioned earlier. Thisvalue
is chosen by the developer when entries are made to the array of type vSerial Spec (adso known asthe
spec table).

Dynamic C 9.21 includes support for serial ports E and F on al Rabbit 3000 based boards.
13.1.1.2 Configuration Macros

VSERDIAL DEBUG
Turns on debug messages.

VSERIAL NUM GATEWAYS

The number of telnet sessions must be defined and must match the number of entries in the spec
table.

13.1.2 API Functions (Dynamic C 7.05 and Later)

The following functions compose the latest telnet API. A sample program demonstrating their useis avail-
ableat Samples\tcpip\telnet\vserial.c

vserial close

int vserial close(int id);

DESCRIPTION

Closesthe specified gateway. Thiswill not only terminate any network activity, but will also close
the serial port.

PARAMETERS
id ID of the gateway to change, as specified in the spec table.

RETURN VALUE

0: Success.
1: Failure,

LIBRARY
VSERIAL.LIB

450 rabbit.com Telnet

http://www.rabbit.com

vserial init

int vserial init (void);

DESCRIPTION
Initializes the daemon and parses the spec table.

RETURN VALUE
0: Success,
1: Failure.

LIBRARY
VSERIAL.LIB

vserial keepalive

int vserial keepalive (int id, long timeout);

DESCRIPTION

This function sets the keepalive timer to generate TCP keepalives after timeout periods of in-
activity. This helps detect if the connection has gone bad.

Keepalives should be used at the application level, but if that is not possible, then t imeout
should be set so asto not overload the network. The standard timeout is two hours, and should be
set sooner than that only for a Very Good Reason.

PARAMETERS
id Unique gateway identifier.
timeout Number of seconds of inactivity alowed before a TCP keepaliveis sent. A

value of 0 shuts off keepalives.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
VSERIAL.LIB

TCP/IP Manual, Vol. 2 rabbit.com

451

http://www.rabbit.com

vserial listen

int vserial listen(int id, long baud, int port, long remote host,

int flags);

DESCRIPTION

Listens on the specified port for atelnet connection. The gateway processis started when acon-
nection request is received. On disconnect, re-listen happens automatically.

PARAMETERS
id

baud

port

remote host

flags

RETURN VALUE

0: Success.
1: Failure,

LIBRARY
VSERIAL.LIB

ID of the gateway to change, as specified in the spec table.

The parameter to send to the open () serial port command; it'susually the
baud rate.

Thelocal TCP port to listen on.

The remote host from whom to accept connections, or 0 to accept a connec-
tion from anybody.

Option flags for this gateway. Currently the only valid bit flags are
VSERIAL COOKED to strip out telnet control codes, or O to leaveit araw
datalink.

452

rabbit.com Telnet

http://www.rabbit.com

vserial open

int vserial open(int id, long baud, int port, long remote host, int
flags, long retry);

DESCRIPTION

Opens a connection to aremote host and maintainsiit, starting the gateway process.

PARAMETERS
id

baud

port
remote host

flags

retry

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
VSERIAL.LIB

ID of the gateway to change, as specified in the spec table.

The parameter to send to the open () serial port command; it'susually the
baud rate.

The TCP port on the remote host to connect to.
The remote host to connect to.

Option flags for this gateway. Currently the only valid bit flags are
VSERIAL COOKED to strip out telnet control codes, or O to leaveit araw
datalink.

Theretry time-out, in seconds. When aconnection fails, or if the connection
was refused, we will wait this number of seconds before retrying.

TCP/IP Manual, Vol. 2

rabbit.com 453

http://www.rabbit.com

vserial tick

int vserial tick(void);

DESCRIPTION
Runs the telnet daemon - must be called periodically.

RETURN VALUE
0: Success;
1: Failure.

But call it periodically no matter thereturn value! An error message can be seenwhen 1isreturned
if you define VSERIAL DEBUG éat the top of your program.

LIBRARY
VSERIAL.LIB

454 rabbit.com Telnet

http://www.rabbit.com

13.2 Telnet (pre-Dynamic C 7.05)
The API available for telnet changed with Dynamic C version 7.05. Thisisthe old AP

13.2.1 Configuration Macros

SERIAL PORT SPEED
The baud rate of the serial port. Defaultsto 115,200 bps.

TELNET COOKED
#def ine thisto have telnet control codes stripped out of the data stream.

Thisisuseful if you are actualy tel neting to the device from another box. It should not be defined
if you are using two devices as atrangparent bridge over the Ethernet.

13.2.2 API Functions

telnet init

int telnet init(int which, longword addy, int port);

DESCRIPTION

Initializes the connection. This function must not be called by an application program starting
with Dynamic C 7.05.

PARAMETERS
which Is one of the following:
TELNET LISTEN—Listenson aport for incoming connections.

TELNET RECONNECT—Connectsto aremote host, and reconnectsif the
connection dies.

TELNET CONNECT—Connects to aremote host, and terminatesif the
connection dies.

addy I P address of the remote hogt, or O if we are listening.

port Port to bind to if we arelistening, or the port of the remote host to connect to.

RETURN VALUE
0: Success.
1: Failure.
LIBRARY
VSERIAL.LIB

TCP/IP Manual, Vol. 2 rabbit.com

455

http://www.rabbit.com

telnet tick

int telnet tick(void);

DESCRIPTION
Must be called periodically to run the daemon.

RETURN VALUE
0: Success (cal it again);
1: Failure; TELNET CONNECT died, or afatal error occurred.

LIBRARY
VSERIAL.LIB

telnet close

void telnet close(void);

DESCRIPTION
Terminates any connections currently open, and shuts down the daemon.

LIBRARY
VSERIAL.LIB

456 rabbit.com Telnet

http://www.rabbit.com

13.2.3 An Example Telnet Server

The following code implements a telnet server. It listens on well-known port 23 for a connection request.
Datais passed transparently via seria port C.

#define MY IP ADDRESS "10.10.6.105"
#define MY NETMASK "255.255.255.0"
#define MY GATEWAY "10.10.6.19"

#define MY NAMESERVER "10.10.6.19"

#define SERIAL PORT SPEED 115200 // Set seria port speed.
#undef TELNET COOKED // Thisisaraw data port.

#memmap xmem
#use "dcrtcp.lib"
#use "vserial.lib"

#define SERVER_PORT 0 // Defaultsto port 23.
main() {
sock_init () ; // Initidize stack.
telnet init (TELNET LISTEN, O,SERVER PORT); // Initidizeserver
while(!telnet tick()) // Run server; thisis non-blocking
continue;
telnet close(); // Error, close telnet connection

TCP/IP Manual, Vol. 2 rabbit.com 457

http://www.rabbit.com

13.2.4 An Example Telnet Client
This sample code implements a client that can connect to the above telnet server.

#define MY IP ADDRESS "10.10.6.106"
#define MY NETMASK "255.255.255.0"
#define MY GATEWAY "10.10.6.19"

#define MY NAMESERVER "10.10.6.19"

#define SERIAL PORT SPEED 115200 // Must match server.

#undef TELNET COOKED
#memmap xmem

#use "dcrtcp.lib"
#use "vserial.lib"

#define SERVER PORT 0 // Defaultsto port 23; must match server.
#define REM HOST "10.10.6.19" // RemoteIP to connect to.

main() {
sock_init () ; // Initidize the stack

// Téll the server to connect and reconnect if the connection is|lost
telnet init (TELNET RECONNECT,resolve (REM HOST),SERVER PORT) ;

while (!telnet tick()) // Run client; thisis non-blocking
continue;
telnet close(); // Error, close telnet connection
}
458 rabbit.com Telnet

http://www.rabbit.com

RABBI T PRODUCT MANUAL

14. GENERAL PURPOSE CONSOLE

Thelibrary, zconsole.lib, implements aserial-based console that we call Zconsole. It can be used
to:

e Configure a board.

e Upload and download web pages.

e Change web page variables without re-uploading the page.

e Send e-mail.

e Cadlssubsysteminitiaization for ARP, TCP, UDP and DNS (if applicable).

14.1 Zconsole Features

Recognizing that embedded control systems are wide-ranging in their requirements, zconsole.lib was
designed with flexibility and extensibility in mind. Designers can choose the available functionality they
want and leave the rest alone. Zconsole includes:

e | ogin name and password protection.

e Default and custom Zconsole commands.

e Default and custom error messages.

e Help text for Zconsole commands, including custom commands

e Multiple I/O streams that can be used simultaneoudly.

e A fail-safe backup system for configuration data.

14.1.1 File System Requirement
Prior to Dynamic C 7.30, an application program using Zconsole must include the lines:

#use "filesystem.lib" // 1f using the improved file system available with
// DC 7.05, substitute “fs2.lib” for “filesystem.lib”
#use "zconsole.lib"

Starting with Dynamic C 7.30, using the file system is no longer necessary.

TCP/IP Manual, Vol. 2 rabbit.com 459

http://www.rabbit.com

14.1.2 TCP/IP and Zconsole

Dynamic C TCP/IP functionality may be used by a Zconsole application program by including the state-
ment

#use “dcrtcp.lib”

in the program. Other TCP/IP protocols may be added with #use statements of the appropriate libraries.

14.2 Login Name and Password

Thereisasample program, Samples\tcpip\LOGINCONSOLE. C, that demonstrates the use of the
login name/password functionality for Zconsole. Zconsole command functions: con loginname (),
con_ loginpassword () and con logout () aredescribed in Section 14.4.1.1 starting on

page 463. The structure that saves the name and password information can be backed up using the backup
macro CONSOLE BACKUP_LOGIN. Please see Section 14.7 starting on page 484 for details on the
backup system.

14.3 Zconsole Commands and Messages

Zconsole is a command-driven application. A command isissued either at the keyboard using a terminal
emulator or acommand is generated and sent from an attached machine. Zconsole carries out the com-
mand, and either the message “OK” \n\nisreturned, or an error is returned in the form of:

ERROR XXXX Thisisan error message.\r\n

Note that the carriage return and new line characters (\r\n) are always returned by Zconsole whether the
command completed successfully or not.

14.3.1 Zconsole Command Data Structure

The command system is set up at compile time with an array of ConsoleCommand structures. Thereis
one array entry for each command recognized by Zconsole.

typedef struct ({
char *command;
int (*cmdfunc) () ;
long helptext;

} ConsoleCommand

command
Thisfiddisasring likethefollowing: “SET MAIL FROM.” That is, each word of the command
is separated by a space. The case of the command does not matter. Entering this string is how the
command isinvoked.

cmdfunc
Thisfield isafunction pointer to the function that implements the command. The functions that
comewith Zconsole are listed in Section 14.4.1.1 on page 463.

460 rabbit.com General Purpose Console

http://www.rabbit.com

helptext
Thisfield pointsto atext file. Thetext file contains help information for the associated command.
When HELP COMMAND is entered, thistext file (the help information for COMMAND) will be
printed to Zconsole. The help text comes from #ximported text files.

14.3.1.1 Help Text for General Cases

There aretwo casesin Zconsole . 1ib where help text is needed, but is not associated with a particular
command. It isstill necessary to allocate a ConsoleCommand structure to access the help text. The first
case isthe help overview given when HELP is entered by itself. The command field should be ““ and the
cmdfunc field should be NULL.

{ ", NULL, help txt },

The second caseiSHELP SET. Thisisan overview of the family of SET commands, i.e., commands that
set configuration values. For HELP SET, the command field should be “SET” and the cmdfunc field
should be NULL.

