
© 1999 Grammar Engine

User Manual
Version 4.0

921 Eastwind Drive, Suite 122, Westerville Ohio 43081
(614) 899-7878 Voice - (614) 899-7888 Fax

www.promice.com

PromICE User Manual

PromICE User Manual

Version 4.0

All rights reserved

Copyright © 1999 by Grammar Engine Inc.

No part of this book may be reproduced in any form or by any means without
prior written permission from Grammar Engine Inc.

PRINTED IN THE UNITED STATES OF AMERICA

© 1999 Grammar Engine

What's New in This Edition
This Version 4.0 release of Grammar Engine Inc.'s LoadICE software and
PromICE User Manual benefits customers new and experienced alike.
Here is how:

• Setup -The Configuration Tool
Provides a cursor menu interface for choosing configuration options
and creates the loadice.ini file to store your settings.

• Simplified Command Descriptions
Command documentation now in an easy to read format.

• Introduction to Dialog Mode
Get started with Dialog mode that provides convenient, interactive
diagnostics and prototyping.

• Analysis Interface (AI) Configuration Reference
In-depth procedure for AI configuration.

• AI Interrupt Control Commands
Aircvint controls AI receiver interrupts. On AI2, aixmtint regulates
AI transmitter interrupts. Intlen defines interrupt request duration.

• New Commands for Flexible loadice.ini Programming
In addition to defining session settings, the begin and clearfiles
commands enable limited scripting capability for fills and loads.

• Ethernet Microplex Connectivity
The ethernet command supports Microplex print server connectivity.

• Analyze Command
Reads your hex or image code files and reports the information you
need to create the file command.

• Fillall Simplifies Clearing Memory
Use the fillall command to erase all PromICE memory.

• Refined Control of PromICE
The modein, modeout, and modefixed commands allow control of
the entry and exit mode of PromICE (Emulation or Load mode).

• Revised File Command
The file command syntax is simpler than before.

• PromICE Unit IDs Chapter
For those who use unit IDs.

PromICE User Manual

5

© 1999 Grammar Engine

Table of Contents
1. Introduction ___________________________9

2. Installation ___________________________21

3. Software Configuration _________________35

4. Command Reference ___________________47

5. The LoadICE Environment _____________131

6. Troubleshooting ______________________139

7. Error Messages _______________________150

8. AI Configuration______________________162

9. AI Command Reference ________________179

10. AI Porting __________________________197

11. AI Troubleshooting___________________207

12. PromICE Unit IDs ___________________211

13. Unused Address Lines_________________223

14. Technical Specifications_______________231

Index__________________________________241

6

PromICE User Manual

WARRANTY
GEI provides a 30-day money back guarantee on its products. Within that period, if you
are not fully satisfied with PromICE, it can be returned for a refund. The shipping and
handling fees are non-refundable. All returned merchandise must be complete, in
working order, and returned in the original packing with a GEI-supplied Return
Material Authorization number.

GEI products are covered by a one year warranty. GEI warrants that the equipment is
free of manufacturing defects (i.e. defects in material and workmanship under normal
and proper use in their unmodified condition) for a period of one year from the date of
delivery. GEI shall repair or replace any defective equipment during this period at its
option. This warranty does not cover any damage resulting from accident, abuse, or any
consequential damages as a result of the use of this product.

WARNING: All warranties are void if PromICE is opened!

REPAIR/REPLACEMENT

GEI shall perform all warranty repairs and return ship the product via three day
shipping at no charge. Handling charges apply for special shipping considerations. To
return a product for repair or replacement, GEI shall provide a return material
authorization number (RMA#) which should be clearly marked on the outside of the
package. A copy of the invoice or packing slip must accompany the returned items.

Any static-sensitive device returned to GEI must be shipped in a static-shielding
bag. The warranty is VOID if the product is not returned in this manner.

7

© 1999 Grammar Engine

Technical Support
You can contact Grammar Engine Technical Support via our web site, email, phone
and fax.

Web site www.promice.com
By Phone (614) 899-7878
By Fax (614) 899-7888
By Email support@gei.com

Please have the following information:

PromICE Model and Serial number (from the underside of the PromICE case,
model number starts with a "P")

GEI adapter model number(s)

All switch and/or jumper settings on PromICE and adapter boards

Contents of the loadice.ini file or command line

The error message being encountered

Target information:

CPU type

Clock rate

ROM part number

ROM access time

Host type and type of connection to PromICE (serial, parallel or both)

8

PromICE User Manual

Introduction 9

© 1999 Grammar Engine

1. Introduction

Contents
Welcome to PromICE

What is PromICE?
How PromICE works
Main PromICE Features

PromICE/AI
What is PromICE/AI?
How PromICE/AI works
Main AI Features

Dialog Mode
What is Dialog Mode?
How Dialog Mode works
Using Dialog Mode

Getting Updates and Giving Feedback

10 Introduction

PromICE User Manual

Welcome to PromICE
PromICE adds convenience and new capabilities to your embedded development
environment. The AI option enhances target monitor-based debugging. The Trace
option provides real time, non-intrusive trace information.

What is PromICE?
Grammar Engine PromICE began as a memory emulator. By replacing your
target's ROM with its internal RAM memory, PromICE speeds firmware
testing. Normally testing new ROM code involves burning an EPROM or
programming a Flash memory, which are time-consuming tasks. Loading test
code into PromICE emulation memory is fast and convenient.

More than just a memory emulator, PromICE accelerates the debugging process
through a number of features that enhance the capabilities of software-based
debuggers as well as stand-alone debugging.

Each PromICE system consists of the following:

• The PromICE unit.

• The external power supply supplied with PromICE.

• Host cables to connect PromICE to your workstation.

• Target cables to connect PromICE to your target system.

• LoadICE software, for your host or workstation, to manage your
PromICE unit.

How PromICE works
During hardware and software installation, you will setup your PromICE and
connect it to your host and target systems. You can setup the Host-to-PromICE
communication settings using the LoadICE software via the loadice.ini file or
the DOS console using command line switches.

When connecting PromICE to your target system, use GEI target cables, which
may contain adapter boards and can connect to your target in the following
ways:

• Socket probe that fits into the ROM socket in place of your target's
EPROM or Flash memory chip.

• Solder-down probe which provides a sturdy connection to your target.

Introduction 11

© 1999 Grammar Engine

• GEI Direct Connect interface consisting of a ROM cable terminated
with a female 34 or 60 pin connector and a male header built into
your target board.

During setup for ROM emulation, you can use the LoadICE software to
configure your PromICE via 1) building a loadice.ini file using the setup
command, 2) using command line switches, or 3) issuing commands in the
interactive Dialog mode. The rom, word and certain other LoadICE
commands specify the characteristics of the PromICE emulation memory. This
is called the current PromICE ROM Configuration.

Following hardware and software installation, you can load new code into
PromICE emulation memory when PromICE is in Load mode. While
PromICE is in Load mode, the target cannot access PromICE emulation
memory. By connecting PromICE to a shareable reset input on your target,
PromICE can hold your target in reset during Load mode.

Once the test code has been loaded, you can use LoadICE to command
PromICE into emulation mode. While emulating, PromICE responds to target
processor memory fetches like an EPROM. The target executes your new code,
which it reads from PromICE emulation memory. While PromICE is in
emulation mode, LoadICE commands cannot access the contents of PromICE
emulation memory.

Internally, PromICE is composed of PromICE 8 bit units, each unit having an
8 bit word and containing the amount of emulation memory indicated by the
PromICE model number. (See Technical Specifications for the model number
format.) A Dual PromICE contains two 8 bit units and can emulate either two
8 bit ROMs or one 16 bit ROM with the use of a 16 bit adapter. Multiple
PromICEs can be daisy chained using host cable adapters to emulate larger
word sizes.

Main PromICE Features
Fast Downloading
PromICE downloads in seconds, rather than the minutes required by ROM
programming, target serial ports, In-circuit emulators and BDM downloads.

12 Introduction

PromICE User Manual

Flexible Emulation
With up to 32 Mbit (2 MB by 16), a PromICE can emulate any ROM equal to
or smaller than its full capacity. PromICE is available in access speeds as fast
as 35ns.

Targets with 16 bit data buses can be emulated with a Dual PromICE. For 32
bit and larger data widths, PromICEs can be daisy chained together through
serial or serial/parallel connections.

ROM footprints supported
PromICE supports many ROM package types including DIP, PLCC, TSOP,
PSOP, SSOP, SIMM, and micro BGA footprints as well as thousands of ROM,
EPROM, and FLASH devices. Custom cables can be provided for other socket
configurations.

Full ROM space available for debugging
When you use a monitor burned into ROM, you must use RAM to test your
code. This is inconvenient and sometimes impossible. PromICE makes the full
ROM space function like RAM during debugging. Code can be loaded into the
same ROM addresses used in the final design. This eliminates the need to
relocate code after debugging.

Write to ROM
Connecting the target write line to PromICE allows debuggers to set
breakpoints and load code. PromICE supports emulation of EPROMs,
EEPROMs, RAM, etc. PromICE also supports reset and interrupt line outputs
to the target, providing debuggers with more control.

PromICE management software included
The LoadICE software supports download file formats including Binary, all
Intel hex, and all Motorola S-records. Host support includes DOS, Windows
95/98/NT, UNIX, HP-UNIX and VAX/VMS systems. Full ANSI C source code
is included for the UNIX and DOS versions.

Non-Volatile memory
PromICE retains emulation memory when the target is reset and reinitialized
for code testing. Data is retained for a time even when PromICE is shut off.

Introduction 13

© 1999 Grammar Engine

PromICE/AI
What is PromICE/AI?

The PromICE Analysis Interface option, referred to as "AI," implements a
virtual serial port for use by a monitor-based debugger.

A monitor-based debugger consists of a host-side front-end and a target-based
monitor. Monitors that support PromICE/AI communicate with their host side
software through the AI Interface located within the ROM address space. The
host connects to the PromICE serial port instead of a target serial port.

The serial port on your target is no longer needed for debugging. This is
helpful when your application or a RTOS requires the target serial port.

Note: The PromICE AI option is available on units with "AI" or "AI2" as part
of the model number.

How PromICE/AI works
The AI Interface, which emulates an UART, is composed of four AI control
registers, which are mapped into a region within the PromICE ROM
emulation memory. The target can communicate bi-directionally with the host
by reading this interface. AI does not require the target to write into ROM
addresses in order to transmit data.

While the AI Interface is active, PromICE is in an AI communications session
and functions as a pass-through data-forwarding device. LoadICE cannot be
used to access PromICE without disrupting the current AI session.

Internally, the AI option is a PromICE daughter board. On a dual PromICE,
the AI control registers are only accessible through the master PromICE 8 bit
unit, ID=0. The master unit connects to your target through the lower
connector on the back of a dual PromICE.

With minimal code, your target system can have bi-directional communications
using the AI option without costing target hardware resources. The AI option
can provide interrupt driven communications. Also, if you have AI2 and your
target permits write access to ROM addresses, your debugger monitor can
transmit data by writing to one of the AI control registers.

14 Introduction

PromICE User Manual

Main AI Features
Virtual Serial Port
Your debugger monitor can communicate with the host through PromICE's
virtual serial port, located in the PromICE emulation memory address range.

Frees target serial port for other uses
The serial port on your target is no longer needed for debugging. This is
helpful when your application or a RTOS requires the target serial port.

Interrupt driven communications
By connecting the target interrupt line to PromICE, the debugger monitor can
use interrupts to receive data from the host, and on AI2 use interrupts to
transmit data to the host.

Introduction 15

© 1999 Grammar Engine

 Dialog Mode
What is Dialog Mode?

Dialog mode provides an interactive session within the LoadICE software.
You can use Dialog mode to prototype PromICE configurations and diagnose
problems. At the Dialog mode input prompt, you can enter LoadICE
commands and see the results immediately.

To access Dialog mode, use the dialog command as a switch on the LoadICE
command line or in the loadice.ini file (see the dialog command for details). It
will force LoadICE to enter Dialog mode upon finishing loadice.ini file
processing.

How Dialog Mode works
Upon entering Dialog mode, PromICE will be in Emulation mode by default.
Emulation mode means that your target can access PromICE emulation
memory and can run your code. LoadICE commands that access emulation
memory cannot be used in Emulation mode and are only available in Load
mode.