{ "SET", NULL, help set txt },

This second case illustrates the general case of displaying help for afamily of commands. The family
name can not be the name of a command.

14.4 Zconsole Command Array

Anarray of ConsoleCommand structures must be defined in an application program as a constant global
variable named console commands []. All commands available at the console, those provided in
Zconsole . lib and custom commands, must have an entry in this array.

TCP/IP Manual, Vol. 2 rabbit.com 461

http://www.rabbit.com

14.4.1 Zconsole Commands

The following is an example of alist of commands that may be defined in a Zconsole application. When
the command name, i.e., the string in the command field, is received by the console, the function pointed
tointhe cmdfunc field is executed. When the consol e receives the command, HELP <command name>,
the text file located at physical address helptext will be displayed.

const ConsoleCommand console commands[] =

{

e Rt Rt Rt et Rate Rate Nate Rate Rate Rate Ratn Nt et Ratn Rate Rt et Rt Retn Rate Ratn Ratn et et ats)

"HELLO WORLD", hello world, 0 },

"ECHO", con_echo, help echo txt },

"HELP", con help, help help txt },

"n, NULL, help txt },

"SET", NULL, help set txt },

"SET PARAM", con_ set param, 0 },

"SET IP", con set ip, help set txt },

"SET NETMASK", con set netmask, help set txt },

"SET GATEWAY", con set gateway, help set txt },

"SET NAMESERVER", con set nameserver, help set txt },

"SET MAIL", NULL, help set mail txt },

"SET MAIL SERVER", con set mail server, help set mail server txt },
"SET MAIL FROM", con set mail from, help set mail from txt },
"SHOW", con show, help show txt },

"PUT", con_put, help put txt },

"GET", con _get, help get txt },

"DELETE", con delete, help delete txt },

"LIST", NULL, help list txt },

"LIST FILES", con list files, help list txt },

"LIST VARIABLES", con list variables, help list txt },
"CREATEV", con createv, help createv txt },

"PUTV", con_putv, help putv_txt },

"GETV", con _getv, help getv txt },

"MAIL", con mail, help mail txt },

"RESET FILES", con reset files, 0 }

"RESET VARIABLES”, con reset variables, help reset variables }

462

rabbit.com General Purpose Console

http://www.rabbit.com

14.4.1.1 Default Command Functions

The following functions are provided in Zconsole. 1lib. Each onetakesapointer to a
ConsoleState structure asits only parameter, following the prototype for custom functions described
in Section 14.4.1.2 on page 468. Each of these functions return 0 when it has more processing to do (and
thus will be called again), 1 for successful completion of itstask, and -1 to report an error.

Parameters needed by the commands using these functions are passed on the command line.

con_add_nameserver()

This function adds a name server to the list of name servers (unlike con_set nameserver () that
clearsthelist of name servers and adds one hame server). A command that use this function takes one
parameter: the | P address of the name server in dotted quad notation.

con_createv()

Thisfunction creates a variable that can be used with SSI commandsin SHTML files. Certain SSI com-
mands can be replaced by the value of this variable, so that aweb page can be dynamically altered without
re-uploading the entire page. Note, however, that the value of the variableis not preserved across power
cycles, athough the variable entry is till preserved. That is, the value of the variable may change after a
power cycle. It can be changed again, though, with aputv command. It works in the following fashion (if
the command is called “ CREATEV"):

usage: "createv <varnames> <vartypes> <format> <value> [strlen]™
A web variable that can be referenced within web files is created.

<varname> ISthe name of the variable

<vartypes> isthetype of the variable (INT8, INT16, INT32, FLOAT32, Of STRING)
<format> isthe printf-style format specifier for outputting the variable (such as"%d")
<values isthe valueto assign the variable.

[strlen] isonly usedif the variableisof type STRING. It isused to give the maximum
length of the string.

con_delete()
Thisfunction deletes afile from the file system. A command that uses this function takes one parameter:
the name of thefile to delete.

con_echo()

This function turns on or off the echoing of characters on a particular 1/O stream. That is, it does not affect
echoing globally, but only for the I/O stream on which it isissued. A command that uses this function
takes one parameter: ON | OFF.

TCP/IP Manual, Vol. 2 rabbit.com 463

http://www.rabbit.com

con_get()

This function displays afile from the file system. It works in the following fashion (if the command is
caled “GET"):

e ASCII mode: usage: "get <filename>"

Thefileisthen sent, followed by the usual OK message.
e BINARY mode: usage: "get <filename> <size in bytes>"

The message "LENGTH <len>" will be sent, indicating length of the file to be sent, and then
the file will be sent, but not more than <size in bytes> bytes.

con_getv()

Thisfunction displays the value of the given variable. The variable is displayed using the printf-style for-
mat specifier given inthe createv command. A command that uses this function takes one parameter:
the name of the variable.

con_help()

This function implements the help system for Zconsole. A command that uses this function takes one
parameter: the name of another command. Zconsole outputs the associated hel p text for the requested com-
mand. The help text isthe text file referenced in the third field of the ConsoleCommand structure.

con_list_files()
Thisfunction lists the filesin the file system and their file sizes. A command that uses this function takes
No parameters.

con_list_variables()
This function displays the names and types of all variables. A command that uses this function takes no
parameters.

con_loginname()

This function stores an identifier that will be remembered across power cycles (with battery-backed
RAM). The existence of the identifier will be used to prompt the user of a new console session. Before
console access to the controller is allowed, avalid identifier must be entered in response to the prompt. A
command that uses this function takes one parameter: an identifier that will be used as the login name.

464 rabbit.com General Purpose Console

http://www.rabbit.com

con_loginpassword()

This function stores an identifier that will be remembered across power cycles (with battery-backed
RAM). The existence of the identifier will be used to prompt the user for a password after alogin name
has been entered. Before console access to the controller is allowed, avalid identifier must be entered in
response to the prompt. A command that uses this function takes no parameters on the command line, but
requires aseries of user inputsin response to prompts. In the following screen shot, the command is named
“login password,” and is typed in by the user. All other screen text shown here was printed by Zconsole.

File Edit Setup Control ‘Window Help

BazicConzole Uersion 1.8 Al
login passwor
old password:

ew Password:

Retype new Passuword:
Pazzsword Accepted

OK

AV

If no identifier is stored for the password, a <CR > must be sent in response to the prompt for the old pass-
word.

NOTE: A login name must be stored by a command using

con_ loginname () for alogin password to be applicable, i.e., if a password
has been stored but no login name, new consol e sessions will not prompt for the
password or alogin name. If alogin nameis applicable, but there is no pass-
word, new console sessions will prompt for the login name and grant access
after avalid nameis entered without prompting for a password.

con_logout()
This function exits the current console session and begins a new session by entering the initiaization state
of Zconsole. A command that uses this function takes no parameters.

con_mail()

This function sends e-mail to the server specified by con mail server (), with the return address
specified by set _mail from().A command that uses this function takes one parameter: the destina-
tion e-mail address. If the command is named mail, the usageis:

"mail destination@where.com"

Thefirst line of the message will be used as the subject, and the other lines are the body. The body is ter-
minated with a”D or ~Z (0x04 or 0x1A).

TCP/IP Manual, Vol. 2 rabbit.com 465

http://www.rabbit.com

con_put()
This function creates a new file in the file system for use with the HTTP server. It works in the following
fashion (if the command is called “PUT"):

e ASCII mode: usage: "put <filename>"
Thefileisthen sent, terminating with a”D or ~Z (0x04 or 0x1A).

e BINARY mode: usage: "put <filename> <size in bytes>"
Thefileisthen sent, and must be exactly the specified number of bytesin length.

Note that ASCII mode is only useful for text files, since the console will ignore non-displayable charac-
ters. In binary mode, the put command will time out after CON_TIMEOUT seconds of inactivity (60 by
default).

con_putv()
This function updates the value of avariable. A command that uses this function takes two parameters. the
name of the variable, and the new vaue for the variable.

con_reset_files()
This function removes all web files.

con_reset_variables()
This function removes all web variables.

con_set_dhcp()

Thisfunction turns DHCP configuration for an interface"on" or "off." Currently this command only works
with the default interface. After DHCP has been turned on, ZConsole will undertake reacquiring the lease
should it be dropped. (For example, alease might be dropped if the DHCP server is unavailable for an
extended period of time.)

con_set_gateway()
This function changes the gateway of the board. A command that uses this function takes one parameter:
the new gateway in dotted quad notation, e.g., 192.168.1.1.

con_set_icmp_config()

This function configures an interface to use directed ICMP echo request (ping) packets for configuration.
A command that uses this function takes two parameters. Thefirstis"on" or "off" to turn this feature on or
off. The second parameter is optional, and specifies the intended interface (ETHO or ETH1). Only non-
PPPOE Ethernet may be used for ping configuration.

con_set_icmp_config_reset()

Normally, when an interface has been configured via a directed ping packet, further configuration viaa
directed ping packet is disabled (until the next power cycle). This function alows the interface to be con-
figured via a ping packet again. A command that uses this function takes an optiona interface argument
(ETHO or ETHY).

466 rabbit.com General Purpose Console

http://www.rabbit.com

con_set_ip()
This function changes the | P address of the board. A command that uses this function takes one parameter:
the new | P address in dotted quad notation, e.g., 192.168.1.112.

con_set_param()

This function sets the parameter for the current 1/0 device. Depending on the I/O device, this value could
be abaud rate, a port number or a channel number. A command that uses this function takes one parame-
ter: the value for the I/O device parameter.

con_set_mail_from()

This function sets the return address for all e-mail messages. This address will be added to the outgoing e-
mail and should be valid in case the e-mail needsto be returned. A command that uses this function takes
one parameter: the return address.

con_set_mail_server()
This functions identifies the SMTP server to use. A command that uses this function takes one parameter:
the IP address of the SMTP server.

con_set_nameserver()
This function changes the name server for the board. A command that uses this function takes one parame-
ter: the | P address of the new name server in dotted quad notation, e.g., 192.168.1.1.

con_set_netmask()
This function changes the netmask of the board. A command that uses this function takes one parameter:
the new netmask in dotted quad notation, e.g., 255.255.255.0.

con_set_tcpip_debug()

Thisfunction isintended to aid in development and debugging. A command that uses this function takes
one parameter: the numerical level of debugging messages. The higher the number, the more verbose the
TCP/1P debugging messages will be.

con_show()

This function displays the current configuration of the board (1P address, netmask, and gateway). If the
devel oper’s application has configuration options she would like to show other than the IP address, net-
mask, and gateway, she will probably want to implement her own version of the show command. The new
show command can be modelled after con_show () in ZConsole.lib. A command that usesthis
function takes no parameters.

con_show_multi()
Likethe con_ show () function, this function shows the current console configuration. This command
will, however, show more network configuration than is available viacon_show ().

Interface-specific configuration information is separated out. A command that uses this function takes an
optional parameter (ETHO, ETH1, PPPO, PPP1, PPP2, etc.) to display the interface specific configuration
for the specified interface. If the optional parameter is missing, the current console configuration for all
valid interfaces is displayed.