You can use the stop command to place PromICE into Load mode. Load mode
means that LoadICE is in control of PromICE emulation memory and that your
target cannot access it. The LoadICE input prompt changes between Emulation
mode and Load mode (see below). When in Load mode, use the go command
to return to Emulation mode.

Note that if you specify files to be loaded in your loadice.ini file along with the
dialog command, LoadICE will enter Dialog mode without loading these files.
To load the files before entering Dialog mode, modify loadice.ini and place the
following commands before the dialog command: the begin command
followed by the load command (see below).

Without a dialog command in loadice.ini, LoadICE will load user data files
according to the configuration defined in loadice.ini and then exit. However,
if no data files are specified, LoadICE will simply exit.

You can use most ROM configuration commands in Dialog mode to prototype
your configuration and test its validity. Note that commands to configure
communication between the host and PromICE can only be used within
loadice.ini or as switches on the loadice.exe command line. These
commands include output, baud, pponly, etc.

16 Introduction

PromICE User Manual

For more information on diagnostic LoadICE commands, see the introduction
to the Troubleshooting chapter.

Using Dialog Mode
In this manual, user input is shown in bold after the input prompt. For
example:

02:LoadICE: your input

By adding the dialog command to your loadice.ini file, LoadICE will enter
Dialog mode. For example:

pponly=lpt1
word=8
rom=27040
file=loaddata.hex 8000=0
dialog

This loadice.ini file specifies a data file to be loaded over the parallel port and
then enters Dialog mode. Note that the file has not been loaded.

Upon entering Dialog mode, PromICE will be in Emulation mode by default.
The Dialog mode command prompt in Emulation mode will resemble:

02:LoadICE:

Use the stop command to place PromICE into Load mode. For example:

01:LoadICE: stop
Now in Load Mode!
Use 'go' later to emulate

00:LOADice:

The Dialog mode command prompt in Load mode will resemble:

02:LOADice:

Introduction 17

© 1999 Grammar Engine

Next, use the load command to actually load the file into PromICE.

00:LOADice: load
Opening file `test.hex` for processing/Done
Transferred 865 (0x361) data bytes

00:LOADice:

Next, use the go command to return to Emulation mode.

00:LOADice: go
Now Emulating!

00:LoadICE:

Now reset your target. Next you can test your target and use the PromICE
status command to see if PromICE can detect target power and if your target is
at least accessing PromICE memory.

00:LoadICE: st
TARGET STATUS: Power is ON - Target is accessing ROM

01:LoadICE:

For more information of on diagnostic LoadICE commands, see the
Introduction to the Troubleshooting chapter.

18 Introduction

PromICE User Manual

Pre-load Example
To cause LoadICE to load your files before entering Dialog mode, modify
loadice.ini and place the following commands before the dialog command:

begin
load
dialog

The begin command initiates communication with PromICE. The load
command then loads the file immediately.

pponly=lpt1
word=8
rom=27040
file=loaddata.hex 8000=0
begin
load
dialog

This loadice.ini file will load a file over the parallel port and then enter Dialog
mode. Note that PromICE will be in Emulation mode upon entering Dialog
mode.

Introduction 19

© 1999 Grammar Engine

Getting Updates and Giving Feedback
Be sure to visit www.promice.com for a free upgrade to the latest LoadICE
software and documentation. If you don't have web access, contact your sales
representative to obtain a copy.

Note: LoadICE version 4.0 or higher is required to use the commands
documented in this version of the PromICE User Manual.

Comments and suggestions should be sent to support@gei.com.

20 Introduction

PromICE User Manual

Installation 21

© 1999 Grammar Engine

2. Installation
This chapter contains installation instructions for PromICE. Please complete hardware
and software installation and then proceed to the next chapter to configure the software.

Contents
Unpacking

Storing and Shipping PromICE

Hardware Installation

Connecting PromICE

Disconnecting PromICE

Connecting PromICE to the host PC

Connecting PromICE to the target system

Hardware Installation Completed

Software Installation

DOS / Windows 3.x / Windows 95 / Windows 98

Windows NT 4.0

UNIX Installation

22 Installation

PromICE User Manual

Unpacking
When you take PromICE out of the static shielding packaging, you must be in a
static safe environment or else you can easily damage your unit.

You can protect your PromICE from static damage by following these safety
guidelines and handling precautions:

Keep PromICE in its anti-static bag until you reach your work site. If the box
must be opened elsewhere for inspection, under no circumstance should you or
anyone else remove the PromICE unit from its anti-static bag.

Make sure that a static safe environment is maintained at the work site at all
times. Ground yourself by touching a grounding strip before touching your
PromICE, target system or any other static-sensitive device.

If you must move PromICE:

1. Wear a grounded wrist strap.

2. Remove power from both the PromICE and target system.

3. Disconnect all cables beginning with the cables from the PromICE
end first.

4. Return PromICE to its anti-static bag.

Now PromICE can be transported. Never carry PromICE with the target cables
still attached. You can easily damage the buffers and the ROM cable pins.

When handling PromICE or your target, do not touch any exposed pins or other
exposed metal parts. Most of the pins are direct connections to buffer inputs
and are very sensitive to static damage. Damage to a buffer can cause
intermittent or permanent failures.

Storing and Shipping PromICE
Always store and transport PromICE in an anti-static bag.

PromICE ships in a custom cardboard container with cutouts for various parts.
This container is suitable for storing PromICE when not in use and returning it
for repair.

Be sure to keep the anti-static bag to store PromICE when you are not using it.

Installation 23

© 1999 Grammar Engine

Hardware Installation
Please read this entire section before attempting to connect or disconnect
PromICE from the target. Grammar Engine is not responsible for damages
incurred due to mishandling or misuse.

Connecting PromICE
1. Power down your target system. Failure to turn off power may damage

PromICE and/or the target.

2. Wearing a grounding wrist strap, remove PromICE from its anti-static bag.

3. Connect the serial and/or parallel cables to PromICE.

4. Use the sections on the following pages to connect PromICE to your target.

5. Power on PromICE and then your target.

Disconnecting PromICE
1. Power down your target and then PromICE. Failure to turn off power may

damage PromICE and/or the target.

2. Disconnect the ROM cable from PromICE side first.

3. Disconnect the cable from the target system. If you are using a ROM
socket probe, first disconnect the adapter board from the probe. Then
remove the probe from the ROM socket. When removing probes equipped
with a finger loop, be sure to pull straight up.

4. Disconnect the serial and/or parallel cables from PromICE

5. Place PromICE in an anti-static bag.

Please remember that any time you are handling connectors, either from the target
to PromICE or host to PromICE, you must always remove power first and wear a
wrist grounding strap. Never connect or disconnect anything without first turning
off the power to PromICE and target systems (except the host).

Note: Some PromICE may retain the contents of emulation memory for a period
after power is removed. The length of the memory retention time varies
with the PromICE model and memory size. To clear the entire contents of
memory, use the fillall command.

24 Installation

PromICE User Manual

Connecting PromICE to the host PC
PromICE can be connected to the host in these ways:.

• Serial port only (see output and baud commands)

• Parallel port bi-directional on a single unit (see pponly command)

• Parallel port bi-directional; the serial port used for AI communication (see
the AI Configuration chapter)

• Serial port with download-only parallel port (see ppbus, output, and baud
commands)

• Daisy chained units using serial ports

• Daisy chained units using serial ports with download-only parallel ports

• Ethernet (see the ethernet command)

Note: Certain A/B switch boxes, when connected between the host parallel port
and the PromICE, can interfere with the proper operation of the PromICE.

You cannot daisy chain multiple PromICE units over the parallel port alone.
You must use the serial daisy chain adapter with the parallel bus cable and add
ppbus and output commands to your loadice.ini file. Refer to the daisy chain
installation section for more information about daisy chaining.

Serial / Parallel connection
Using the supplied serial and parallel cables, connect the PromICE to the host.
Refer to the next chapter for software configuration.

Installation 25

© 1999 Grammar Engine

Daisy-chained PromICEs using serial ports
To connect multiple PromICEs to a single host serial port, use DB9 daisy chain
adapters. You can connect multiple PromICEs using daisy chain adapters to
emulate wider target word sizes and/or a large configuration of ROMs.

The DB9 daisy chain adapter comes with two DB9 cables.

DB9 Serial Daisy Chain Adapter

 Lower Unit IDs Higher Unit IDs

 Host

With the center jack facing you as shown, connect the first PromICE unit to the
left connector and the other PromICE unit to the right connector.

The DB9 adapters can be connected to each other to create a tree arrangement.
Up to 256 PromICE units can be daisy chained in this way. The PromICE 8 bit
unit IDs are assigned at communication startup in ascending order beginning
with zero on the left-most daisy chained PromICE.

When the target word width is greater than 8 bits, the default byte order is: all
known PromICE 8 bit units arranged in ascending unit ID order. The word
command can explicitly define the byte order within the target word width by
means of a PromICE 8 bit unit ID list.

26 Installation

PromICE User Manual

Daisy-chained PromICEs using serial and parallel ports
When using PromICE in this configuration, the serial port must be used for full
communication with the PromICEs, whereas the parallel link mode is
download only in order to achieve fast download times.

Connect the serial daisy chain adapter(s) as described on the previous page.

Then connect the parallel bus cable in whatever way is most convenient. Since
the serial daisy chain adapter arrangement handles all control duties, the order
of PromICE units on the parallel bus cable is not important.

Installation 27

© 1999 Grammar Engine

Connecting PromICE to the target system

Power Source Jumpers on the PromICE back panel

Target power sense

24 28 32 rom ext

PromICE power source

EXT / ROM Jumpers
Always select external power using the EXT jumper. Use the power supply
rated for use with the PromICE model (see the Technical Specifications
chapter).

The ROM jumper should only be used when connecting the 3 Volt Adapter or
to parasitically power a small, low power target. Your target should not
parasitically power the PromICE unit.

Target Power Sense Selection
Use the 32 jumper for all other cables except the 24 and 28 pin DIP. Use the
24 jumper when using a 24 pin DIP cable. Use the 28 jumper only when
using a 28 pin DIP cable.

Jumper Settings for the 3 Volt Adapter
When using the GEI 3 Volt Adapter, use the EXT, ROM, and 32 jumpers.
The 3 Volt Adapter has a spare, long handled jumper on one of the Write pins
that you can use for the ROM jumper.

28 Installation

PromICE User Manual

Connecting Target Cables
This section describes installation of the 28 and 32 pin DIP cables only. Refer
to the cable documentation included with the cable assembly.

If you will be emulating a 16 bit or larger ROM, plan the byte order before
connecting the target cables.

The word command’s default byte order is: all known PromICE 8 bit units
arranged in ascending unit ID order. On a dual PromICE, the lower ROM
cable connector on the back of the PromICE will be assigned unit ID zero.
The upper connector will be unit ID one.

If the ROM cable hookup does not match the default word order, then
specify a unit IDs list in the LoadICE word command. The unit IDs list
defines the order of bytes within the word width and depends on how the
target cables are attached to the target.

Plug the cable(s) into the target system as instructed below:

Carefully locate pin 1 of the ROM socket. It is the top left pin when the
notch on the socket is on the top. Connect the cable to the target ROM(s)
with pin 1 on the cable DIP aligned with pin 1 on the ROM socket.

2x17 Female
header 24/28/32 pin

DIP plug
pin1

WARNING: If you cannot locate pin 1 on the target's ROM socket, then
seek help before proceeding. DO NOT plug this cable in
backwards. Doing so will damage PromICE and/or target.

Carefully connect the other end of the cable(s) to PromICE via the keyed 34 pin
female IDC connector.

Installation 29

© 1999 Grammar Engine

Using the Reset Line
PromICE asserts the reset line automatically while downloading data (LOAD
mode) and when the LoadICE reset command is issued.

If you choose not to connect the reset line from PromICE to the target system,
then you must boot your target either by pressing a reset button or by power-
cycling the target system.

The reset signals are among the auxiliary signals on the PromICE back panel.

req swr int- rst-

inth mwr mwr int+ rst+

ack

rst- and rst+ : (tri-state outputs) These are reset signals that are driven by
PromICE under LoadICE control. Both polarities of the signal are provided
and are driven by a 74LS125 tri-state buffer.

Connecting the Reset Line

If the target reset line is low asserted, connect the reset line from the target to
the rst- pin on PromICE. If the target reset line is high asserted, connect the
target reset line to the rst+ pin on PromICE.

The reset signal is driven only during the asserted state and is tri-stated (i.e. not
driven) during the non-asserted state. This allows the connection to be shared.

Note: Make sure that your target allows a shared reset. Connecting to a non-
sharable reset on the target will damage the drivers in PromICE as well as on
the target. Refer to your target hardware documentation.

30 Installation

PromICE User Manual

Hardware Installation Completed
This completes the PromICE hardware installation section. Your target system
should be properly connected to PromICE and PromICE should be connected to
the proper host ports.

Next is the setup of LoadICE, the host software for downloading and emulating
your code. It is best to check your setup by simply downloading known
working code. This way you can verify that your target system and PromICE
are functioning properly and that you can repeat the download/restart process.

Software Installation 31

© 1999 Grammar Engine

Software Installation
The PromICE utility software is called LoadICE. You use LoadICE to load your
target’s files and manage the contents of emulation memory. It is distributed with a
command line user interface for all PC and UNIX based systems. The software
comes on a 3.5" floppy disk.

UNIX Note: The distribution disk has LoadICE application executables for Sun
Sparc-based workstations. If you have another UNIX system, then install the
LoadICE sources on your machine and use the "make" command to create the
LoadICE executable.

DOS / Windows 3.x / Windows 95 / Windows 98
Insert the floppy disk in to drive A: or B: as appropriate.

Create a directory for LoadICE files, c:\loadice for example. Add this directory
to your PATH= statement in c:\AUTOEXEC.BAT. Use the following to install
LoadICE on your system:

copy a:\dos*.* c:\loadice
or

copy a:\windows\win9598*.* c:\loadice

Now you can execute LoadICE from anywhere in your system.

Windows NT 4.0
Create a directory for LoadICE files, c:\loadice for example. Add this directory
to your PATH= statement. Open an MS-DOS Prompt window and use the
following to install LoadICE on your system. For example:

copy a:\windows\winnt*.* c:\loadice

WIN NT Parallel Port Setup:
In order to use the parallel port for fast downloading, follow these steps to
install the parallel port driver:

1. Open an MS-DOS Prompt window, and use the following to install
LoadICE parallel driver installation files on your system. For example:
cd c:\loadice
md driver
copy a:\windows\winnt\ntdriver*.* c:\loadice\driver

2. Reboot your computer and access your computer’s BIOS setup screens.

32 Software Installation

PromICE User Manual

3. While in BIOS setup, be sure that the parallel port is in either Standard or
EPP mode. Do not use bi-directional, ECP or DMA modes.

4. While in BIOS setup, note the address of the parallel port. This is very
important. Some new computers may not use the standard addresses.

5. Save any changes and exit BIOS. Reboot and login to Windows as
Administrator.

6. Edit the PromICE.ini file in the directory where you installed the ntdriver
files, c:\loadice\driver in the example. Change the IoPortAddress to
match the address of your parallel port.

7. If necessary, edit the PromICE.bat file. This should only be necessary if
you installed Windows NT system into a directory other than C:\winnt.

8. Run PromICE.bat.

9. Restart the computer.

10. From the Start Menu, select Settings->Control Panel.

11. In Devices Control Panel, locate the service called “PromICE”. It should
be started and automatic.

12. In case of problems, recheck the BIOS and PromICE.ini settings then
rerun PromICE.bat and reboot.

UNIX Installation
If you have a 3.5" floppy drive on your workstation, then the software can be
installed from a DOS diskette as follows (This example is taken from a SUN
workstation):

On Solaris workstations:
Insert the floppy disk in the drive and do the following:

Run the file manager.
Check for the floppy.
Copy the sources to your hard disk.
Select the appropriate makefile:

.sun for old Sun OS4

.sol for Sun OS5

.unx for HP, BSD, etc.
Copy the selected file to "makefile".
Issue the make command.

Software Installation 33

© 1999 Grammar Engine

On older Sun workstations:
Insert the floppy disk in the drive and do the following commands:

mkdir LoadICE
cd LoadICE
mount /pcfs
cp /pcfs/source/*.* .
dos2unix makefile.unx makefile

If you plan to edit any of the files, you can translate all the files to UNIX
format.
For example, using shell:

sh
for file in *
>do
>echo $file
>dos2unix $file $file
>done

make
eject

This will make a LoadICE executable. Ignore warnings during compile time
that are caused by multiple includes in the UNIX header files. You need only
convert the makefile from DOS to UNIX format. You also have other
makefiles that are specific to other types of UNIX, i.e. there is a makefile.hp
for Hewlett Packard and also makefile.unx which is a generic make file.

34 Software Installation

PromICE User Manual

Software Configuration 35

© 1999 Grammar Engine

3. Software Configuration

Contents
Introduction
Using the setup command
Step by Step Instructions
1. Edit or create the loadice.ini file
2. Configure Host-to-PromICE communications

2.1 Connected via the serial port
2.2 Connected only via the parallel port
2.3 Connected via the parallel port in addition to the serial

3. Specify the word size (and byte order if necessary)
4. Specify the ROM size to be emulated
5. Unused Address Lines
6. Specify the file or files to load

Hex files
Binary files
Loading Multiple files
Sample loadice.ini files:

Intel-style 128K by 16 bit system, serial link to host
Intel-style 512K by 8 bit system, parallel link to host
Intel-style 128K by 8 bit system, dual link to host

7. To initiate loading the files, use the load command
8. Save your loadice.ini file in your working directory
9. Apply power to PromICE and the target system
10. Execute LoadICE

36 Software Configuration

PromICE User Manual

11. Boot your target
LoadICE Example: Loading a file

Software Configuration 37

© 1999 Grammar Engine

Introduction
This chapter builds upon the preceding chapter on hardware and software
installation. Your configuration can be verified only if the PromICE hardware has
been installed. This chapter is an introduction on how to configure PromICE to
work in your environment.

You will use the LoadICE software to configure your PromICE to emulate a ROM
within your target system. LoadICE configurations are usually stored in the
loadice.ini file, which is processed at program startup time. The instructions for
installing the LoadICE software can be found in the preceding chapter.

You can create your loadice.ini one of two ways: using the setup command or by
editing manually.

LoadICE commands are case sensitive. All entries should be lower case unless
otherwise specified. For more information on any of the following loadice.ini
instructions, refer to the Command Reference chapter.

Comments in loadice.ini begin with asterisk "*" and hide the remainder of the line.

Note for
FastPort users

A serial connection is required for communication.
The parallel port is optional, but allows for faster
download speeds. Refer to the documentation
supplied with your FastPort for installation
instructions.

Using the setup command
The setup command allows you to create a rough draft of your loadice.ini file. Be
sure to run LoadICE from the directory where you will normally use LoadICE.

Setup invokes a menu-driven interface for LoadICE/PromICE configuration.
Please follow the on-screen instructions. Be sure to save your settings to the
loadice.ini file before exiting the menu interface.

Once the setup command creates a loadice.ini file, you may need to edit it manually
to make changes, or you may choose to build another file using the setup command.
The following step by step instructions may be helpful in understanding the
configuration process.

You can invoke the setup command on the LoadICE command line as follows:

loadice -setup

38 Software Configuration

PromICE User Manual

Step by Step Instructions

1. Edit or create the loadice.ini file
Create a loadice.ini file in the working directory where you will run LoadICE.
LoadICE processes this file at program startup time. You may want to begin
with the sample loadice.ini provided on the distribution disk.

2. Configure Host-to-PromICE communications
If you are using a serial port to communicate with PromICE, go to step 2.1.

Fastport and parallel port daisy chain users should go to step 2.3.

If PromICE is connected only via the parallel port, go to step 2.2.

If PromICE is connected via the parallel port as well as the serial, go to step
2.3.

2.1 Connected via the serial port
If you are using a serial port to communicate with PromICE, the loadice.ini
file should read:

output=comport
baud=bbbbb

where

comport is the serial port being used. On Windows, use comn
where n is the port number. On UNIX, use /dev/ttyx
where x is a letter such as "a", "b", etc.

bbbbb is the serial baud rate

2.2 Connected only via the parallel port
If PromICE is connected only via the parallel port, the specification should be:

pponly=prtport

where

prtport is the parallel port number being used. On Windows, use
lptn where n is the port number. On UNIX, use /dev/bppn
where n is a number such as "0", "1", etc.

Note for FastPort and
Daisy chain users

FastPort and daisy chain users cannot use
the pponly command, go to step 2.3 below).

Software Configuration 39

© 1999 Grammar Engine

2.3 Connected via the parallel port in addition to the serial
If PromICE is connected via the parallel port in addition to the serial, the
specification should be:

output=comn
baud=bbbbb
ppbus=lptm

where

n is the serial port number being used.

bbbbb is the serial baud rate

m is the parallel port number being used.

Daisy Chain Note:
When daisy chaining PromICE units, use the output and baud commands
to configure the serial port. If you are also daisy chaining the parallel port,
use the ppbus command, and optionally the ppmode and number
commands.

output=com1
baud=9600
ppbus=lpt2

The number command defines the number of daisy chained PromICE
units.

number=4

This example indicates that there are four PromICE units attached to the
parallel port bus cable.

3. Specify the word size (and byte order if necessary).
The word size is the width of the target bus in bytes. Place the line as follows:

word=8 0 for an 8 bit word using the "0" (master) PromICE unit.
OR

word=16 0 1 for a 16 bit word on a typical Intel-style target with the
first byte going to the "0" (master) PromICE unit and the
second byte going to the "1" (slave) unit.

40 Software Configuration

PromICE User Manual

OR
word=16 1 0 for a 16 bit word on a typical Motorola-style target with

the first byte going to the "1" (lower) PromICE unit and
the second byte going to the "0" (upper) unit.

Unless another order is specified, the default order is 0, 1, 2,... The byte order
also allows you to daisy chain your PromICE modules in the order most
convenient for your target.

4. Specify the ROM size to be emulated
The ROM size should not exceed the size of the PromICE emulation memory
or the size specified in the optional socket command:

rom=27512 * Specify a generic ROM part number (i.e. 27512),
OR

rom=64k * Specify the ROM size in bytes.

When emulating word sizes greater than 8 bits, state the target memory size as
nnn K by the iii word size. For example, an 8 megabit device in 16 bit mode is
stated 512K by 16 where nnn is 512 and iii is 16. So the commands for this
memory are: word=16 and rom=512k.

For a complete explanation, see the Command Reference.

5. Unused Address Lines
All unused pins on the ROM socket should be tied high. PromICE will not
emulate properly if there are any floating address lines on the ROM socket
within the PromICE address range. For more information, see the Unused
Address Lines chapter.

6. Specify the file or files to load
You can load hex and binary files.

Hex files
LoadICE currently supports the following file formats: Intel 8 and 16 bit hex,
Motorola S record format, Tektronix standard and extended hex, and the
archaic Mostek and RCA formats. In HEX files, each record contains the
address where the data must be loaded. The following command lets you map
the hex file to a desired location within PromICE memory:

file file_name file_address = ROM_offset

Software Configuration 41

© 1999 Grammar Engine

where

file_name (string) The name of the hex record file to be loaded.

file_address = ROM_offset
 (optional, see below for individual arguments)
This expression will place data from the hex file file_name
into PromICE memory using the difference between
file_address and the ROM-relative address specified in
ROM_offset. Follow file_address with an equal sign and
ROM_offset.

file_address (hex) The absolute starting address of the data in the file
file_name produced by the linker, that is stored incrementally
in each hex record of the file file_name. This address is
normally used by hex record decoding programs to determine
where in memory to place the data.

For assistance in determining the file_address for your hex
file, use the analyze or setup command.

ROM_offset (hex) A ROM-relative offset into the PromICE ROM
emulation address space. The PromICE ROM emulation
space begins at offset zero. This offset is used to determine
the location within PromICE emulation memory where the
data at file_address should be loaded.

You can use the config command to check the address range
of the current PromICE emulation memory configuration.

To load multiple files, simply use multiple commands, one for each of the files
to be loaded.