TCP/IP Manual, Vol. 2 rabbit.com 467

http://www.rabbit.com

14.4.1.2 Custom Zconsole Commands

Developers are not limited to the default commands. A custom command is easy to add to Zconsole; sim-
ply create an entry for itin console commands []. Thethreefields of this entry were described in
Section 14.3.1. Thefirst field is the name of the command. The second field is the function that imple-
ments the command. This function must follow this prototype:

int function name (ConsoleState *state);

The parameter passed to the function is a structure of type ConsoleState. Some of thefieldsin this
structure must be manipulated by your custom command function, other fields are used by
Zconsole. lib and must not be changed by the your program.

typedef struct ({
int console number;
ConsoleIO *conio;
int state;
int laststate;

char command[CON CMD SIZE] ;

char *cmdptr;

char buffer [CON_BUF_SIZE] ; // Usefor reading in data.
char *bufferend; // Usefor reading in data.

ConsoleCommand *cmdspec;

int sawcr;

int sawesc;

int echo; // Check if echo is enabled, or changeit.
int substate;

unsigned int error;

int numparams; / / Number of parameters on command line.
int commandparams; // Number of commands issued on cmd line
char cmddata[CON_CMD DATA SIZE];

#ifndef CON_NO FS SUPPORT // Fileprocessing not needed with DC 7.30
FileNumber filenum; // Usefor file processing.
File file; // Usefor file processing.

#endif
int spec; // Usefor working with Zserver entities
long timeout; // Usefor extending the time out.

} ConsoleState;

#endif

To accomplish its tasks, the function should use state - >substate for its state machine (which is
initialized to zero before dispatching the command handler), and st ate - >command to read out the
command buffer (to get other parameters to the command, for instance). In case of error, the function
should set state->error to the appropriate value.

468 rabbit.com General Purpose Console

http://www.rabbit.com

The buffer at state->cmddata isavailable for the command to preserve data across invocations of the
command'’s state machine. The size of the buffer isadjustable viathe CON_CMD DATA SIZE macro (set
to 16 bytes by default). Generally this buffer areawill be cast into a data structure appropriate for the given
command state machine.

Both state->numparams and state->commandparams are read-only. The latter was introduced
in Dynamic C 7.30. It indicates the number of arguments in the command line that are NOT part of the
command name itself. For instance, for the command

SET IP 10.10.6.112 ETHO

state->commandparams would be 2, but state->numparams would be 4. Thisdistinctionis
made to allow the commandsin Zconsole to be insensitive to the number of words that make up the name
of the command itself, but still maintain backwards compatibility with custom commands that use
state->numparams.

The function that implements the custom command should return 0 when it has more processing to do (and
thus will be called again), 1 for successful completion of itstask, and -1 to report an error.

Thethird and final field of the console commands [] entry isthe physical address of the help text file
for the custom command in question. This file must be #ximported, along with all of the default com-
mand function help files that are being used.

IMPORTANT: The fields discussed in the previous paragraph and the fields that have
comments in the structure definition are the only ones that an application program should
change. The other fields must not be changed.

14.4.2 Zconsole Error Messages

ZCONSOLE . LIB providesalist of default error messages for the default Zconsole commands. An appli-
cation program must define an array for these error messages, as well as for any custom error messages
that are desired. To include only the default error messages, the following array is sufficient:

const ConsoleError console errors[] = {
CON_STANDARD ERRORS // includes al default error messages

}

TCP/IP Manual, Vol. 2 rabbit.com 469

http://www.rabbit.com

14.4.2.1 Default Error Messages
These are the error codes for the default error messages and the text that will be displayed by the console if

the error occurs.

#define CON_ERR_TIMEOUT 1
#define CON_ERR_BADCOMMAND 2
#define CON_ERR BADPARAMETER 3
#define CON_ERR_NAMETOOLONG 4
#define CON ERR DUPLICATE 5
#define CON_ERR BADFILESIZE 6
#define CON ERR SAVINGFILE 7
#define CON ERR READINGFILE 8
#define CON_ERR_ FILENOTFOUND 9
#define CON ERR MSGTOOLONG 10
#define CON ERR SMTPERROR 11
#define CON_ERR BADPASSPHRASE 12
#define CON ERR CANCELRESET 13
#define CON ERR BADVARTYPE 14
#define CON_ERR BADVARVALUE 15
#define CON_ERR_NOVARSPACE 16
#define CON ERR VARNOTFOUND 17
#define CON_ERR_ STRINGTOOLONG 18
#define CON_ERR _NOTAFILE 19
#define CON_ERR NOTAVAR 20
#define CON_ERR_ COMMANDTOOLONG 21
#define CON ERR BADIPADDRESS 22
#define CON ERR INVALIDPASSWORD 23
#define CON_ERR BADIFACE 24
#define CON ERR BADNETWORKPARAM 25
470 rabbit.com General Purpose Console

http://www.rabbit.com

#define CON_STANDARD ERRORS \

{CON_ERR_TIMEOUT, "Timed out." },\
{CON_ERR_BADCOMMAND, "Unknown command." },\

{CON_ERR BADPARAMETER, "Bad or missing parameter." },\
{CON_ERR_ NAMETOOLONG, "Filename too long." },\
{CON_ERR DUPLICATE, "Duplicate object found." },\
{CON_ERR BADFILESIZE, "Bad file size." },\

{CON_ERR SAVINGFILE, "Error saving file." },\
{CON_ERR READINGFILE, "Error reading file." },\
{CON_ERR FILENOTFOUND, "File not found." },\
{CON_ERR_MSGTOOLONG, "Mail message too long." },\
{CON_ERR_SMTPERROR, "SMTP server error." },\
{CON_ERR BADPASSPHRASE, "Passphrases do not match!" },6\
{CON_ERR CANCELRESET, "Reset cancelled." },\

{CON_ERR BADVARTYPE, "Bad variable type." },\
{CON_ERR BADVARVALUE, "Bad variable value." },\
{CON_ERR NOVARSPACE, "Oout of variable space." },\
{CON_ERR_VARNOTFOUND, "Variable not found." },\
{CON_ERR STRINGTOOLONG, "String too long." },\

{CON_ERR NOTAFILE, "Not a file." },\
{CON_ERR_NOTAVAR, "Not a variable." },\

{CON_ERR COMMANDTOOLONG, "Command too long." },\
{CON_ERR BADIPADDRESS, "Bad IP address." },
{CON_ERR_INVALIDPASSWORD, "Invalid Password.", },\
{CON_ERR BADIFACE, "Bad interface name." },\
{CON_ERR BADNETWORKPARAM, "Error setting network parameter."}

14.4.2.2 Custom Error Messages

Developers can create their own error messages by following the format of the default error messages. The
error code numbers should be greater than 1,000 to save room for expansion of built-in error messages.

#define NEW ERROR 1001

const ConsoleError console errors[] = {
CON_STANDARD ERRORS, // includesall default error messages
{ NEW ERROR, "Any error message I want." }

}

The default error messages should be included in console errors [] aong with any custom error
messages that are used since the commands that come with Zconsole . 1ib each expect their own par-
ticular error message.

TCP/IP Manual, Vol. 2 rabbit.com 471

http://www.rabbit.com

14.5 Zconsole I/O Interface

Multiple I/0 methods are supported, as well as the ability to add custom 1/O methods. An array of
ConsoleIO structures must be defined in the application program and named console io[]. This
structure holds handlers for common 1/0 functions for the 1/0 method.

typedef struct ({
long param; // Baud for serial, port for telnet, etc.
int (*open) ();
void (*close) () ;

int (*tick) ();
int (*puts) ()
int (*rdUsed))

int (*wrFree))
*read) ();
int (*write) ();

} ConsoleIO;

(

(;

(()
int (*wrUsed) ();

(()i

(

int

14.5.1 How to Include an I/O Method

Each supported I/0O method is determined at compile time, i.e., each supported 1/0O method must have an
entry inconsole iol].

14.5.2 Predefined I/O Methods

Several predefined I/O methods arein Zconsole. 1ib. They will be included by entering their respec-
tive macrosin console iol[].

const ConsoleIO console io[] = {
CONSOLE IO SERA (baud rate),
CONSOLE_ IO SERB (baud rate),
CONSOLE_ IO SERC(baud rate),
CONSOLE IO SERD (baud rate),
CONSOLE_ IO SP(channel number),
CONSOLE_ IO TELNET (port number),

}

The macros expand to the appropriate set of pre-defined handler functions, e.g.,

#define CONSOLE IO SERA (param) { param, serAopen, serAclose, NULL,
conio serAputs, serArdUsed, serAwrUsed, serAwrFree, serAread,
serAwrite}

14.5.2.1 Serial Ports

There are predefined I/O methods for al four of the seria ports on a Rabbit board. The baud rate is set by
passing it to the macro. See above.

472 rabbit.com General Purpose Console

http://www.rabbit.com

14.5.2.2 Telnet

Zconsole runs atelnet server. The port number is passed to the macro CONSOLE_ IO TELNET. The user
telnets to the controller that is running the console.

14.5.2.3 Slave Port

The Rabbit slave port is an 8-bit bidirectional data port. Zconsole runs on the slave processor. Two drivers
are needed.

Slave Port Driver
The slave port driver isimplemented by SLAVE PORT . LIB. For an application to use the slave port:

e Thedriver must be installed by including the library in the program.
e Acdltospinit (mode) must be madeto initialize the driver.
e A function to process Zconsole commands sent to the slave port must be provided.

The dave port has 256 channels, separate port addresses that are independent of one another. A handler
function for each channel that is used must be provided. For details on how to do this, please see the
Dynamic C User’s Manual.

A stream-based handler, SPShandler (), to process Zconsole commands for the lave is provided in
SP_STREAM.LIB. Thehandler is set up automatically by the console when the slave port I/0 method is
included. The macro, CONSOLE_IO_SP, expandsto the /O functions defined in SP_ STREAM. LIB.

Master Connected to Rabbit Slave Port
The master controller board can be another Rabbit processor or something el se.

The master also needs a driver for its end of the slave port connection. An example of the software needed
on the master isgiven in MASTER _SERIAL. LIB. The software on the master controller is, of course,
specific to the task at hand. In the example driver provided, most of the work is done by the dave, making
minimal changes necessary to the code on the master.

14.5.2.4 Custom I/O Methods

To define a custom I/0O method, you must add a structure of type ConsoleIO toconsole io[].This
structure holds the common handler functions for the I/O method. The tick function may have aNULL
pointer, but the rest of the function pointers must be valid pointers to functions.

14.5.3 Multiple I/0O Streams

Each 1/0 method hasits own state machine in Zconsole. That means that each 1/0 method is independent
of the others and they can all be used simultaneoudly. Thisimposes the important restriction that all com-
mand handlers be able to run simultaneoudly on different 1/O streams or support proper locking for func-
tions that cannot be performed simultaneously.

TCP/IP Manual, Vol. 2 rabbit.com 473

http://www.rabbit.com

14.6 Zconsole Execution

Normally, Zconsole will communicate over a seria link. The physical connection will differ dightly from
board to board. Basically, you will need a3 wire (GND, RXD, TXD) serial cable. Several initialization
steps must be taken at the beginning of an application program to execute the console.

14.6.1 File System Initialization

Prior to Dynamic C 7.30, Zconsole depended on the flash file system included with Dynamic C. There are
actually two file systems: FS1 was the first Dynamic C file system. The second one, FS2 (introduced with
Dynamic C 7.05), isan improved file system.