Binary files
To load a binary image, use the image command. A binary file does not
contain address information but may contain a header at the beginning that will
need to be omitted.

image file_name skip_count = ROM_offset

where

file_name (string) Name of binary file to be loaded.

skip_count = ROM_offset
 (optional, see below for individual arguments)
This expression will place data from the binary file file_name
starting at file offset (skip_count + 1) into PromICE memory

42 Software Configuration

PromICE User Manual

at the ROM-relative address specified in ROM_offset. Follow
skip_count with an equal sign and ROM_offset.

skip_count (hex) The count of data bytes to be skipped over from the
beginning of the file. For example, binary files may contain a
14 byte header, with information for the loader, that will need
to be discarded when the file data is loaded into PromICE.

ROM_offset (hex) A ROM-relative offset into the PromICE ROM
emulation address space. The PromICE ROM emulation
space begins at offset zero. This offset is used to determine
the location within PromICE emulation memory where the
beginning of the data from file 'file_name' should be written.

Loading Multiple files
To load multiple files or images, repeat the file/image command for each file to
be loaded:

file = file1.hex 8000=0
file = file2.hex 10000=2000

Make sure that you are not loading your files on top of one another. You can
do a compare command, ‘c’, in LoadICE Dialog mode to see if any of the files
are overlapping.

Sample loadice.ini files:
At this point, the loadice.ini file should appear like one of the following:

Intel-style 128K by 16 bit system, serial link to host
output=com1
baud=57600
rom=27010
word=16 0 1
file=mad.hex fe000=0 * Load the file data at starting

* address fe000 into ROM
* relative offset 0 in PromICE
* memory

Intel-style 512K by 8 bit system, parallel link to host
pponly=lpt1 * Use parallel port is as a

* bi-directional link
rom=27040
word=8
file=mad.hex fe000=0

Software Configuration 43

© 1999 Grammar Engine

Intel-style 128K by 8 bit system, dual link to host
output=com1 * Use the output, baud and
baud=19200 * ppbus specifications if you
ppbus=lpt1 * want to use parallel port for

* downloading and the serial
* port for communications

rom=27256
word=8
file=mad.hex fe000=0

7. To initiate loading the files, use the load command
To initiate loading the files in the load set into PromICE for emulation, use the
load command.

If you want files to load during loadice.ini processing, use the begin command
followed by the load command.

8. Save your loadice.ini file in your working directory

9. Apply power to PromICE and the target system
The PromICE RUN light should lit.

10. Execute LoadICE
Execute LoadICE from the directory where the loadice.ini file is located. The
RUN light will blink as LoadICE connects to PromICE. If you are using the
serial link, you will also see the activity on RxD and TxD lights.

11. Boot your target
Boot your target by cycling power to the target or pressing the reset button.
This is not necessary if the PromICE reset output has been connected to the
target. The LOAD light on PromICE should be ON while target power is off.
If you boot your target by turning on power then the LOAD light should go
OFF.

If you now have a working configuration for ROM emulation, setup is complete. If
you are using a debugger with PromICE AI, proceed to the AI Configuration
chapter.

If your target does not run, the LOAD light remains on, or you are experiencing
some other failure, double check your previous steps.

44 Software Configuration

PromICE User Manual

If there is any sign of problems with power, such as dim or flickering lights on
PromICE or any target LEDs, immediately shut off power to target system and
double check all connections.

If the problem persists, check your ROM configurations, file mapping and target
boot process. Consult the Troubleshooting chapter for tips on solving common
configuration problems.

Software Configuration 45

© 1999 Grammar Engine

LoadICE Example: Loading a file

Example of a loadice.ini file that loads a file and exits.
C:\LoadICE>type loadice.ini
pponly LPT1
rom 27512
word 8 0
file ai8051.hex 0=0

C:\LoadICE>loadice

LoadICE version 4.0 for Windows 95/98
(C) Copyright 1989-99 Grammar Engine Inc.

 Opening initialization file 'loadice.ini'

Connecting.. Please WAIT..
Opening Parallel Port LPT1 (@0x378)
Connecting to PromICE via the Parallel Port.
 Connection established

EMULATION UNITS PRESENT:
 PromICE ID-0 Memory=512KBytes Emulating=64KBytes FillChar=0xFF Master/AI2
 PromICE ID-1 Memory=512KBytes Emulating=64KBytes FillChar=0xFF Slave of 0
Opening file `ai8051.hex` for processing./Done
Transferred 1856 (0x740) data bytes

LoadICE Exiting with NO Errors
C:\LoadICE>

• For an example of a Dialog mode session, see the Introduction
chapter.

46 Software Configuration

PromICE User Manual

LoadICE Command Reference 47

© 1999 Grammar Engine

4. Command Reference

Contents
OVERVIEW

Host-to-PromICE communication
ROM specifications
ROM operations
File specifications and file operations
Frequently Used Dialog commands
Miscellaneous commands

General Listing of the LoadICE Commands
The Commands

48 LoadICE Command Reference

PromICE User Manual

OVERVIEW
LoadICE commands fall into four major categories, which are described below.
You can locate commands by category and obtain detailed explanations in the
following reference pages.

Be sure to visit www.promice.com for a free upgrade to the latest LoadICE
software and documentation. If you don't have web access, contact your Sales
Representative to obtain a copy.

Note: LoadICE version 4.0 or higher is required to use the commands
documented in this version of the PromICE User Manual.

Host-to-PromICE communication
These commands allow you to specify the link between the host and PromICE
unit(s). You may be using both the serial and the parallel link or a network
link. These commands allow you to completely specify your communication
configuration:

output serial port name

baud baud rate

fast Adjusts parallel port timing

number number of PromICE units in daisy chain (UNIX only)

ppbus Connect multiple PromICEs for parallel download

ppmode Sets parallel port's communications mode

pponly parallel bi-directional port name

ethernet define the type of Ethernet printer server to use

fastport hostname of FastPort when using PromICE on Ethernet

resetfp reset the FastPort before connecting to PromICE

ROM specifications
These commands allow you to describe your ROM configuration. The number,
size and arrangement of ROMs must be specified.

The target address mask may need adjustments to account for differences
between PromICE memory size, target socket size, and emulation ROM sizes.

rom Set size of ROM to be emulated

word Set word size for ROMs to be emulated

LoadICE Command Reference 49

© 1999 Grammar Engine

socket Modify address mask, if needed

xmask Set arbitrary address mask, if needed

checksum ROM checksum specifications

fill ROM fill specification

ROM operations
These commands allow you to perform operations on the ROM emulation data.

dump Dump ROM data

edit Edit ROM data

move Move ROM data

search Search for ASCII data in ROM space

find Search for binary data in ROM space

File specifications and file operations
These commands allow you to specify the data files on the host system by
name, type and configuration information such as word size of the data they
contain, or special mapping of the data to ROM space. Various loading and
processing options can also be specified:

analyze Report on address range of hex file

bank Bank emulated memory

file Add hex data file to set of files to load

image Add image data file to set of files to load

load Download the data files

compare Compare files with ROM contents

noaddrerr Ignore data that falls out of ROM space

map Turn off or on the display of data areas being loaded

save Save emulation memory contents to a file

Frequently Used Dialog commands
These commonly used commands provide interactive control of PromICE.

stop Stop PromICE emulation, enter Load mode

50 LoadICE Command Reference

PromICE User Manual

go Begin PromICE emulation, leave Load mode

config Display PromICE configuration information

status Display target status (power on; executing)

file Add hex data file to set of files to load

image Add image data file to set of files to load

load Download the data files

exit Exit LoadICE Dialog mode

Miscellaneous commands
begin In loadice.ini, initiates communication with PromICE and

processes each remaining "ini" command before continuing.

dialog Enter Dialog mode on startup

display Change output level detail

help On-line help

log Record all LoadICE command traffic to a log file

reset Define reset duration and assert reset signal on back panel

ver Report LoadICE and PromICE micro-code versions

hso Define the operation and polarity of the interrupt signal

notimer Disable PromICE internal timer

fkey & altfkey Assign commands to function keys

! (system) Escape commands to the host shell

delay Change the time out period used by LoadICE

sleep Use when waiting for something to complete in batch mode

test Test emulation memory

LoadICE Command Reference 51

© 1999 Grammar Engine

General Listing of LoadICE Commands
The general-purpose LoadICE Commands are summarized in the following list and
explained in detail in the rest of this chapter. Some PromICE options, such as AI,
Trace, and Code Coverage, have their own command sets. These option commands
are documented in their respective chapters.

. (switch) Bypass the loadice.ini file from the command line.

! (shell) Escape command to DOS or UNIX shell.

@filename Use LoadICE configuration file filename, available on command line.

afn Allows assigning hot keys to LoadICE or host commands.

analyze Report addresses contained in a hex or image record file.

bank Allows the emulation space to be broken into a number of banks.

baud Specify serial baud rate between PromICE and the host.

begin In loadice.ini, this causes LoadICE to shift into an interactive mode.

checksum Checksum on ROM and store result in PromICE emulation memory.

clearfiles Clears the current load set - the set of files to be loaded.

compare Compares data loaded in PromICE against files on the host.

config Display the current PromICE configuration.

cursor Controls display of the LoadICE Busy/Progress indicator.

delay Set the timeout period for PromICE to respond.

dialog Enter LoadICE Dialog mode.

display Change the output display level of LoadICE.

dump Display contents of PromICE emulation memory on the screen.

edit Modify PromICE ROM emulation memory.

ethernet Defines the type of Ethernet print server to use.

exit Exit LoadICE when in Dialog mode.

fast Lengthens the strobe on the host parallel port.

52 LoadICE Command Reference

PromICE User Manual

fastport Configure PromICE to connect via a FastPort.

file Setup a hex record file for ROM emulation or a comparison operation.

fill Fill the current PromICE ROM configuration with a data pattern.

fillall Fill the entire PromICE memory capacity with a data pattern.

find Find a binary data pattern in PromICE emulation memory.

fn Assign hot keys to LoadICE or host commands.

go Instruct PromICE to begin emulating.

help Obtain help about a LoadICE command.

hso Program the interrupt signal to the target (on PromICE back panel).

image Setup a binary file for ROM emulation or a comparison operation.

load Initiates loading files into PromICE memory for emulation.

log Record all LoadICE command traffic to a log file in real-time.

map Control the address range display during the loading process.

modein Specifies the initial mode for PromICE upon LoadICE invocation.

modeout Specifies the final mode for PromICE upon LoadICE termination.

modefixed Maintains the current PromICE mode at LoadICE termination.

move Copy bytes within PromICE emulation memory.

noaddrerr Ignore address-out-of-range errors during file loading.

number Specify the number of Daisy Chained PromICE units.

output Use the serial output port for connection with PromICE.

ppbus Use the parallel and serial ports for PromICE communication.

ppmode Sets the parallel port's communication mode.

pponly Use only the parallel port in bi-directional mode for communication.

promiceid Display the PromICE Identification number.

reset Initiate a target reset and the duration of target reset signal.

LoadICE Command Reference 53

© 1999 Grammar Engine

resetfp Control whether LoadICE resets the FastPort before connecting to
PromICE.

restart Restart the LoadICE to PromICE communication link.

rom Specify ROM emulation memory size.

save Save PromICE emulation memory contents to a binary file on the
host.

search Search PromICE emulation memory for an ASCII data pattern.

setup Access a menu-driven tool for creating loadice.ini.

socket May be needed when unused address lines cannot be pulled high.

status Displays the status of the target system as detected by PromICE.

stop Cause PromICE to stop emulating and enter Load mode.

test Test PromICE emulation memory on a particular PromICE 8 bit unit.

version Report micro code version of the PromICE and the LoadICE version.

word Set data word width for the PromICE ROM emulation configuration.

xmask May be needed when unused address lines cannot be pulled high.

54 LoadICE Command Reference

PromICE User Manual

. (period, command line)
Bypass the loadice.ini file.

Command Forms
. Command line

Syntax
. [args]

where
. On the command line, bypass the loadice.ini file.

args (optional) Additional command line switches (see note).

Default
When this directive is used by itself, LoadICE will fail to connect PromICE and
will prompt you to use a setup or restart command.

Description
LoadICE automatically looks for a configuration file called loadice.ini in the
current directory. Specifying the "." on the command line bypasses this default.

Notes
When bypassing the loadice.ini file, define the PromICE configuration using
1) the @filename switch to specify another INI file or 2) the -d switch to
invoke the interactive Dialog mode or 3) specify all configuration settings using
switches. Otherwise, LoadICE will terminate without configuring PromICE.

Examples
loadice . -q lpt1 -d
Bypass the loadice.ini file. Connect to PromICE using the parallel port LPT1
only (refer to the pponly command in this chapter for more information on the
parallel port option). Enter Dialog mode.

LoadICE Command Reference 55

© 1999 Grammar Engine

! (shell)
Escape command to DOS or UNIX shell.

Command Forms
! Dialog mode

Syntax
! string

where
string The command string to be executed by the operating system

shell. Place double quotes around commands containing a
comma.

Default
None.

Description
This command allows you to execute arbitrary operating system commands
without leaving LoadICE. After the command completes, control is returned to
LoadICE. To invoke a new shell, use “command” on Microsoft systems, and
“sh” or “csh” on UNIX systems.

Examples
!dir
Show the files in current directory.

!edit myfile
Run the editor and edit 'myfile'. When you exit the editor you will return back
at LoadICE: prompt.

56 LoadICE Command Reference

PromICE User Manual

@filename
Use LoadICE configuration file filename, available on command line.

Command Forms
@filename Command line

Syntax
@file_name

where
file_name The name of the configuration file to use. Full directory path

names can be specified.

Default
LoadICE will automatically look for the file loadice.ini in the current directory.
When the @ directive is used, LoadICE will search for the file as specified. If
file_name is not found and file_name lacks an extension then LoadICE will
search for file_name with an .ini extension.

Description
This command allows you to use multiple configuration files for LoadICE
without the necessity of keeping each configuration in a different location.

Notes
There should be no spaces between the "@" symbol and the first character of
the path.

Examples
loadice @c:\mycfg\myini.ini
Tells LoadICE to look for a configuration file called "myini.ini" in directory
"c:\mycfg\"

LoadICE Command Reference 57

© 1999 Grammar Engine

afn
Allows assigning hot keys to LoadICE or host commands.

Command Forms
afn loadice.ini file
-afn Command line
afn Dialog mode

Syntax
afn#=[cmd]

where
(decimal number) alt-function key number

cmd A single LoadICE command with arguments.

Default
No keys are assigned.

Description
The afn command allows you to assign LoadICE commands or system
commands to function keys. For example, you can edit and compile your
source file without exiting LoadICE by assigning command strings to function
keys.

Notes
Assign single word commands directly but enclose multiple word commands in
double-quotes. Within multiple word commands, surround quoted strings with
the quote escape, \". Operating system commands must be preceded by a '!'.

Examples
afn12=restart
Issues the restart command to LoadICE when ALT key and F12 key are
pressed.

afn1="!edit test.c"
When the alt-function1 key is invoked, LoadICE will automatically execute the
operating system command "edit" to edit "test.c". When you exit the editor
control will return to LoadICE.

58 LoadICE Command Reference

PromICE User Manual

analyze
Report on range of addresses contained in a hex or image record file.

Command Forms
analyze Dialog mode
an Dialog mode

Syntax
analyze file_name

where
file_name (string) The name of the hex or image record file to be

analyzed.

Description
The analyze command allows you to obtain address information from a hex
record file. To display a further breakdown of the file address information, use
the config command. This breakdown will be cleared during the processing of
the next load or analyze command.

File formats supported: Intel 8 and 16 bit, Motorola S record, Tektronix
standard and extended hex, Mostek and RCA.

Examples
analyze myfile.hex
Report on addresses of the data in myfile.hex. For example, the resulting
display would be:

file myfile.hex

Opening file `myfile.hex` for processing/Done

File Data Spans from 0x000A0000 to 0x000FFFF4
 ROM Space Spans from 0x00000000 to 0x0007FFFF

The file myfile.hex contains data from 0xA0000 to 0xFFFFF. The current
PromICE ROM configuration supports 0x80000 bytes of emulation memory.
As a result, you may want to specify the file command as:

file myfile.hex A0000=0

LoadICE Command Reference 59

© 1999 Grammar Engine

bank
Allows the emulation space to be broken in to a number of banks.

Command Forms
bank loadice.ini file
bank Dialog mode

Syntax
bank num

where
num First use defines the number of banks. Subsequent bank

commands switch to bank number num.

Default
Banking is disabled.

Description
This command is used to divide ROM emulation memory into banks. The first
occurrence of the bank command defines the number of banks. Additional
bank commands select a bank as the current bank for subsequent commands.

Notes
When using this command the emulation space is reduced to the size of a given
bank. Only files that will fit within the bank can be loaded.

Examples
This example loads files into multiple banks from loadice.ini file:
file=mon.hex * file to load into multiple banks
bank 4 * divide ROM into 4 banks
bank 1 * select bank one
begin * begin communication with PromICE
load * load file here
bank 3 * select another bank
load * load same file here
clearfiles * reset file history
file = app.hex * specify new file
bank 2 * select bank
load * load new file at end of .INI processing

60 LoadICE Command Reference

PromICE User Manual

baud
Specify baud rate for serial communication between PromICE and the host. (See
output)

Command Forms
baud loadice.ini file
-b Command line

Syntax
baud baud_rate

where
baud_rate (integer) A valid baud rate: 1200, 2400, 4800, 9600, 19200,

or 57600.

Default
57600 on Windows/DOS and 19200 baud on Unix.

Description
The baud command specifies the baud rate for a particular serial port.

Notes
UNIX can use up to 19200 baud.

The 38400 baud rate is not supported, however, 57600 is supported.

Examples
-b 57600
baud 57600
Sets the baud rate of the specified device to 57600.

LoadICE Command Reference 61

© 1999 Grammar Engine

begin
During loadice.ini command processing, this command causes LoadICE to shift
command processing into a more interactive mode of operation.

Command Forms
begin loadice.ini file

Syntax
begin

Description
The begin command causes LoadICE to immediately initiate communication
with PromICE and treat the remaining commands in loadice.ini one at a time,
much like Dialog mode commands.

Without the begin command, LoadICE initiates communication with PromICE
after loadice.ini processing has finished. The commands in loadice.ini serve
as configuration settings, not as a general-purpose scripting language.

For more information on the use of the begin command, see the LoadICE
Environment chapter.

Notes
All commands that configure Host-to-PromICE communications should
precede the begin command, which initiates LoadICE communication with
PromICE.

The begin command will cause command line switches to be processed, which
allows them to override commands in loadice.ini prior to begin.

Commands following begin do not have INI Command level scope.

Examples
begin
load
In loadice.ini, this causes LoadICE to initiate communication with PromICE
and immediately load the current set of load files.

62 LoadICE Command Reference

PromICE User Manual

checksum
Perform checksum on ROM and store result in PromICE emulation memory.

Command Forms
checksum loadice.ini file, Dialog mode
-k Command line
k Dialog mode

Syntax
checksum start end store [function] [sum_size] [order]

where
start (hex) start is the beginning address of the range of PromICE

memory for checksum computation. start is a PromICE
ROM-relative address.

end (hex) end is the ending address of the range of PromICE
memory for checksum computation. end is a PromICE
ROM-relative address

 function (optional character) Indicates the preferred checksum
function (x , X or a, A). An 'x' indicates Exclusive-OR
function will be performed on data in all locations within the
selected address range. An 'a' indicates addition function will
be performed on data in all locations in selected address
range. Capital X causes a 1's complement of the result to be
stored whereas small x stores the result as is. A capital "A"
causes a 1's complement of the addition be stored and a lower
case "a" causes a 2's complement to be stored.

sum_size (optional integer) The size of checksum. This must be an
integral multiple of 8 and cannot be larger than the data bus
width emulated by the total number of PromICE units.

order (optional digit 0 or 1) checksums over 8 bits wide are stored
high byte first, unless this argument is supplied and is '1',
then the low byte is stored first.

Default
You must specify the start, end and store arguments for the checksum
command. The default for function is 'x' and sum_size is 8.

LoadICE Command Reference 63

© 1999 Grammar Engine

Description
Compute and store an 8, 16 or 32 bit checksum in the ROM emulation
memory. The checksum is computed inclusive of the start and end PromICE
ROM-relative addresses within the current configuration. The results are
stored in the given store address. The checksum is also displayed.

Notes
Larger ROM checksums will take longer to compute.

You can specify separate checksums for each ROM (See the PromICE Unit IDs
chapter).

Examples
k 0 fffb fffc a 32
Compute the checksum on 0 through FFFB and store the resulting checksum
with 2's complement as a 32 bit number at (FFFC-FFFF). High byte is stored
first.

64 LoadICE Command Reference

PromICE User Manual

clearfiles
Clears the current load set - the set of files to be loaded.

Command Forms
clearfiles loadice.ini file, Dialog mode
cf Dialog mode

Syntax
clearfiles

Description
This command empties the current load set. The file and image commands
build the load set one file at a time. When the load command is issued,
whatever files are contained in the load set are sent to the PromICE for
emulation.

The clearfiles command is useful after some files have been loaded, but it is
necessary to load a different group of files. Also in Dialog mode,
experimentation with the file and image commands may lead to invalid entries
in the load set. These can be deleted with the clearfiles command.

Notes
In versions of LoadICE prior to version 4.0, the period command prefix, used
on the “.file” and “.image” commands, was used to empty the current load set.

Examples
cf
Clear the current set of files to be loaded.

LoadICE Command Reference 65

© 1999 Grammar Engine

compare
Compares data loaded in PromICE against files on the host.

Command Forms
c Dialog mode

Syntax
c

Description
The compare command will compare contents of the data files in the files to
load list with the contents of PromICE emulation memory. Use compare to
obtain an explicit verification of a successful download. Differences are
displayed on the screen and there is an option to continue displaying the
differences or canceling the compare.

Notes
If a compare operation fails, it is most likely due to overlapping data areas in
different files. If that is not the case then it may be overlapping data areas in
the same file. If a 'write' line is connected to the target and the target was
emulating, then the target could also have 'written' to a location in the
emulation memory and thus caused the compare failures.

If the unit is failing to compare after a load and none of the above problems are
the cause, there may be problems with the PromICE emulation memory.

Examples
c
Compare now.

66 LoadICE Command Reference

PromICE User Manual

config
Display the current PromICE configuration.

Command Forms
config loadice.ini file, Dialog mode
C Dialog mode

Syntax
config [link | rom | file | all]

where
link Displays diagnostic information about the communication

link (serial or parallel)
OR

rom Displays diagnostic information about the ROM configuration
OR

file Displays diagnostic information about the list of files loaded
into PromICE

OR
all Displays all diagnostic information

Default
all

Description
The config command displays the current LoadICE configuration data. This
command will display just about all the information relevant for diagnosing any
setup problem. It will display information regarding communication links,
both serial and parallel, as well as various operating modes.

Notes
Use this command when you need to determine the word size, emulation size
and/or file information that is being used by LoadICE

Examples
C all
Display the entire configuration.

LoadICE Command Reference 67

© 1999 Grammar Engine

The following is sample output from the config command in Dialog mode
following a load command:

00:LOADice: config

HOST TO EMULATOR CONNECTION
 Parallel link: LPT2(@0x278) Turbo-mode Bus-mode Down-load only
output=COM2 Serial link: COM2(@0x0) @57600 baud

OPTIONS IN EFFECT:
 Data verification via block-checksum is OFF

EMULATION UNITS PRESENT:
 PromICE ID-0 Memory=512KBytes Emulating=512KBytes FillChar=0xFF Master/AI2

FILE-1 name = "test.hex" type = Intel hex
 Offset = 0xFFF80000 Skip = 0x0
 Use DEFAULT ROM CONFIGURATION for down-load

DEFAULT ROM CONFIGURATION
 word = 8
 Emulation Space: TOTAL Address Range = [0x0->0x7FFFF]
 IDs = 0 Address Range = [0x0->0x7FFFF]

Down-loaded Data Map
Data 0 - 219
Data 21c - 22b
Data 230 - 273
Data 280 - 28f
Data 7fc00 - 7fcdd
Data 7fff0 - 7fff4

00:LOADice:00:LOADice: exit

LoadICE Exiting with NO Errors

C:\LoadICE>type loadice.ini
output com2
baud 57600
ppbus lpt1
word 16
rom 27010
file test.hex 80000=0
dialog

68 LoadICE Command Reference

PromICE User Manual

cursor
Controls the display of the LoadICE Busy/Progress indicator.