Besides defining the macro that directs the file system to EEPROM memory and including the appropriate
library, i.e.,

#define FS_FLASH
#use "filesystem.lib" // If using the improved file system available with
// Dynamic C 7.05, substitute “fs2.lib” for “filesystem.lib”

the application program must initialize thefile system with acall to £s_init (). Starting with
Dynamic C 7.30 none of thisis necessary because Zconsole saves configuration information to the User
block. See the designer’s handbook for your Rabbit processor (e.g., the Rabbit 4000 Designer’s Hand-
book) for more information about the User block.

14.6.2 Serial Buffers

If the pre-defined serial 1/0 methods are used, the circular buffers used for 1/O data can be resized from
their default values of 31 bytes by using macros. For example, if CONSOLE IO SERIALC isincludedin
console io[], thenlinessimilar to the following can bein the application program:

#define CINBUFSIZE 1023
#define COUTBUFSIZE 255

In general, these buffers can be smaller for slower baud rates, but must be larger for faster baud rates.

14.6.3 Using TCP/IP
To use the TCP/IP functionality of Zconsole you must have the following line in your application program:

#use “dcrtcp.lib”

If you are serving web pages you must alsoincludehttp. 1ib, and if you are sending e-mail you must
include smtp.1lib.

474 rabbit.com General Purpose Console

http://www.rabbit.com

14.6.4 Required Zconsole Functions
To run the console, the following two functions are required.

console init

int console init(void);

DESCRIPTION

This function will initialize Zconsole data structures. It must be called before
console tick () iscalledfor thefirst time. Thisfunction also |oads the configuration infor-
mation from the file system.

RETURN VALUE

0: Success,
1: No configuration information found.
<0 : Indicates an error loading the configuration date;
-1 indicates an error reading the 1st set of information,
-2 the 2nd set, and so on.

LIBRARY

zconsole.lib

console tick

void console tick(void);

DESCRIPTION
Thisfunction needsto be called periodically in an application program to allow Zconsoletimefor
processing.

LIBRARY

zconsole.lib

TCP/IP Manual, Vol. 2 rabbit.com 475

http://www.rabbit.com

14.6.5 Useful Zconsole Function
Most of the following functions are only useful for creating custom commands.

con backup

int con_backup(void);

DESCRIPTION
This function backs up the current configuration.

RETURN VALUE

0: Success
1: Failure

LIBRARY
zconsole.lib

SEE ALSO
con_backup_reserve, con_load backup

con backup bytes

long con_backup bytes(void);

DESCRIPTION

Returnsthe number of bytes necessary for each backup configuration file. Note that enough space
for two of these files needsto be reserved. Thisfunction is most useful when ZCONSOLE . LIB
isbeing used with FS2 . LIB.

RETURN VALUE
Number of bytes needed for a backup configuration file.

LIBRARY

zconsole.lib

SEE ALSO
con_backup_reserve

476 rabbit.com General Purpose Console

http://www.rabbit.com

con backup reserve

void con backup reserve(void);

DESCRIPTION

Reserves space for the configuration information in the file system. For more information on the
file system see the Dynamic C User’s Manual.

LIBRARY

zconsole.lib

SEE ALSO
con_backup, con_load_backup, con_backup_bytes

con chk timeout

int con chk timeout(unsigned long timeout);

DESCRIPTION
Checks whether the given timeout value has passed.

RETURN VALUE
0: Timeout has not passed
1 0: Timeout has passed

LIBRARY

zconsole.lib

SEE ALSO

con_set timeout

TCP/IP Manual, Vol. 2 rabbit.com 477

http://www.rabbit.com

con_ load backup

int con load backup(void);
DESCRIPTION
L oads the configuration from the file system.

RETURN VALUE

0: Success

1: No configuration information found
<0: Failure

- 1: error reading 1st set of information
-2 : error reading 2nd set of information, and so on

LIBRARY

zconsole.lib

SEE ALSO

con_backup, con_ backup reserve

con reset io

void con reset io(void);
DESCRIPTION

Resets all 1/0 methods by calling close () and open () on each of them.
LIBRARY

zconsole.lib

478

rabbit.com General Purpose Console

http://www.rabbit.com

con_ set backup 1lx

void con_set_backup 1lx(FSLXnum backuplx);

DESCRIPTION

Setsthelogical extent (LX) that will be used to store the backup configuration data. For more information
on the file system see the Dynamic C User’s Manual. Thisis only useful in conjunction with FS2 . LIB.
This should be called once before console_init (). Care should be taken that enough space is avail-
ableinthislogical extent for the configuration files. See con_backup_ bytes () for more information.

PARAMETER

backuplx LX number to use for backup

LIBRARY

zconsole.lib

SEE ALSO

con_set files 1x, con backup bytes

con set files 1x

void con set files 1x(FSLXnum fileslx);

DESCRIPTION

Setsthelogica extent (LX) that will be used to storefiles. For more information on thefile system
see the Dynamic C User’s Manual. Thisisonly useful in conjunction with Fs2 . LIB. This
should be called once before console init ().

PARAMETER

fileslx LX number to use for files.

LIBRARY

zconsole.lib

SEE ALSO

con_set backup 1x

TCP/IP Manual, Vol. 2 rabbit.com 479

http://www.rabbit.com

con set user idle

void con_set user idle(void (*funcptr) ());

DESCRIPTION

Sets a user-defined function that will be called when the console (for a particular 1/0 channdl) is
idle. The user-defined function should take an argument of type ConsoleState*

LIBRARY

zconsole.lib

SEE ALSO

con_set user_ timeout

con set timeout

unsigned long con set timeout(unsigned int seconds);

DESCRIPTION
Returnsthe value that MS_TIMER should have when the number of seconds given have elapsed.

LIBRARY

zconsole.lib

SEE ALSO

con_chk timeout

480 rabbit.com General Purpose Console

http://www.rabbit.com

con set user timeout

void con_set user timeout(void (*funcptr) ());

DESCRIPTION
Sets a user-defined function that will be called when atimeout event has occurred. The user-
defined function should take an argument of type ConsoleState*.

LIBRARY

zconsole.lib

SEE ALSO

con_set user_ idle

console disable

void console disable(int which);

DESCRIPTION

Disable processing for thedesignated consoleintheconsole io [] array. Thisfunction, aong
with console enable (), alowsthe sharing of the Zconsole port with some other process-

ing.
PARAMETER

which The console to disable.

LIBRARY

zconsole.lib

SEE ALSO

console init, console enable

TCP/IP Manual, Vol. 2 rabbit.com

481

http://www.rabbit.com

console enable

void console enable(int which);

DESCRIPTION

Enable processing for thedesignated consoleintheconsole io[] array. Thisfunction, aong
withconsole disable (), alowsthe sharing of the Zconsole port with some other process-

ing.
PARAMETER

which The console to enable.

LIBRARY

zconsole.lib

SEE ALSO

console init, console disable

482 rabbit.com General Purpose Console

http://www.rabbit.com

14.6.6 Zconsole Execution Choices

Zconsole can be used interactively with aterminal emulator or by sending commands from a program run-
ning on a device connected to the controller that is running the console.

14.6.6.1 Terminal Emulator
To manually enter Zconsole commands from a keyboard and view results in the Stdio window you must:

1. Run Dynamic C 7.05 or later.

2. Open aterminal emulator. Windows HyperTerminal comes with Windows. It does not work with binary
files, only ASCII. Tera Term can handle both ASCII and binary. It is available for free download at

http://hp.vector.co.jp/authors/VA002416/teraterm.html

3. Configure the terminal emulator as follows:

COM port: (1 or 2) to which 3-wire serial cable is connected
Baud Rate: 57,600 bps

DataBits: 8

Parity: None

Stop Bits: 1

Flow Control: None

The terminal emulator should now accept Zconsole commands.

To avoid losing an <LF> at the beginning of afile when using the con_put command function, select
Setup->Terminal from the Tera Term menu and set the Transmit option to CR+LF. This option might be
located elsewhereif you are using a different terminal emulator.

TCP/IP Manual, Vol. 2 rabbit.com 483

http://hp.vector.co.jp/authors/VA002416/teraterm.html
http://www.rabbit.com

14.7 Backup System

Zconsole can save configuration parameters to the file system or, starting with Dynamic C 7.30, to the
User block. The configuration is then available across power cycles. The backup processis done by
con_backup () . Unlike the other Zconsole command functions, con_backup () does not take a
parameter and it returns 0 if the backup was successful and 1 if it was not. This function is called by sev-
eral of the Zconsole command functions that change configuration parameters, or that add or delete files or
variables from the file system. Caution is advised when calling con_backup () sinceit writesto flash
memory.

14.7.1 Data Structure for Backup System
The developer must define an array called console backup [] of ConsoleBackup structures.

typedef struct ({

void *data;

int len;

void (*postload) () ;
void (*presave) () ;

} ConsoleBackup;

data
Thisis apointer to the data to be backed up.

len
Thisis how many bytes of data need to be backed up.

postload
Thisis afunction pointer to afunction that is called after configuration datais loaded, in case the devel-
oper needs to do something with the newly loaded configuration data.

presave

Thisisafunction pointer that is called just before the configuration datais saved so that the developer can
fill in the data structure to be saved. The functions referenced by postload () and presave () should
have the following prototype:

void my preload(void *dataptr) ;

The dataptr parameter isthe address of the configuration data (the same as the data pointer in the
ConsoleBackup structure).

484 rabbit.com General Purpose Console

http://www.rabbit.com

14.7.2 Array Definition for Backup System

const ConsoleBackup console backupl[] = ({
CONSOLE BASIC BACKUP, // echo state, baud rate/port number
CONSOLE_TCPIP_ BACKUP,
CONSOLE_TCP_MULTI BACKUP,
CONSOLE_HTTP_ BACKUP,
CONSOLE_SMTP_ BACKUP,
CONSOLE_BACKUP_LOGIN,
{ my data, my data len, my preload, my presave }

}

CONSOLE_BASIC BACKUP
Causes backup of the echo state (on or off), baud rate and port number information.

CONSOLE TCPIP BACKUP
Causes backup of the | P addresses of the controller board and the | P address of its netmask, gate-
way and name server.

Note that only one of the CONSOLE_TCP_ * structures should be used.

CONSOLE TCP MULTI BACKUP
Using thisstructure causes i fconfig () tosaveand restore network configuration. In addition
to the information saved by CONSOLE_TCP_BACKUP, multiple name servers, DHCP configu-
ration, ICMP (Ping) configuration, and multiple interface configuration are all saved by
CONSOLE_TCP MULTI BACKUP.

Somebuilt-in consolefunctionsarefor usewith CONSOLE _TCP_MULTI BACKUP.Ingenerd,
except for backwards compatibility issues, CONSOLE TCP_MULTI BACKUP should be used
instead of CONSOLE_TCP_ BACKUP.

Note that only one of the CONSOLE_TCP_ * structures should be used.

CONSOLE HTTP BACKUP
Causes backup of thefiles and variables visibleto the HTTP server.

CONSOLE_SMTP_ BACKUP
Causes backup of the mail configuration.

CONSOLE BACKUP_ LOGIN
Causes backup of the ConsoleLogin structure which stores the login name and password
strings.

TCP/IP Manual, Vol. 2 rabbit.com 485

http://www.rabbit.com

14.8 Zconsole Macros

Many macros are available to change the behavior of Zconsole. They are al listed here. Starting with
Dynamic C 7.30 additional macros are available to support saving configuration information to the User
block, DHCP, ping configuration, and multiple interfaces.

CON_ BACKUP FILEl
Thefile number used for thefirst backup file. For FS1, this number must bein therange 128-143,
sothat fs reserve blocks () canbeused to guarantee free space for the backup files. De-
faultsto 128 for FS1. Defaultsto 254 for FS2.

CON_ BACKUP FILE2
Same as above, except thisisfor the second backup file. Two files are used so that configuration
information is preserved even if the power cycles while configuration datais being saved. For
FS1, this number must bein the range 128-143. Defaultsto 129 for FS1. Defaultsto 255 for FS2.

CON BACKUP USER BLOCK
Defaults to not defined. If this is defined, then configuration information for the console will be
saved to the User block instead of to the flash file system. Note that the configuration isonly safe
in the case of power failures with aversion 3 or higher System ID block.

CON BUF SIZE
Changesthesize of the databuffer that isallocated for each |/O method. If the baud rate or transfer
speed istoo great for the console to keep up, then increasing this value may help avoid dropped
characters. It isalocated in root data space. It defaultsto 1024 bytes.

CON CMD SIZE
Changes the size of the command buffer that is allocated for each I/O method. This limitsthe
length of acommand line. It isallocated in root data space. Defaults to 128 bytes.

CON CMD DATA SIZE
Default is 16. Adjusts the size of the user data area within the state structure so that user com-
mands may preserve arbitrary information acrosscalls. The user dataareaisallocated in root data
space.

CON DHCP ACQUIRE RETRY TIMEOUT
Defaultsto 120 seconds. If DHCP is enabled, then Zconsole will maintain the DHCP lease. This
macro specifiesthe number of secondsafter which a DHCP lease has been dropped that the board
will attempt to reacquire the lease. Note that in the normal course of operation, alease will never
be dropped. Generally, that will only happen if the DHCP server isinoperable for an extended pe-
riod of time (subject to the lengths of the leases that the DHCP server issues).

CON HELP VERSION
This macro should be defined if the devel oper wants a version message to be displayed when the
HEL P command is issued with no parameters. If this macro is defined, then the macro
CON_VERSION MESSAGE must also be defined.

486 rabbit.com General Purpose Console

http://www.rabbit.com

CON_INIT MESSAGE
Definesthe messagethat is displayed on all Zconsole I/O methods upon startup. Defaultsto “ Con-
sole Ready\r\n”.

CON MAIL BUF SIZE
Maximum length of amail message. Defaults to 1024.

CON MAIL FROM SIZE
Maximum length of mail from addressto NULL terminator. Default to 51.

CON MAIL SERV SIZE
Maximum length of mail server name and NULL terminator. Defaultsto 51.

CON MAX NAME
Default is 10: maximum number of characters for alogin name. This value must be equal to or
lessthan CON_CMD_DATA_SIZE.

CON_MAX PASSWORD
Default is 10: maximum number of charactersfor alogin password.

CON NO FS SUPPORT
This macro is defined by default only if no filesystem libraries have been used. Even if afilesys-
tem library hasbeen used, thiscan till beexplicitly defined by the user. When thisisdefined, then
the console will not save configuration information to the filesystem, and no filesystem function
calswill beincluded.

CON_SP_ RDBUF_ SIZE
Size of the dave port read buffer. Defaultsto 255.

CON SP WRBUF SIZE
Size of the dave port write buffer. Defaults to 255.

CON_TIMEOUT
Adjusts the number of seconds that the console will wait before cancelling the current command.
The timeout can be adjusted in user code in the following manner:

state->timeout = con_set timeout (CON_TIMEOUT) ;
Thisisuseful for custom user commands so that they can indicate when something “ meaningful”
has happened on the console (such as some data being successfully transferred).

CON_ VAR BUF SIZE
Adjusts the size of the variable buffer, in which values of variables can be stored for use with the
HTTP server. It isallocated in xmem space. Defaults to 1024 bytes.

CON_VERSION MESSAGE
This defines the version message to display when the HEL P command isissued with no parame-
ters. It is not defined by default, so has no default value.

TCP/IP Manual, Vol. 2 rabbit.com 487

http://www.rabbit.com

14.9 Sample Program

The sample program Samples\zconsole\tcpipconsole. ¢ demonstrates many of the features of
zconsole.lib. Among the features this application supports is network configuration, uploading web
pages, changing variables for use with web pages, sending mail, and access to the console through a telnet
client. Please note that all libraries needed by zconsole.1ib must be included with #use statements
before the #use statement for the Zconsole library.

The following code istaken from tcpipconsole. c.

/ *
* Size of the buffers for serial port C. If you want to use another serial port, you should
* change the buffer macros below appropriately (and change the console_io[] array below).
5

#define CINBUFSIZE 1023

#define COUTBUFSIZE 255

/ *
* Maximum number of connections to the web server. This indicates the number of sockets
* that the web server will use.
2y

#define HTTP MAXSERVERS 2

/ *
* Maximum number of sockets this program can use. The web server is taking two sockets:
* the mail client uses one socket, and the telnet interface uses the other socket.

*

#défine MAX SOCKETS 4
*

/ * All web server content is dynamic, so we do not need http_flashspec[].
*

#défine HTTP NO FLASHSPEC
*

/ * Thefile system that the console uses should be located in flash.
*

#défine FS_FLASH

/*

* The function prototype for a custom command must be declared before the
* console_command[] array.
*/

int hello world (ConsoleState *state) ;

488 rabbit.com General Purpose Console

http://www.rabbit.com

The following code is for Zconsole configuration.

/*
* The number of console I/O streams that this program supports. Since we are supporting
* seria port C and telnet, there are two 1/O streams.
*/
#define NUM_CONSOLES 2
/*
* |f thismacro is defined, then the version message will be shown with the help command,
* when the help command has no parameters.
*/
#define CON_HELP VERSION
/*
* Defines the version message that will be displayed in the help command if
* CON_HELP_VERSION is defined.
@y
#define CON_VERSION MESSAGE "TCP/IP Console Version 1.0\r\n"
/*
* Defines the message that is displayed on al 1/0O channels when the consol e starts.
@y
#define CON INIT MESSAGE CON VERSION MESSAGE
/*
* The ximport directives include the help texts for the console commands. Having the help text
* jn xmem helps save root code space.
*/
#ximport "samples\zconsole\tcpipconsole help\help.txt" help txt

/* Therest of the #ximport statements may beseenin tcpipconsole.c. */

TCP/IP Manual, Vol. 2 rabbit.com

489

http://www.rabbit.com

The following code sets up all the data structures needed by the console.

/* The console will be available to the 1/O streams given in the following array. The I/O streams
* are defined through macros as documented in Section 14.5.2. The parameter for the first macro
* representstheinitial baud rate for serial port C. The second macro is passed the port number
* for telnet. If you change the number of 1/O streams, update NUM_CONSOLES above.* /

const ConsoleIO console iol[] = {

CONSOLE_ IO SERC (57600),
CONSOLE IO TELNET (23)

S~

* % X X F X X * F ~

This array defines the commands that are available in the console. The first parameter for the
ConsoleCommand structure is the command specification, i.e., how the console

recognizes acommand. The second parameter is the function to call when the command
isrecognized. The third parameter is the location of the #ximport’ ed help file for the command.
Note that the second parameter can be NULL, which is useful if help information is needed

for something that is not acommand (like for the "SET" command below--the help file for
"SET" contains alist of all of the set commands). Also note the entry for the command ""
which is used to set up the help text that is displayed when the help command is used by
itself (that is, with no parameters).* /

const ConsoleCommand console commands[] = ({

"HELLO WORLD", hello world, 0 },

"ECHO", con_echo, help echo txt },

"HELP", con_help, help help txt },

", NULL, help txt },

"SET", NULL, help set txt },

"SET PARAM", con set param, help set param txt },

Lt R e W W e

}i
/* Thisarray sets up the error messages that can be generated. CON_STANDARD_ERRORS s
* amacro that expands to the standard errors used by the built-in commands in zconsole.lib.
* Users can define their own errors here, aswell.* /
const ConsoleError console errors[] = {
CON_STANDARD ERRORS
};
/* Thisarray defines the information (such as configuration) that will be saved to the file system.
Note that if, for example, the HTTP or SMTP related commands are included in the
console_commands array above, then the backup information must be included in
this array. The entries below are macros that expand to the appropriate entry for each set of
functionality. Users can also add their own information to be backed up here by adding
more ConsoleBackup structures. * /
const ConsoleBackup console backup[] = ({
CONSOLE BASIC BACKUP,
CONSOLE TCP_BACKUP,
CONSOLE_HTTP_ BACKUP,
CONSOLE_SMTP_ BACKUP

* %k F F * * ~

ir

490 rabbit.com General Purpose Console

http://www.rabbit.com

The following code defines the MIME types that the web server will handle.

const HttpType http types[] = {
{ ".shtml", "text/html", shtml handler}, // Ssi
{ ".html", "text/html", NULL}, // html
{ ".gif", "image/gif", NULL},
{ ".jpg", "image/jpeg", NULL},
{ ".jpeg", "image/jpeg", NULL},
{ ".txt", "text/plain", NULL}

i

The function for the custom command is defined here and the main program finishes up the program. To
see the complete sample, look in Samples\zconsole\tcpipconsole.c.

Thisis a custom command. Custom commands aways take a ConsoleState* as an
argument (a pointer to the state structure for the given 1/O stream), and return an int.
The return value should be 0 when the command wishes to be called again on the next
console_tick(), 1 when the command has successfully finished processing, or -1

when the command has finished due to an error.* /

int hello world(ConsoleState *state) {

state->conio->puts ("Hello, World!\r\n") ;

return 1;

* F X X F

}

void main(void) {
/* Initidlize TCP/IP, clients, servers, and /O prior to using any console functions.* /
sock init () ;
tcp reserveport (80) ; // Start alisten queue and disable the 2MSL wait .
http init () ;
if (fs init (0, 64))
printf ("Filesystem not present!\n");
if (console init() != 0) {
printf ("Console did not initialize!\n");
fs format (0, 64, 1);
/* After the file system has been initialized or formatted, space must be
* reserved in the file system for the backup information. * /
con backup reserve() ;
con backup(); // Savethebackup information to the console.
}
while (1) ({
console tick() ;
http handler () ;