Command Forms
cursor loadice.ini file, Dialog mode
-cu Command line

Syntax
cursor mode

where
mode (integer) A number indicating the display mode for the

LoadICE Busy/Progress indicator as follows:
0 By default, periods are gradually displayed to indicate

progress.
1 Displays a spinning cursor (character-based).
2 Suppress all Busy/Progress indications.

Default
The default mode is zero, which periodically displays periods to indicate
progress.

Description
The cursor command controls the display of Busy/Progress for lengthy
LoadICE commands.

Examples
cursor 2
Suppress all Busy/Progress indicators.

LoadICE Command Reference 69

© 1999 Grammar Engine

delay
Change the timeout period used by LoadICE when it is waiting for a response from
PromICE.

Command Forms
delay loadice.ini file, Command line

Syntax
delay [num]

where
num (decimal) Optionally, a multiplier that results in num times 4

seconds of delay. A num of zero results in zero delay (wait
indefinitely). No argument restores the default.

Default
Delay 4 seconds.

Description
The delay command allows control over the delay and keeps LoadICE from
timing out. The nominal delay is 4 seconds. This command supplies a
multiplier for this period.

Notes
While executing certain commands where the response from PromICE may
take a variable amount of time, LoadICE internally disables the delay. For
example, when executing the test command to test PromICE memory, timeout
is disabled.

Examples
delay 8
Wait 32 seconds before timing out (8 times 4).

70 LoadICE Command Reference

PromICE User Manual

dialog
Enter LoadICE Dialog mode.

Command Forms
dialog loadice.ini file
-d Command line

Syntax
dialog

Description
This command will force LoadICE to enter interactive Dialog mode upon
finishing loadice.ini file processing. In Dialog mode, you can enter LoadICE
commands and see the results interactively.

For more information on using Dialog mode, see the introduction in the
LoadICE Environment chapter.

Notes
Upon entering Dialog mode, PromICE will be in Emulation mode by default.
Use the stop command to place PromICE into Load mode. LoadICE
commands that access emulation memory are only available in Load mode.

If you specify files to be loaded in your loadice.ini file along with the dialog
command, LoadICE will enter Dialog mode without loading the files. To load
the files before entering Dialog mode, modify loadice.ini and place the
following commands before the dialog command: the begin command
followed by the load command.

Without a dialog command in loadice.ini, LoadICE will load user data files
according to the configuration defined in loadice.ini and then exit. However,
if no data files are specified, LoadICE will simply exit.

Examples
loadice -d
Invoke LoadICE application and enter the Dialog mode.

LoadICE Command Reference 71

© 1999 Grammar Engine

pponly=lpt1
word=8
rom=27040
file=loaddata.hex 8000=0
begin
load
dialog
This loadice.ini file specifies a file to be loaded over the parallel port and then
enter Dialog mode. The begin command initiates communication with
PromICE. Then the load command will process immediately.

72 LoadICE Command Reference

PromICE User Manual

display
Change the output display level of LoadICE.

Command Forms
display loadice.ini file
-D Command line
D Dialog mode

Syntax
display [level]

where
level (hex digits) Optionally, A valid number (0 - FF) indicating

the level of diagnostic display desired.

The bits defined within level are as follows:
0x80 - displays prompts
0x40 - displays progress
0x20 - displays command parser data
0x10 - displays config data, disk i/o and buffer transfer
0x08 - displays hex record processing
0x04 - displays abbreviated commands and responses to/from PromICE
0x02 - displays full commands and responses to/from PromICE
0x01 - displays actual data bytes as they go over the link

Default
0xC0 - only displays main prompt and command progress and results.

Description
The display command displays information about LoadICE processing at the
level of detail that is specified by the bits in level.

Notes
Setting the display level to 0x00 will shut off everything except the command
results. Setting the level to 0xFF can cause data overflow over the serial link.

Examples
-D fe
Display everything but the actual data going over the link.

LoadICE Command Reference 73

© 1999 Grammar Engine

dump
Display contents of PromICE emulation memory on the screen.

Command Forms
dump Dialog mode
d Dialog mode

Syntax
d [start [end]]

where
start (hex) Optionally, the first PromICE address to display

end (optional hex if start is defined) If end is greater than start,
then end is the last PromICE address to display. If end is less
than or equal to start, then end is number of bytes to display.

Default
Use in the current configuration. The default for start address is 0 and the end
will equal start + 64 (or the last valid address in ROM).

Description
The dump command will display PromICE emulation memory data, 16 bytes
per line, in hex and ASCII. Data is displayed according to the current
PromICE ROM configuration word size. A <CR> will simply repeat the
command with the next range of arguments. Optionally, display data either 1)
from an address range or 2) from a base address for a byte count.

Notes
If the second argument, end, is less than or equal to start, then end is the
number of bytes to display.

Examples
d 10 ff
Dump data from the 0x10 to 0xFF ROM-relative address range.

d 1000 ff
Dump data from the 0x1000 to 0x10FF ROM-relative address range.

74 LoadICE Command Reference

PromICE User Manual

edit
Modify PromICE ROM emulation memory.

Command Forms
edit loadice.ini file
-e Command line
edit Dialog mode (also e)

Syntax
edit [address { value }]

where

address (optional hex) Address in PromICE emulation memory to
modify.

value (if address is defined, zero or more hex values) A value or list
of data values to be written to emulation memory starting at
address, according to the current word width (defined by the
word command, default size is 8 bits).

Default
Start interactive editing at address zero of the current configuration.

Description
The edit command can change one or more data bytes within the emulation
memory defined in the current ROM configuration.

Used in the loadice.ini file or the command line, the patch data is written after
the first load of the files has completed. Then the patches expire. Note:
Subsequent loads will not be patched.

In Dialog mode, edit will enter an interactive mode if no address or no data
values are specified. To stop editing in Dialog mode, type a period followed by
<enter>. This will return you to the LoadICE prompt.

Examples
edit 500 ab cd
Set locations 0x500 and 0x501 to values 0xAB and 0xCD.

LoadICE Command Reference 75

© 1999 Grammar Engine

ethernet
Defines the type of Ethernet print server to use. Also specifies the host name to use
on the network to communicate with a print server that has a PromICE attached.

Command Forms
ethernet loadice.ini file, Dialog mode
-et Command line

Syntax
ethernet = fastport hostname

OR
ethernet = microplex hostname

where
fastport (optional literal) Use a FastPort print server. Follow with an

equal sign and a hostname.

microplex (optional literal) Use a Microplex print server. Follow with an
equal sign and a hostname.

hostname The name of the host for the print server on the network. In
UNIX it is generally kept in the /etc/hosts file.

Description
The ethernet command configures access to a PromICE over a network by
means of a print server. These servers support serial and parallel printers on
Ethernet networks. During installation, the PromICE unit is attached to the
print server’s serial port and optionally the printer port. Once configured,
LoadICE can access the PromICEs over the network. Full support for the
PromICE AI option is included.

Notes
FastPort Users:

The FastPort is a product made by Milan Technologies. Follow the
installation instructions that come standard with the FastPort. Do not
install the printer server software. Follow the instructions supplied by
Grammar Engine for configuring the FastPort for use with PromICE.

76 LoadICE Command Reference

PromICE User Manual

Microplex Users:
The Microplex is a product made by Microplex Systems Ltd. Follow the
installation instructions that come standard with the Microplex. Do not
install the printer server software. Follow the instructions supplied by
Grammar Engine for configuring the Microplex for use with PromICE.
Currently the Microplex can use only the PromICE serial port.

Examples
ethernet = fastport mypromice
Communicate to FastPort "mypromice" in loadice.ini file.

-et = microplex mypromice
Specify Microplex "mypromice" print server on the LoadICE command Line.

LoadICE Command Reference 77

© 1999 Grammar Engine

exit
Exit LoadICE when in Dialog mode.

Command Forms
exit Dialog mode
x Dialog mode
quit Dialog mode

Syntax
exit [num]

where
num (optional integer) Set the exit code for LoadICE.

Default
Exit code is “0” if all goes well. If an error is encountered then the exit code is
“1”.

Description
The exit command will terminate the LoadICE application.

Notes
When running LoadICE in batch mode, the exit code can be used to determine
if an error occurred.

Examples
exit
Exit LoadICE application.

78 LoadICE Command Reference

PromICE User Manual

fast
If parallel port transfers fail, use this command to lengthen the strobe on the host
parallel port. Use on high performance hosts.

Command Forms
fast loadice.ini file

Syntax
fast [num]

where
num (optional integer) Lengthen the parallel port strobe by a factor

of num.

Default
The default value for the delay loop count is 10 (see below).

Description
The parallel port strobe is generated by turning it ON and then OFF. If the fast
command is specified then a delay loop is inserted while strobe is asserted.
Optionally, this command allows you to control the length of the strobe by
specifying a count for the delay loop.

This delay loop is only activated by using this command. Otherwise the length
of the strobe depends on how long it takes for the host computer to execute the
instructions that drive the strobe signal.

Examples
fast 20
Pace a 100MHZ RISC host computer to work with a PromICE parallel link.

LoadICE Command Reference 79

© 1999 Grammar Engine

fastport
Defines the host name to be used to communicate over a network with a PromICE
connected via a FastPort.

Command Forms
fastport loadice.ini file
-fp Command line

Syntax
fastport hostname

where
hostname The name of the host for the FastPort on the network. In

UNIX it is generally kept in the /etc/hosts file.

Description
In order to access a PromICE over a network, use the fastport command to
configure access to a FastPort print server. For complete details, see the
FastPort Configuration for PromICE instructions (not included in this
manual).

The FastPort print server supports serial and parallel printers on Ethernet
networks. During installation, the PromICE unit is attached to the FastPort’s
serial port and optionally the printer port. Once configured, LoadICE can
access the PromICEs over the network. Full support for the PromICE AI
option is included.

Notes
The FastPort is a product made by Milan Technologies. Follow the installation
instructions that come standard with the FastPort. Do not install the printer
server software. Follow the instructions supplied by Grammar Engine for
configuring the FastPort for use with PromICE.

Examples
fastport=mypromice
Specify FastPort "mypromice" in the loadice.ini file.

-fp mypromice
Specify FastPort "mypromice" using LoadICE command line.

80 LoadICE Command Reference

PromICE User Manual

file
Setup a hex record file for ROM emulation or a comparison operation. Multiple file
commands will accumulate into a load set.

To initiate loading the files belonging to the load set into PromICE for emulation,
use the load command.

Command Forms
file loadice.ini file, Dialog mode
file_name Command line, preceding all other command line switches.

The command options shown below are fully supported.

Syntax
file file_name

OR
file file_name file_address = ROM_offset

OR
file file_name file_address = ROM_offset [(range_start, range_end)]

OR
file file_name file_address = ROM_offset [word_width unit_ID

{ unit_ID_n }] [(range_start, range_end)]

where
file_name (string) The name of the hex record file to be loaded.

file_address = ROM_offset
(optional, see below for individual arguments)
This expression will place data from the hex file file_name
into PromICE memory using the difference between
file_address and the ROM-relative address specified in
ROM_offset. Follow file_address with an equal sign and
ROM_offset.

file_address (hex) The absolute starting address of the data in the file
file_name produced by the linker, that is stored incrementally
in each hex record of the file file_name. This address is
normally used by hex record decoding programs to determine
where in memory to place the data.

For assistance in determining the file_address for your hex
file, use the analyze or setup command.

LoadICE Command Reference 81

© 1999 Grammar Engine

ROM_offset (hex) A ROM-relative offset into the PromICE ROM
emulation address space. The PromICE ROM emulation
space begins at offset zero. This offset is used to determine
the location within PromICE emulation memory where the
data at file_address should be loaded.

word_width (optional integer with variable length integer list) defines the
word width for the file. It must be an integral multiple of 8
and cannot be larger than the maximum data bus width
determined by the total number of PromICE 8 bit units.
word_width is followed by a list of one or more unit IDs,
which specifies the byte order of the PromICE 8 bit units
within the word width.

unit_ID (integer, required if word_width is present) The first
PromICE 8 bit unit number corresponding to the byte at the
lowest memory address within the word.

unit_ID_n (optional integers following unit_ID) The nth PromICE 8 bit
unit number specifying the byte order within the word size
specified by word_width for this file configuration.

 (range_start , range_end)
(optional hex address range) transfer data only from address
range_start through address range_end inclusive. This
specification allows partial loading of data files. The
parentheses and comma are required.