}

TCP/IP Manual, Vol. 2 rabbit.com 491

http://www.rabbit.com

492 rabbit.com General Purpose Console

http://www.rabbit.com

PRODUCT MANUAL
Index
Symbols E
s 0 AV | 151 e-mail
(= ol o 1010 151 POP3 Clientcccovvvveeeeeeeeereee e 365-371
FANCIUAEFIIE e 151 SMTP CHENtccovvvvvveeseeeeee e 353-364
A entrieSiNdireCtorycovvvvevevereceeceee e 79
. F
2101018}/ 0 01010 [T /1 o [FS 321
application protocols file extensionscccovevvercerecese s 32, 148
FTPClient ..o 313 filehandlersccoovevveiie v 324
FTP SEIVEr oo 321 fIl@ SIZE v 317
HTTPClieNt ..o 295 filetransfer ..o 314
HTTP SEIVEN oo 137 firewall ...oceeecee e 342
POP3 Clientcccvveeeeee e 365 FlOW CONIOl ..o 483
SMTP CHENt .ovvveeieeereeeee e 353 I o 1= o 313-320
1= 101, 449 FTP SEIVEr .o 321-344
TETPClient o 345 FTP server commandsccoceevveveereeninnenes 342-343
authentication Function Reference
o 1 I N 145 Authentication and Identification
SMTP e 354 sauth_addusercccccevveeveeeececece e, 46
sauth_authenticatecccceeevevevvreervnennn, 47
B sauth_getpasswordcccceeveeevvriereenennnn, 48
basic authenticationc.cccoceveeveiieccece e, 145 sauth_getser VO o 48
BOOTP/DHCP sauth_getuseridccccoveeeevereeceseece e, 49
USEAWIth TFTP v 345 SAUN_GERUSBIMBSK v S0
SaUth_getusernameccceeveeeveeseeseesennens 51
C sauth_getwriteacCessccvveveveeeeiereerennen, 52
SAUth_FEMOVEUSEYccvveeeeeeereseeseesee e 53
callbacks SaUth_SEtPassWordcceeeeeveeeeverrenens 54
FTP datatransferscoovevvvvieneveeneeresieeieneenens 318 SAUth SEtSEIVEr e 55
sending HTTP headerscccovevveeeccc e, 143 sauth setusermask v 56
L] S 138, 153 sauth_setwriteaccess 57
console, serial-basedcccovvvvviereiecinene 459491 caGl
D COI_CONLINUE ..o s 186
COi_redireCttoccovvvvevereerecece e 187
daemons COi_SeNdString ..ocevevveveeeereeeece e 188
FTP CHONt .o 316 http_abortCGIl ..., 189
FTP SEIVEN ..o 340 http_defaultCGl ..o, 193
HTTP SEIVED oo 218 http_finishCGI ..o 196
POP3 ClIENE oo 369 http_genHeader ... 197
1= 127 SO 456 http_get SOCK ..o 213
i ¢o YR (T 349 http_gEtACION ... 198
oo 0= o) L= TS 475 http_getCondccooiiiiiiiiiiie 200
DHCP/BOOTP, See BOOTP/DHCP http_getContentDisposition 201
Airectory listingc..ccceeveeevereeeeeceeeeceeee e 79 http_getContentLength ..o 202
dynamic Web PagEScevecuveecveecreecreicieseeeens 149 http_getContentTypeccocoevieiiinnnes 203
TCP/IP Manual, Vol. 2 rabbit.com 493

http://www.rabbit.com

http_getContextcccceevveveereeeerereeenn, 204 Dynamic (RAM) Resource Table
http getDatacccoevveveevevcrceceeeeeee 205 SSpeC_addCGI ..o 59
http getDataLengthcccovevvvvevernne 206 sspec_addformoceevvevevve e 60
http getField ..o 207 sspec_addfsfile ..ooovvveceeeccece 61
http getHTTPMethodcccoeveeeeveenenenee. 208 sspec_addfunctioncceeeeveevienenenen 62
http getHTTPMethod SIFccccvvvveeeeee 209 sspec_addrootfileooeveveecececece e 64
http getHTTPVersionc.cccecevvveevvvenee 210 sspec_addvariablecceevveevvcecne 68
http getHTTPVersion str.........ccccevveeeee. 211 sspec_addxmemfileccocevvvevvvinnnnn 69
http_getRemainingLength 212 Sspec_addXxmemvarccoceeevveveienenienn 70
http getSocketcccvvevvvvevercereceeeee, 213 5SS ofl: 1155 0 o 71
http getStatecccovvveeeeeveve e, 214 sspec_resizeraotfilecceevvenene 116
http_getTransferEncodingcccueeee... 215 Dynamic Rule Table
http getURL ..o 216 sspec_addruleooveveeeeeee 65
http_getUserStatecoeovvevvvvvrvveeveeneene 217 SSPEC_remoVEruleccceveveeenens 114
http setCondcccooevireieriee e 226 E-mail
http setStatecce e 229 pop3_getmailccccoveieeieiiiiee 368
http SKIPCGI ..o 230 POP3_INIT .o 367
http sock _bytesreadyccccccevriennenne. 231 POP3_tICK oeeeiiiieie e 369
http sock fastreadccoceveveniniennnn 232 smtp_mailtickcccccoeeiinnnnne 359
http_sock _fastwriteccoeeeeennicnene. 233 smtp_sendmailcccooeeviiinnnn. 360
http SOCK_gEtS ...ooeeiieeeeee e 234 smtp_sendmailxmem 361
http sock_modeccooeieveneiinee 235 SMEP_SEELUS e 364
http sock _readablecocoreiinnnenne. 236 File System Specifics
http_sock_thleft ... 238 SSPEC_AULOMOUNE ... 72
http_sock_writable ..o 237 sspec_fatregisterooovveeeievericneceee 82
http SOCK_ WIIte ..ocoeiiie e 238 sspec_fatregisteredocooveiinininenen 83
http sock xfastreadcccooeeeennicnnenne. 239 FTP Client
http_sock xfastwritecccceeerereeenne 239 ftp_client_filesizeccccoceeenene. 317
http SWItChCGI ..o 242 ftp_client_setupcccceovvevereniennne 314
http W .o 244 ftp_client_setup _urlc.ccceeee 315
Console ftp_client_tickccooceeviniiinenne 316
€oN_bacKuPooveeiiirireree e 476 ftp_client_xfer ... 317
con_backup _bytesccoceoeiiniiiieens 476 ftp data handlercccccenienees 318
con_backup reserveccceeeeeeennn ar7 ftp last codecccocviiiienicnnns 319
con_chk_timeoutccccovvveveieccee e, 477 FTP Server
con_load backupccccooeveiiiiiniiiiinene 478 FtP NIt o 336
(o0 ¢ I (=== A (o LS 478 ftp_set_anonymousccccceeeee 339
con_set_backup IX ..o 479 ftp_shutdowncccoeeiiiieiiennes 340
con_set filesS IX .ovevveveciecieeccececee 479 FIP tICK o 340
con_set timeoutccceeveeeeecceecieeeee. 480 HTML Forms
con_set user idleocoveeveveee e 480 http_finderrbuf ... 195
con_set_user timeoutccceceevevveeenne. 481 http_nextfverrccceeeeenne. 220
CONSOIE NIt ..o 475 http_parseformcccoceveinnn 221
CoNSOlE_tICK ..ooveirieiiiieecree e 475 http_Scanpostccccveeeereeeenennen 223
Cookie SSpeC_addfV ... 63
http setcookiecocooiivieiincieeee 227 SSPEC_FiNAfV ... 84
Data Conversion sspec_getformtitleccocevviniiinenine 89
http_contentencodeccoceeeeeereriennene. 191 SSPEC_QEfVAESC ..o 0
http date Str ..o 192 sspec_getfventrytypeccceoeevevenieneene 1
http_urldecode ... 243 Sspec_getfvien ... 92
Directory Navigation SSpec_getfvnamecccoevveeeencvnnenienne 92
(S50 o oo [74 SSpEC_getfvnuM ..o 93
SSPEC AIrlist v 79 SSPEC_GEfVOPL ..o 93
SSPEC PW .. 109 sspec_getfvoptlistiencccoovviennnnne 9
494 rabbit.com Index

http://www.rabbit.com

sspec_getfvreadonlycccoceevecveecvecnnnnn, 94 Resource Retrieval and Update
SSPEC_QELFVPEC oo 95 (5501 ol o (015 S 77
sspec_getpreformfunctioncccceeeeenee. 99 SSPEC_dElEte ..o 78
sspec_setformepilogccceevvvvnnnns 119 SSPEC_ MKAIT oo 104
sspec_setformfunction 120 SSPEC_OPEN .vvvveeerienieseeeee e e ereeesre e 106
sspec_setformprologccccvevveneene 120 sspec_readvariablecccoeevevevecieiennns 113
sspec_setformtitleccocvvevvveienens 121 15507 o3l €100 1 (R 117
sspec_setfvcheckoovvveveivvcnnen, 121 S50 C ol = < G 118
sspec_SetfvdesC ...oovvvevvvcecireeenens 122 S50/ ol - | A 133
sspec_setfventrytypecccecvveenene 122 SSPEC Ll o 135
sspec_setfvfloatrangeccoceeeenee 123 SSPEC_ WIILE v 136
sspec_setfvlen ...oovvevceeccrecee, 124 Server Resource Management
sspec_setfvnameccceeevecvecennen, 124 http_addfile ...ccoooeeeeeeee e 190
sspec_setfvoptlistcccoveveciveennens 125 http_delfile oo, 195
sspec_setfvrangeccocceeeeeeveecnene 126 shtml_addfunctionccccecenninincnnns 245
sspec_setfvreadonly ... 127 shtml_addvariablecccoeevnninennns 246
sspec_setpreformfunction 129 shtml_delfunctioncccceeevnininennns 247
HTTP Server shtml_delvariablecccooeveeveiveinns 247
http findnameccccoeeeeineeene. 196 SSPEC_AAAUSES ... 67
http_getcontextcooeeeveceeene. 204 SSpeC_CheckacCessoceveverercerierenie e 75
http handler ... 218 SSPEC_QEtUSENid ...ooeeeeiiee e 101
http idle ..o 218 SSPEC_QELUSErNAME ... 102
http iNit ..o 219 sspec_needsauthentication 105
http iS SECUrecoocevveieeieeeeee 219 sspec_readfile ... 112
http Safe ..o, 222 SSPEC_FEMOVE ...t 113
http_set_anonymouscccc...... 224 SSPEC_TEMOVEUSE!eeeeeeeieeeesieeieesiens 115
http set path ..o 228 550/ ol (== (0] £ USRI 116
http_setauthentication 225 SSPEC_SAVE ..ot 117
http_shutdown ..., 230 sspec_setsavedataooeveeeeeeenenenienenns 131
http StatUS ..o 241 SSPEC_SELUSEN ... 132
MIME Types SNMP
sspec_getMIMELYPEooveveeeereeeee 96 SMP_add ..o 393
Resource Access Control snmp_add_communityc.ccccceeereennne 396
SSPEC_ACCESS evvereeneerernerresseriesressesseseeseaneas 58 snmp_append_binary_oidcccoeeeee 397
sspec_checkpermissionsccceeeeveeevenne. 76 snmp_append_binary_stemcc........ 398
SSPEC_QELPErMISSIONS ..o 98 snmp_append_0idcoceerinniininenne 399
SSPEC_GEtrealmceceeeieeeeeee e 99 snmp_append_parse 0idccoceeeereennne 400
SSpeC_Setpermissionscoeveeeee 128 snmp_append_parse_stemc.cceeeenee. 401
Sspec_setrealmooceeeevevcrienieenns 130 snmp_append_Stem ..o 402
Resource Location and Information SNMP_community_maskc.cccceeeevennne 403
sspec_findfsname ..., 86 SNMP_COMMUNItYy _Namecccceeeveenene 404
sspec_findnamecocccoeevenencnenecen, 85 SNMP_COPY_0id .o 405
sspec_findnextfilecccoovvcnnnnnnnn, 87 SMP_delete ... 406
sspec_getfileloc ..., 88 snmp_format_oidccccecriiiiniiens 407
sspec_getfiletypecoeveeeneneneeen, 89 SNMP_GEL o 408
sspec_getfunction ..., 90 snmp_get_indexedccooriiiniininns 409
sspec_getlength ..., 95 SNMP_get_NEXE ..o 410
SSPEC_GEINAME ..ceeeeeeeeeeee e 97 SNMP_iNIt_ParmSccoveeeereeeereeeeneeene 411
sspec_getservermaskccoceeeeene 100 SnMP_last_indeXcccooevevreeneniiciene 412
SSPEC_QEIYPE ..o 100 SMP_aSt int .ooeeeieeeeeee 413
sspec_getvaraddrccoceeeveienene 102 snMp_last 1en ..o 414
sspec_getvarkindccceeveeeienene 103 snMp_last_10Ng ...ooovvveriniieeeee e 415
SSPEC_gEtVartypecccoceeeeeereeiennens 103 snmp_last maxlencccooeeevininenns 416
sspec_getxvaraddrccoevieiennne 104 snMp_last mem ... 417
TCP/IP Manual, Vol.2 rabbit.com 495