Note: range_start and range_end are hex file addresses. For
assistance in determining the address range for your hex file,
use the analyze command.

Default
Load the file file_name using the current system configuration starting at
PromICE relative address zero. This is equivalent to file command “file
file_name 0=0”. In order to work, the data in the file must be located at zero.

82 LoadICE Command Reference

PromICE User Manual

Description
The file command allows you to specify a hex record filename to be loaded and
a configuration for how it will be downloaded to PromICE.

Optionally, this command can specify how the data in the file will be mapped
or relocated into the ROM emulation memory, especially for Intel-style targets
with high memory ROMs. The word width of the file data, as well as the
assignment of PromICE 8 bit units to the bytes within the word can be
specified. Partial loading from an address range in the data file can also be
specified.

To load multiple files in the loadice.ini file or in Dialog mode, add a separate
file command for each file to be loaded. Multiple file and image commands
accumulate into a load set. Issuing the clearfiles command will clear the
existing load set.

File formats supported: Intel 8 and 16 bit, Motorola S record, Tektronix
standard and extended hex, Mostek and RCA.

Notes
Only one partial loading address range can be specified per file command.

Examples
file myfile.hex
file myfile.hex 0=0
Load data from 'myfile.hex' with addresses starting at 0x0 in the file to be
mapped to 0x0 in PromICE emulation memory, according to the current
LoadICE ROM configuration.

file=myfile.hex 400000=0 16 1 0
Load data from 'myfile.hex' with addresses starting at 0x400000 in the file to be
mapped to 0x0 in PromICE emulation memory. The file contains 16 bit data
with the first byte (even byte address) to be written to PromICE unit ID-1 and
the second byte (odd byte address) to be written to PromICE unit ID-0.

file=myfile.hex 400000=0 (401000,402000)
Load data from 'myfile.hex' from the address range starting at 0x401000
through 0x402000 in the file to be mapped into PromICE emulation memory
starting at to 0x1000.

LoadICE Command Reference 83

© 1999 Grammar Engine

fill
Fill the current PromICE ROM configuration memory with a repeating data pattern.

Command Forms
fill loadice.ini file, Dialog mode
-f Command line
f Dialog mode

Syntax
fill [data]

OR
fill start end

OR
fill start end data

OR
fill start end data fill_size

OR
fill start end data [data2] fill_size

where
start (optional hex) The first PromICE ROM-relative address to

fill.

end (optional hex) The last PromICE ROM-relative address to
fill.

data (optional hex) The data pattern with which to fill the address
range. The width of data can be up to four bytes as
determined by the current word size or fill_size, if specified
(see below).

data2 (optional hex) If fill pattern size is larger than 4 bytes, data2
can specify up to 4 additional bytes of the fill pattern.

fill_size (optional decimal) The fill pattern size, with a range of 1 to 8
bytes, overrides the current word size.

Default
Fill all memory in the current PromICE ROM configuration with the default
fill character (0x0FF). All fill pattern data supplied is interpreted according to
the current word size, unless fill_size is specified.

84 LoadICE Command Reference

PromICE User Manual

Description
Used to write a fill pattern into all or part of emulation memory in the current
PromICE ROM configuration. The fill pattern data will conform to the current
word configuration (8, 16, 32 or 64 bits where 64 bit data is specified as two 32
bit items). Optionally, you can load patterns 1 to 8 bytes in length regardless of
the current configuration.

Notes
When specified in the loadice.ini file, the fill is done prior to every file load
throughout that LoadICE session.

Examples
f 200 300 ab
Fill from 0x200 to 0x300 with data value 0xAB

word 16
f 200 300 abcd
Fill from 0x200 to 0x300 with data value 0xABCD

LoadICE Command Reference 85

© 1999 Grammar Engine

fillall
Fill the entire PromICE memory capacity with a repeating data pattern.

Command Forms
fillall loadice.ini file, Dialog mode
-fall Command line
fall Dialog mode

Syntax
fillall [data]

OR
fillall data fill_size

OR
fillall data [data2] fill_size

where

data (optional hex) The data pattern with which to fill the address
range. The width of data can be up to four bytes as
determined by the current word size or fill_size, if specified
(see below).

data2 (optional hex) If fill pattern size is larger than 4 bytes, data2
can specify up to 4 additional bytes of the fill pattern.

fill_size (optional decimal) The fill pattern size, with a range of 1 to 8
bytes, overrides the current word size.

Default
Fill all memory in the entire PromICE memory capacity with the default fill
character (0x0FF). All fill pattern data supplied is interpreted according to the
current word size, unless fill_size is specified.

Description
Use the fillall command to write a fill pattern into the entire PromICE memory
capacity, regardless of the ROM size. Individual PromICE 8 bit units or the
entire memory capacity can be filled. The fill pattern data will conform to the
current word configuration (8, 16, 32 or 64 bits where 64 bit data is specified as
two 32 bit items). Optionally, you can load patterns 1 to 8 bytes in length
regardless of the current configuration.

86 LoadICE Command Reference

PromICE User Manual

Notes
When specified in the loadice.ini file, the fillall is done prior to every file load
throughout that LoadICE session.

Examples
fillall ab
Fill all PromICE memory with data value 0xAB

word 16
fillall abcd
Fill all PromICE memory with the word data value 0xABCD

LoadICE Command Reference 87

© 1999 Grammar Engine

find
Find binary data pattern in PromICE emulation memory.

Command Forms
F Dialog mode
find Dialog mode

Syntax
find start end find_count data_byte { data_bytes }

where

start (hex) The first PromICE ROM-relative address to search.

end (hex) The last PromICE ROM-relative address to search.

find_count (integer) The number of bytes to find, from 1 to 32.

data_byte { data_bytes }
(variable length list of hex numbers) This list of hex bytes
defines the byte pattern for the search. The number of bytes
must match the find_count (see above). The list consists of a
data_byte followed by zero or more additional data_bytes.
The data must be specified as hex bytes separated by spaces.

Default
All parameters must be specified. If both start and end are equal to zero, then
the find command scans the entire address range of the current PromICE ROM
configuration.

Description
The find command searches the current PromICE ROM configuration for a
binary data pattern.

Examples
F 0 1ffeo 4 de ad fe ed
Looks for the byte pattern 0xDE 0xAD 0xFE 0xED in a 128kB ROM space, in
the ROM-relative address range 0x0 to 0x1FFE0. For example:
0000021C: DEADFEED
00000340: DEADFEED

88 LoadICE Command Reference

PromICE User Manual

fn
Assign hot keys to LoadICE or host commands.

Command Forms
fn# loadice.ini file
-fn# Command line
fn# Dialog mode

Syntax
fn#= [cmd | "string"]

where

(decimal number) function key number (1-12) No space
precedes #. Follow with an equal sign.

cmd | "string" LoadICE or system shell command. Precede the system
commands with a '!' so that LoadICE will pass them to the
DOS or UNIX shell. Use double quotes if the command text
contains a comma.

Description
The fn command allows you to assign LoadICE commands or operating system
commands to function keys.

Notes
You can assign most commands directly, but enclose commands that contain a
comma in double-quotes. Operating system commands must be preceded by a
'!'. On the command line, the quote mark must be specified as \".

Examples
fn12=restart
This will issue the restart command to LoadICE when the F12 key is pressed.
You can then request LoadICE to restart the link with PromICE after a time-
out error.

fn1="!edit test.c"
When the F1 key is invoked, LoadICE will execute the operating system
command 'edit' to edit the file 'test.c'. When you exit the editor, you will return
to the LoadICE prompt.

LoadICE Command Reference 89

© 1999 Grammar Engine

go
Instruct PromICE to go into emulation mode.

Command Forms
go Dialog mode
go loadice.ini file
<ESC> Dialog mode (toggles Emulation/Load modes)

Syntax
go

Description
Allows you to start emulation from the Dialog mode. The load light on the
front panel of PromICE indicates the emulation mode. When the light is on,
then PromICE is in Load mode.

When the go command is executed, the load light should go out, indicating that
PromICE is now in emulation mode. If it does not, the PromICE is not sensing
power on the target ROM socket.

Notes
You can use the [ESC] key to toggle between Load and Emulation modes.

Examples
<ESC>
PromICE will toggle between LOAD and EMULATE modes.

90 LoadICE Command Reference

PromICE User Manual

help
Obtain help about a LoadICE command.

Command Forms
? Command line
help Dialog mode

Syntax
help [command]

where
command (optional string) Any valid LoadICE command name.

Default
Display the list of commands for which help is available.

Description
The help command provides on-line help for most commands. When used
alone on the command line, '?' will give you help on all the commands that can
be used in the loadice.ini file. When invoked as '?' or 'help' in Dialog mode, it
will display a list of all the commands available. Further help then can be
obtained on individual commands.

Notes
Full documentation is available in this manual and on our web site at
www.promice.com.

Examples
help find
In Dialog mode, this will give information on how to use the find command.

LoadICE Command Reference 91

© 1999 Grammar Engine

hso
Program the interrupt signal to the target (on PromICE back panel).

Command Forms
hso loadice.ini file
-I Command line

Syntax
hso [bits]

where

bits (optional hex) This number specifies the polarity of the interrupt signal
and allows you to toggle it when LoadICE connects with PromICE:
0 - Interrupt is low asserted, it is raised at this time
1 - Interrupt is high asserted, it is lowered at this time
2 - Interrupt is high asserted. At startup lower-raise-lower it.
5 - Interrupt is low asserted. At startup raise-lower-raise it.
A - Interrupt is high asserted. At start up lower it, raise it for 1

second, then lower the interrupt line.
D - Interrupt is low asserted. At start up lower it for 1 second, then

raise the interrupt line.

Default
The signal is low asserted.

Description
The hso command allows the host system to alert the target that LoadICE is
talking to PromICE.

Notes
This command allows you to program the polarity of the int (handshake out)
signal on the back of (older) PromICE units.

On current units, the polarity of the signal is selectable on the back panel of the
PromICE unit. Specify this command only when needing to toggle the interrupt
line at startup.

92 LoadICE Command Reference

PromICE User Manual

Examples
hso 1
Defines the interrupt to the target to be high asserted.

LoadICE Command Reference 93

© 1999 Grammar Engine

image
Setup a binary file for ROM emulation or a comparison operation. Multiple image
commands will accumulate into a load set.

To initiate loading the files belonging to the load set into PromICE for emulation,
use the load command.

Command Forms
image loadice.ini file
-i Command line
image Dialog mode

Syntax
image file_name

OR
image file_name skip_count = ROM_offset

OR
image file_name skip_count = ROM_offset [word_width unit_ID {

unit_ID_n }] [(start_offset, end_offset)]

where
file_name (string) Name of binary file to be loaded.

skip_count = ROM_offset
 (optional, see below for individual arguments) This
expression will place data from the binary file file_name
starting at file offset (skip_count + 1) into PromICE memory
at the ROM-relative address specified in ROM_offset. Follow
skip_count with an equal sign and ROM_offset.

skip_count (hex) The count of data bytes to be skipped over from the
beginning of the file. Binary files may contain a 14 byte
header that may need to be skipped, such as with the UNIX
a.out format.

ROM_offset (hex) A ROM-relative offset into the PromICE ROM
emulation address space. The PromICE ROM emulation
space begins at offset zero. This offset is used to determine
the location within PromICE emulation memory where the
beginning of the data from file 'file_name' should be written.

94 LoadICE Command Reference

PromICE User Manual

word_width (optional integer with variable length integer list) defines the
word width for the file. It must be an integral multiple of 8
and can not be larger than the maximum data bus width
determined by the total number of PromICE 8 bit units.
word_width is followed by a list of one or more unit IDs,
which specifies the byte order of the PromICE 8 bit units
within the word width.

unit_ID (integer, required if word_width is present) The first
PromICE 8 bit unit number corresponding to the byte at the
lowest memory address within the word.

unit_ID_n (optional integers following unit_ID) The nth PromICE 8 bit
unit number specifying the byte order within the word size
specified by word_width for this file configuration.

 (start_offset, end_offset) (optional hex address range) transfer data only to
the PromICE ROM-relative address range start_offset
through address end_offset inclusive. This specification
allows partial loading of data files. The parentheses and
comma are required.

Note: start_offset and end_offset are PromICE ROM-relative
addresses. For assistance in determining the address range
for your image file, use the analyze command.