http://www.rabbit.com

snmp_last_objectIDccccceveveiireeenene 418

snmp_last_ sSnmp_typecccceeevevevinneenn, 419
snMp_last_type .oocvovvveeree e 420
snMp_last Xmemcccceeeveevreecneneenne 421
SNMP_MONILOF .veveeceeeee e e 422
SNMP_Print_tree ..ooovveveeveee e 425
SNMP_SEL_ACCESS ..vvvvereeereeierieerieneeeeens 426
snmp_set_calbackcccocvvevvvenceiennnnne, 427
snMp_set COMMUNILY ...ocveveveeeeieeereenees 428
snmp_set_dflt_communities 429
snMp_Set fOCt .vvveeieee e 430
SNMP_SEL Nt oo 431
SnMP_Set [0Ng covvveceeee e, 432
snmp_set objectIDcccoevvvveveree e, 433
SNMP_SEL OCL ..o 434
SNMP_Set 0id .o 435
snmp_set_ parse 0idcooeeeverieneiieneenn, 436
SIMpP_Set_parse Stemccceeeecenieeieenns 437
SIMP_SEE SEEM ..o 438
SIMP_SEL S e 439
SIMP_SEAIT .o 440
SNMP_SEOP e 440
SNMP_tiME_SINCE ..o 441
SNMP_tIMELICKS ., 441
SMP_TraP e 442
SNMP_UNMONITOF ... 443
SMP_UP_0Id e 444
SIMP_UP_SEEM e 445
SMP_USEd .o 446
SAMP_XAAd .o 447
Telnet
telnet_cloSeccccvvveceieeee e, 456
telnet init ..oooeoeiece e 455
telnet tick .oooocveeeeeee e 456
vserial_CloSe ...cccecivcecece e 450
vserial init .o 451
vserial_keepalivecocoeiiiiiincenee 451
A= 11T TES = [452
VSErial_OpPeNcovveeeeeie e 453
vserial ticK .o 454
TFTP Client
P EXEC iiiiiciee e 351
P INIT e 347
P TNIEX e 348
P HICK oo, 349
P tICKX e 350
H
HTML fOrmsooveveneveiveeseese e 44, 153-163
HTTP configuration Macrosccccceeevereniereneens 141
HTTP SEIVEN oo 137-247
HTTP_NO_FLASHSPECccccoeivrrireerreneeins 39
HUPSEELE ... 138

L
listing directory entriescceoeeeveiereeriencnenienn 79
M
macros

FTP SEIVES .o 322

HTTP SEIVEr oo 141

serial portsfortelnetcoocvvevveeevceececee, 450

SMTPCHENt ..o 356

telnet (7.05 and later)cccceeevvevvvevreeneneeeneenn, 450

telnet (Pre 7.05) .oveeeveeeeece e 455

ZCONSOIE ..o 486
MIME tYPES .veoveeeeeee e 32,148
P
PESSIVE OPEN .t 321
Password Protectionccceveveeeeienienienenens 46, 54
permissions

AEfALILS e 40
POP_BUFFER_SIZEcccvovniiniieirenieesieieens 365
POP_DEBUGcocetvieiivieienieesieesieesae s 365
POP_NODELETEccoovviiiviineneses e 365
POP_PARSE _EXTRA ..ot 365
POPS3 client

CONFIQUIALION ..o 365
POST commandccccocveeeniiieene e 155
R
resources

ACCESS COMLIOIS ..vvvietieiieie ettt 16
ruletable ..o, 16
S
sample programs

FTP SEIVES .o 341

POP3 CHENE ..o 370

SMTPCHENt ..o 355

telnet clientooovveeeeee 458

tEINEL SEIVES .o 457

ZCONSOIE ..o 488
SAUTH_MAXNAME ..o 40
SAUTH_MAXUSERSccooirireneeeeenienens 40
S S o 0]] 145
SERIAL_PORT_SPEEDcccceotviinrininenieeiene 455
S AVIC S o 1< o 11 33,36
SERVER_PASSWORD_ONLYcccoeoviirirerienens 40
SMTP CHENtcoveviirrirrereeree e 353-364
SMTP configuration macrosc.ccceeeeveereeereennn 356
SOl e 142, 151
SOL e 145
SSPEC_MAX_FATDRIVESccooveiriirienienne 40
SSPEC_MAX_OPEN ...cooiieinereeseeseenienens 411

496 rabbit.com

Index

http://www.rabbit.com

SSPEC_MAXNAME ..o 40

SSPEC MAXRULESccocovvvee e 40
SSPEC MAXSPECoov v 41
SSPEC NO_STATIC ..ooveeeeeveereeese e 39
SSPEC _USERSPERRESOURCEccccoevvivrvenen. 41
SSPEC XMEMVARLENcccooooveirrrereneree e 41
stack
free space for TFTPfunctionscccccevveenene 346
static resourcetablevooveveeieccecececee e, 42
Static Web PAgES ...cvvvvvveeiee e 146
T
L0, 11 SR 449458
TELNET _COOKEDccoeoeveeeeieceeeeeeeee e 455
TETP Nt oo 345-351
HMEZONE ..ot 146
TIMEZONEooovviteeeecteece et 143
I 145
U
URL-encoded datac.ccoeeveerveeiveneereereecreeneee. 156
USEr tADIE v 16
USES ISt wovviciicteceee sttt 35
\/
VSERIAL _DEBUGccooeieiereeeeeeeeeee e, 450
VSERIAL_NUM_GATEWAYS ..., 450
W
web browser controlcccocevveeceeieeeceeceeeen, 329
well-known ports
FTP SEIVES ..o 321
HTTP SEIVEr .. 142
POPS ..ottt 365
SMTP SEIVEN vttt et 353
Z
ZCONSOIE ...ttt et 459491
backup System ... 484
circular BUFFErS ...oeovveeeeecececcee e 474
COMMANGSocvireereiriecte ettt sreesresanens 460
CUSEOM COMMEANGSccoveivirreieeirecree et 468
EITON MESSAYES ..vveenvereerersrerrerseeseesseessesseeseessenns 469
/O INtEITACES ...ocvvcevetece e 472
7= (01 TSR 486487
physical ConNECLioNccccevvvvrieveerereereereeene, 474
terminal emulatorccceeveveevieeieccieceecreeeee, 483
USING TCP/IP e 474

TCP/IP Manual, Vol.2

rabbit.com

497

http://www.rabbit.com

498 rabbit.com Index

http://www.rabbit.com

	1. Introduction
	2. Web-Enabling Your Application
	2.1 Designing Your Application
	2.2 The Smallest Web Server in the WWW
	2.3 Web Server Architecture
	2.3.1 Application Block
	2.3.2 HTTP Block
	2.3.3 HTTP Block Subcomponents
	2.3.4 Zserver Block

	2.4 Architecture of a Toy Application
	2.5 A Simple but Realistic Application
	2.6 Adding Access Controls
	2.7 A Full-Featured Application
	2.8 Living Without RabbitWeb and FAT

	3. Server Utility Library
	3.1 Data Structures for Zserver.lib
	3.1.1 MIMETypeMap Structure
	3.1.2 ServerSpec Structure
	3.1.2.1� ServerSpec Fields

	3.1.3 ServerAuth Structure
	3.1.4 ServerPermissions Structure
	3.1.5 RuleEntry Structure
	3.1.6 ServerContext Structure
	3.1.7 SSpecStat Structure
	3.1.8 sspec_fatinfo Structure
	3.1.9 FormVar Structure
	3.1.10 SSpecFileHandle Structure

	3.2 Constants Used in Zserver.lib
	3.2.1 ServerSpec Type Field
	3.2.2 ServerSpec Vartype Field
	3.2.3 ServerPermissions Servermask Field
	3.2.4 Configuration Macros
	3.2.5 Macros for Control Data Initialization
	3.2.5.1 Static Rule Table
	3.2.5.2 Static MIME Type Table
	3.2.5.3 Static Resource Table

	3.3 File Compression Support
	3.4 HTML Forms
	3.5 API Functions
	sauth_adduser
	sauth_authenticate
	sauth_getpassword
	sauth_getserver
	sauth_getuserid
	sauth_getusermask
	sauth_getusername
	sauth_getwriteaccess
	sauth_removeuser
	sauth_setpassword
	sauth_setserver
	sauth_setusermask
	sauth_setwriteaccess
	sspec_access
	sspec_addCGI
	sspec_addform
	sspec_addfsfile
	sspec_addfunction
	sspec_addfv
	sspec_addrootfile
	sspec_addrule
	sspec_adduser
	sspec_addvariable
	sspec_addxmemfile
	sspec_addxmemvar
	sspec_aliasspec
	sspec_automount
	sspec_cd
	sspec_checkaccess
	sspec_checkpermissions
	sspec_close
	sspec_delete
	sspec_dirlist
	sspec_fatregister
	sspec_fatregistered
	sspec_findfv
	sspec_findname
	sspec_findfsname
	sspec_findnextfile
	sspec_getfileloc
	sspec_getfiletype
	sspec_getformtitle
	sspec_getfunction
	sspec_getfvdesc
	sspec_getfventrytype
	sspec_getfvlen
	sspec_getfvname
	sspec_getfvnum
	sspec_getfvopt
	sspec_getfvoptlistlen
	sspec_getfvreadonly
	sspec_getfvspec
	sspec_getlength
	sspec_getMIMEtype
	sspec_getname
	sspec_getpermissions
	sspec_getpreformfunction
	sspec_getrealm
	sspec_getservermask
	sspec_gettype
	sspec_getuserid
	sspec_getusername
	sspec_getvaraddr
	sspec_getvarkind
	sspec_getvartype
	sspec_getxvaraddr
	sspec_mkdir
	sspec_needsauthentication
	sspec_open
	sspec_pwd
	sspec_read
	sspec_readchr
	sspec_readfile
	sspec_readvariable
	sspec_remove
	sspec_removerule
	sspec_removeuser
	sspec_resizerootfile
	sspec_restore
	sspec_rmdir
	sspec_save
	sspec_seek
	sspec_setformepilog
	sspec_setformfunction
	sspec_setformprolog
	sspec_setformtitle
	sspec_setfvcheck
	sspec_setfvdesc
	sspec_setfventrytype
	sspec_setfvfloatrange
	sspec_setfvlen
	sspec_setfvname
	sspec_setfvoptlist
	sspec_setfvrange
	sspec_setfvreadonly
	sspec_setpermissions
	sspec_setpreformfunction
	sspec_setrealm
	sspec_setsavedata
	sspec_setuser
	sspec_stat
	sspec_tell
	sspec_write

	4. HTTP Server
	4.1 HTTP Server Data Structures
	4.1.1 HttpState
	4.1.1.1 HttpState Fields

	4.2 Configuration Macros
	4.2.1 Sending Customized HTTP Headers to the Client
	4.2.2 Saving Custom Headers from the Client

	4.3 Authentication Methods
	4.4 Setting the Time Zone
	4.5 Sample Programs
	4.5.1 Serving Static Web Pages
	4.5.1.1 Adding Files to Display
	4.5.1.2 Adding Files with Different Extensions
	4.5.1.3 Handling of Files With No Extension

	4.5.2 Dynamic Web Pages Without HTML Forms
	4.5.2.1 SSI Feature
	4.5.2.2 CGI Feature

	4.5.3 Web Pages With HTML Forms
	4.5.3.1 Sample HTML Page
	4.5.3.2 POST-Style Form Submission
	4.5.3.3 URL-Encoded Data
	4.5.3.4 Sample of a CGI Handler

	4.5.4 HTML Forms Using Zserver.lib

	4.6 HTTP File Upload
	4.6.1 What is a CGI Function and Why is It Useful?
	4.6.2 How Do I Use the New CGI Facility?
	Step 1: Specify Network Configuration
	Steps 2, 3 and 4: Specify File system and Web Server
	Step 5: Create a Web Page
	Step 6: Writing a CGI Function
	Step 7: Creating the Resource Tables
	Step 8: Create List of Content Type Mappings
	Step 9: Rule Creation
	4.6.2.1 Step 10: Create Set of User IDs
	Step 11: Tying It All Together

	4.7 API Functions for HTTP Servers
	cgi_continue
	cgi_redirectto
	cgi_sendstring
	http_abortCGI
	http_addfile
	http_contentencode
	http_date_str
	http_defaultCGI
	http_delfile
	http_finderrbuf
	http_findname
	http_finishCGI
	http_genHeader
	http_getAction
	http_getCond
	http_getContentDisposition
	http_getContentLength
	http_getContentType
	http_getcontext
	http_getContext
	http_getData
	http_getDataLength
	http_getField
	http_getHTTPMethod
	http_getHTTPMethod_str
	http_getHTTPVersion
	http_getHTTPVersion_str
	http_getRemainingLength
	http_get_sock
	http_getSocket
	http_getState
	http_getTransferEncoding
	http_getURL
	http_getUserState
	http_handler
	http_idle
	http_init
	http_is_secure
	http_nextfverr
	http_parseform
	http_safe
	http_scanpost
	http_set_anonymous
	http_setauthentication
	http_setCond
	http_setcookie
	http_set_path
	http_setState
	http_shutdown
	http_skipCGI
	http_sock_bytesready
	http_sock_fastread
	http_sock_fastwrite
	http_sock_gets
	http_sock_mode
	http_sock_readable
	http_sock_writable
	http_sock_tbleft
	http_sock_write
	http_sock_xfastread
	http_sock_xfastwrite
	https_set_cert
	http_status
	http_switchCGI
	http_urldecode
	http_write
	shtml_addfunction
	shtml_addvariable
	shtml_delfunction
	shtml_delvariable

	5. RabbitWeb
	5.1 Getting Started: A Simple Example
	5.1.1 Dynamic C Application Code for Humidity Detector
	5.1.2 HTML Pages for Humidity Detector
	5.1.2.1 The Monitor Page
	5.1.2.2 The Configuration Page

	5.2 Dynamic C Language Enhancements for RabbitWeb
	5.2.1 Registering Variables, Arrays and Structures
	5.2.1.1 Selection-type Variables

	5.2.2 Web Guards
	5.2.2.1 Reporting Errors

	5.2.3 Security Features
	5.2.4 Handling Variable Changes
	5.2.4.1 Interleaving Problems

	5.3 ZHTML Scripting Language
	5.3.1 SSI Tags, Statements and Variables
	5.3.2 Flow Control
	5.3.2.1 Looping
	5.3.2.2 Conditional Code

	5.3.3 Selection Variables
	5.3.4 Checkboxes and RadioButtons
	5.3.5 Error Handling
	5.3.6 Security: Permissions and Authentication

	5.4 TCP to Serial Port Configuration Example
	5.4.1 Dynamic C Application Code
	5.4.2 HTML Page for TCP to Serial Port Example

	5.5 RabbitWeb Reference
	5.5.1 Language Enhancements Grammar
	5.5.2 Configuration Macros
	5.5.3 Compiler Directives
	5.5.4 ZHTML Grammar
	5.5.5 RabbitWeb Functions

	6. HTTP Client
	6.1 Configuration Macros
	6.2 API Functions
	6.2.1 Initialization Functions
	6.2.2 Connect and Request Functions
	6.2.3 Read Server Response Functions
	6.2.4 Miscellaneous Functions
	6.2.5 Function Descriptions
	httpc_close
	httpc_get
	httpc_get_url
	httpc_headermatch
	httpc_init
	httpc_init_if
	httpc_open
	httpc_post
	httpc_post_ext
	httpc_post_url
	httpc_read_body
	httpc_read_header
	httpc_request
	httpc_skip_headers
	httpc_use_proxy

	7. FTP Client
	7.1 Configuration Macros
	7.2 API Functions
	ftp_client_setup
	ftp_client_setup_url
	ftp_client_tick
	ftp_client_filesize
	ftp_client_xfer
	ftp_data_handler
	ftp_last_code

	7.3 Sample FTP Transfer

	8. FTP Server
	8.1 Configuration Macros
	8.2 File Handlers
	8.2.1 Replacing the Default Handlers
	8.2.2 File Handlers Specification
	ftp_dflt_open
	ftp_dflt_getfilesize
	ftp_dflt_read
	ftp_dflt_write
	ftp_dflt_close
	ftp_dflt_list
	ftp_dflt_cd
	ftp_dflt_pwd
	ftp_dflt_mdtm
	ftp_dflt_delete

	8.3 API Functions
	ftp_dflt_is_auth
	ftp_init
	ftp_load_filenames
	ftp_save_filenames
	ftp_set_anonymous
	ftp_shutdown
	ftp_tick

	8.4 Sample FTP Server
	8.5 Getting Through a Firewall
	8.6 FTP Server Commands
	8.7 Reply Codes to FTP Commands

	9. TFTP Client
	9.1 BOOTP/DHCP
	9.2 Data Structure for TFTP
	9.3 API Functions
	tftp_init
	tftp_initx
	tftp_tick
	tftp_tickx
	tftp_exec

	10. SMTP Mail Client
	10.1 Sample Conversation
	10.2 SMTP Authentication
	10.3 Sample Sending of an E-mail
	10.4 Configuration Macros
	10.5 API Functions
	smtp_data_handler
	smtp_mailtick
	smtp_sendmail
	smtp_sendmailxmem
	smtp_setauth
	smtp_setserver
	smtp_setserver_ip
	smtp_status

	11. POP3 Client
	11.1 Configuration
	11.2 Steps to Receive E-mail.
	11.3 Call-Back Function
	11.3.1 Normal call-back
	11.3.2 POP_PARSE_EXTRA call-back

	11.4 API Functions
	pop3_init
	pop3_getmail
	pop3_tick

	11.5 Sample Receiving of E-mail
	11.5.1 Sample Conversation

	12. SNMP
	12.1 SNMP Overview
	12.1.1 Managed Objects
	12.1.2 SNMP Agent
	12.1.3 MIBs
	12.1.3.1 MIB-II Subtree
	12.1.3.2 Enterprise Subtree

	12.1.4 SMI

	12.2 Demo Program
	12.2.1 Creating Managed Objects
	12.2.2 Callback Functions
	12.2.2.1 Callback Function Example

	12.2.3 Creating Communities
	12.2.4 Creating the MIB
	12.2.5 Defining Managed Objects with SMI
	12.2.5.1 Defining the Rabbit Subtree
	12.2.5.2 Defining the Demo MIB

	12.2.6 Running the SNMP Agent

	12.3 Configuration Macros
	12.4 API Functions
	snmp_add
	snmp_add_community
	snmp_append_binary_oid
	snmp_append_binary_stem
	snmp_append_oid
	snmp_append_parse_oid
	snmp_append_parse_stem
	snmp_append_stem
	snmp_community_mask
	snmp_community_name
	snmp_copy_oid
	snmp_delete
	snmp_format_oid
	snmp_get
	snmp_get_indexed
	snmp_get_next
	snmp_init_parms
	snmp_last_index
	snmp_last_int
	snmp_last_len
	snmp_last_long
	snmp_last_maxlen
	snmp_last_mem
	snmp_last_objectID
	snmp_last_snmp_type
	snmp_last_type
	snmp_last_xmem
	snmp_monitor
	snmp_print_tree
	snmp_set_access
	snmp_set_callback
	snmp_set_community
	snmp_set_dflt_communities
	snmp_set_foct
	snmp_set_int
	snmp_set_long
	snmp_set_objectID
	snmp_set_oct
	snmp_set_oid
	snmp_set_parse_oid
	snmp_set_parse_stem
	snmp_set_stem
	snmp_set_str
	snmp_start
	snmp_stop
	snmp_time_since
	snmp_timeticks
	snmp_trap
	snmp_unmonitor
	snmp_up_oid
	snmp_up_stem
	snmp_used
	snmp_xadd

	13. Telnet
	13.1 Telnet (Dynamic C 7.05 and Later)
	13.1.1 Setup
	13.1.1.1 Low-Level Serial Routines
	13.1.1.2 Configuration Macros

	13.1.2 API Functions (Dynamic C 7.05 and Later)
	vserial_close
	vserial_init
	vserial_keepalive
	vserial_listen
	vserial_open
	vserial_tick

	13.2 Telnet (pre-Dynamic C 7.05)
	13.2.1 Configuration Macros
	13.2.2 API Functions
	telnet_init
	telnet_tick
	telnet_close

	13.2.3 An Example Telnet Server
	13.2.4 An Example Telnet Client

	14. General Purpose Console
	14.1 Zconsole Features
	14.1.1 File System Requirement
	14.1.2 TCP/IP and Zconsole

	14.2 Login Name and Password
	14.3 Zconsole Commands and Messages
	14.3.1 Zconsole Command Data Structure
	14.3.1.1 Help Text for General Cases

	14.4 Zconsole Command Array
	14.4.1 Zconsole Commands
	14.4.1.1 Default Command Functions
	14.4.1.2 Custom Zconsole Commands

	14.4.2 Zconsole Error Messages
	14.4.2.1 Default Error Messages
	14.4.2.2 Custom Error Messages

	14.5 Zconsole I/O Interface
	14.5.1 How to Include an I/O Method
	14.5.2 Predefined I/O Methods
	14.5.2.1 Serial Ports
	14.5.2.2 Telnet
	14.5.2.3 Slave Port
	14.5.2.4 Custom I/O Methods

	14.5.3 Multiple I/O Streams

	14.6 Zconsole Execution
	14.6.1 File System Initialization
	14.6.2 Serial Buffers
	14.6.3 Using TCP/IP
	14.6.4 Required Zconsole Functions
	console_init
	console_tick

	14.6.5 Useful Zconsole Function
	con_backup
	con_backup_bytes
	con_backup_reserve
	con_chk_timeout
	con_load_backup
	con_reset_io
	con_set_backup_lx
	con_set_files_lx
	con_set_user_idle
	con_set_timeout
	con_set_user_timeout
	console_disable
	console_enable

	14.6.6 Zconsole Execution Choices
	14.6.6.1 Terminal Emulator

	14.7 Backup System
	14.7.1 Data Structure for Backup System
	14.7.2 Array Definition for Backup System

	14.8 Zconsole Macros
	14.9 Sample Program

	Index