Default
Load the file in its entirety starting at zero in PromICE configuration. This is
equivalent to “image file_name 0=0 “

Description
The image command allows you to specify a binary data filename to be loaded
and a configuration for how it will be downloaded to PromICE.

This command can specify if the whole file should be loaded or if any bytes
need to be skipped at the start of the file. The word size and byte order in the
file can also be specified. Partial loading from an address range in the data file
can be specified.

To load multiple files in the loadice.ini file or in Dialog mode, add a separate
image command for each file to be loaded. Multiple image and file commands
accumulate into a load set. Issuing the clearfiles command will clear the
existing load set.

LoadICE Command Reference 95

© 1999 Grammar Engine

Notes
When loading multiple binary files you must specify multiple ROM_offsets or
else the files will overlap each other in emulation memory.

Only one partial loading address range can be specified per image command.

Examples
image=myfile.bin 0=10000 16 0 1
Load the file myfile.bin at location 0x10000. The file contains 16 bit data. The
first byte will be loaded in unit-0 and the second byte in unit-1.

image=myfile.bin 20=0
Load data from myfile.bin with addresses starting at 0x21 in the file to be
mapped to 0x0 into emulation memory.

image=myfile.bin E=0 (1000,2000)
Load binary data from myfile.bin starting at 0x100F from the beginning of the
file to be mapped into emulation memory starting at PromICE ROM-relative
address 0x1000 through 0x2000.

96 LoadICE Command Reference

PromICE User Manual

load
Initiates loading files into PromICE memory for emulation.

Command Forms
load loadice.ini, Dialog mode
-l Command line (hex file load)
-li Command line (binary file load)
l Dialog mode (hex file load)
li Dialog mode (binary file load)

Syntax
load [filename]

where
filename (optional string) If you wish to download a specific file

immediately (in Dialog mode only).

Default
Load the current load set.

Description
The load command will download to PromICE the entire contents of the
current load set, which is the set of files to load. The load set is built using the
file and image commands. All specified files are processed and downloaded.
The downloading process generates a file data map, which can be displayed
with the config command.

When the load command appears in the loadice.ini file or as '-l' on the
command line, it signals that LoadICE should download the files in the load set
at the end of loadice.ini processing and before either exiting or entering the
Dialog mode

Notes
Dialog mode is invoked only if loadice.ini contains the dialog command or '-d'
is used on the command line.

Examples
load
Load the files now.

LoadICE Command Reference 97

© 1999 Grammar Engine

log
Record all LoadICE command traffic to a log file in real-time.

Command Forms
log loadice.ini file
-log Command line
log Dialog mode

Syntax
log filename

OR
log num

OR
log

where

filename (optional string) specify the log filename and begin logging.
num (optional integer) logging control:

0 - turn logging off.
1 - turn logging on (will open a file if necessary).

no args Toggle logging on/off (will open a file if necessary).

Default
No log is kept. The default log filename is loadice.log.

Description
The log command captures the traffic between LoadICE and PromICE in a file
that can be sent to Grammar Engine for analysis. This is an alternative to
changing the display level in LoadICE (refer to the display command). The
log command writes the log data into a disk file. This saves the overhead of the
display command and will not loose information or error conditions. The log
can also be viewed using the DOS program vlog.exe, which is on the LoadICE
distribution disk or can be downloaded from www.promice.com.

98 LoadICE Command Reference

PromICE User Manual

Notes
If the log command is used in Dialog mode without having previously specified
a file name, then the file loadice.log. is created to store the log data. This is
also the default filename for the vlog.exe viewer program.

Examples
log logfile.log
.
.
.
log 0
Log PromICE communications traffic to the file logfile.log. Then disable
logging.

LoadICE Command Reference 99

© 1999 Grammar Engine

map
Control the display of the address range information during the loading process.

Command Forms
map loadice.ini file
map Dialog mode

Syntax
map num

where

num (integer) map display control
0 - turn off display of map information
1 - turn on display of map information

Default
Off.

Description
LoadICE can display the range of addresses where data is being loaded. The
map command controls this display.

Notes
When the data file has multiple data regions, there may be a large number of
address ranges displayed. You can use this command to turn off such displays.

Examples
map 0
Don't display the map information.

100 LoadICE Command Reference

PromICE User Manual

modein
Specifies the initial mode for PromICE upon LoadICE invocation, either Load or
Emulation mode.

Command Forms
modein loadice.ini file
-mi Command line

Syntax
modein [stop | go]

where
[stop | go] (keyword) PromICE mode upon LoadICE startup:

stop places PromICE in Load mode at startup.
go places PromICE in Emulation mode at

startup.

Default
The default mode depends on the command line option and loadice.ini file
processing. At connect time, LoadICE will place PromICE into Emulation
mode, unless files are to be loaded. Loading files will leave PromICE in Load
mode.

Description
The modein command defines the initial PromICE mode upon entering Dialog
mode. This command takes effect when LoadICE initiates communication with
PromICE, which usually occurs at the conclusion of loadice.ini and command
line option processing.

Examples
modein stop
dialog
Place PromICE in Load mode at the beginning of the interactive Dialog
session.

LoadICE Command Reference 101

© 1999 Grammar Engine

modeout
Specifies the final mode for PromICE upon LoadICE termination, either Load or
Emulation mode.

Command Forms
modeout loadice.ini file
-mo Command line

Syntax
modeout [stop | go]

where
[stop | go] (keyword) PromICE mode upon LoadICE termination:

stop places PromICE in Load mode at exit.
go places PromICE in Emulation mode at exit.

Default
By default, LoadICE puts PromICE into Emulation mode upon exit.

Description
The modeout command defines the final PromICE mode upon program
termination.

Examples
modeout stop
Place PromICE in Load mode when LoadICE exits.

102 LoadICE Command Reference

PromICE User Manual

modefixed
Maintains the current PromICE mode at LoadICE termination.

Command Forms
modefixed loadice.ini file
-mf Command line

Syntax
modefixed

Description
The modefixed command overrides the default LoadICE action of placing
PromICE into Emulation mode on exit. The current PromICE mode in Dialog
mode or command processing (command line option and loadice.ini) is not
changed when LoadICE exits.

Notes
If files are loaded into PromICE during command processing (command line
option and loadice.ini), PromICE will be in Load mode unless a go command
follows the load command.

Examples
modefixed
Exiting LoadICE will not change the current PromICE mode.

LoadICE Command Reference 103

© 1999 Grammar Engine

move
Copy bytes within PromICE emulation memory.

Command Forms
move loadice.ini file, Dialog mode
m Dialog mode

Syntax
 move start end destination

where

start (hex) The starting address of source data block where data is
copied from. start is a PromICE ROM-relative address.

end (hex) The ending address of source data block where data is
copied to. end is a PromICE ROM-relative address.

destination (hex) The starting address of destination location where
source data block is to be copied to. destination is a PromICE
ROM-relative address. Note: destination should not be
within the start to end range.

Default
All three address parameters must be specified.

Description
The move command allows you to replicate data within PromICE memory. All
addresses are PromICE ROM-relative addresses, which start at zero.

Notes
Overlapping memory regions, where destination is within the start to end
range, are not recommended and are likely to fail.

Examples
m 100 120 300
Move data from 0x100 to 0x120 to 0x300 (to 0x320).

104 LoadICE Command Reference

PromICE User Manual

noaddrerr
Ignore address-out-of-range errors during file loading.

Command Forms
noaddrerr loadice.ini file, Dialog mode
-z Command line
z Dialog mode

Syntax
noaddrerr [num]

where
num (optional integer)

1 - View hex file records with addresses out of range.

Default
When this command is not used, the download process stops when an address
error is encountered.

Description
During loading, if an address is outside the specified ROM emulation
configuration (i.e. the address is larger than the ROM size), LoadICE will stop
processing data and report an error message. The noaddrerr command will
cause the offending data to be skipped and the load processing to continue.

Notes
If you have properly mapped your data files, this error is usually caused by
initialized data intended for RAM. This option will allow you to ignore these
records.

Examples
noaddrerr 1
Skip data that has addresses out of emulation memory and display them.

LoadICE Command Reference 105

© 1999 Grammar Engine

number
Specify the number of Daisy Chained PromICE units.

Command Forms
number loadice.ini file
-n Command line

Syntax
number total_units

where
total_units (integer) The total number of daisy chained PromICE units

(0-255).

Default
The default module count is one.

Description
The number command is necessary whenever daisy chaining PromICE units.

This allows the LoadICE application to send out sufficient auto baud characters
to ensure that all the PromICE units will complete the auto baud sequence.
When the sequence concludes, the units will transmit some characters back to
the host. LoadICE can then begin controlling the PromICEs.

On UNIX, if a host read were to be issued but no characters have been received,
then the read will wait (indefinitely). Even though a serial line is opened with
the option to not wait on the read (i.e. return error if there is nothing to read),
the UNIX manual states that on a communication line, the first read will block
if no characters are available to be read.

Examples
number 3
Allows enough auto-baud characters to be transmitted for three units to auto-
baud correctly.

106 LoadICE Command Reference

PromICE User Manual

output
Specify serial output port for connection with PromICE.

Command Forms
output loadice.ini file
-o Command line

Syntax
output port_name [address]

where

port_name (string) The standard operating system name for the desired
serial port. Paths may be required for UNIX.

address (optional hex) On an IBM PC or compatible, LoadICE will
lookup the port address in the BIOS built table in low
memory. If you have a nonstandard serial port, then you may
explicitly give its address to LoadICE.

Default
COM1 for PC
/dev/ttyb for UNIX

Description
This command specifies the serial link for LoadICE communication with
PromICE. Optionally, the port address may be specified for PC systems.

Notes
When using an AI communications session, this option specifies the link to use
for host communication after the AI session is established.

The precedence of the output command and the pponly command, which
specifies exclusive use of the parallel port, is as follows:

1. A command line switch overrides all other occurrences.

2. The last occurrence in the loadice.ini file overrides earlier
occurrences in loadice.ini.

LoadICE Command Reference 107

© 1999 Grammar Engine

Examples
-o com3
Use COM3.

108 LoadICE Command Reference

PromICE User Manual

ppbus
Specifies that the parallel port be used only for downloads and that the serial port
will be used for all other LoadICE/PromICE communications.

Command Forms
ppbus loadice.ini file
-pb Command line

Syntax
ppbus parallel_device_name [port_address]

where
parallel_device_name (string) The LPT number or the device name

(Solaris) where PromICE units are attached.
port_address (optional hex) Non-standard port address.

Description
The ppbus command specifies that the parallel port be used only for downloads
and that the serial port will be used for all other LoadICE/PromICE
communications.

When daisy chaining PromICE units via parallel ports, this command is
mandatory. The serial ports must be daisy chained because the control
information is sent via the serial port.

Notes
This option works with the Ethernet print servers.

Examples
ppbus lpt1
Specifies the ppbus port as 'lpt1' in the loadice.ini file.

-pb /dev/bpp0
Specifies the ppbus port as '/dev/bpp0' from the LoadICE command line under
Solaris.

LoadICE Command Reference 109

© 1999 Grammar Engine

ppmode
Sets the parallel port's communication mode.

Command Forms
ppmode loadice.ini file
-P Command line

Syntax
ppmode num

where
num (integer) parallel port download mode:

0 Standard mode, around 30KBytes per second
1 Fast mode, about 60KBytes per second, with verification.
2 Turbo mode, about 90KBytes per second, no verification.

Default
0 - Standard mode for units with micro-code version 5 or older.
2 - Turbo mode for all units with micro-code version 6 or greater
When LoadICE connects to PromICE, it automatically determines the default
parallel port mode based on the micro-code version.

Description
The ppmode command allows you to select the parallel port transfer mode.
Turbo mode is only available on units that support fast mode, i.e. micro-code
versions 6 and above.

Notes
Turbo mode is the default for units that support fast mode, i.e. micro-code
versions 6 and above. If you have difficulty in connecting to PromICE and
communicating reliably with turbo mode, you may want to try fast mode.

Turbo mode does not verify the downloaded data in order to achieve faster
transfer rates. The verify command can enable data verification.

110 LoadICE Command Reference

PromICE User Manual

Examples
-P 1
Select fast transfer from LoadICE command line.

LoadICE Command Reference 111

© 1999 Grammar Engine

pponly
Specify PromICE communications to use only the parallel port in bi-directional
mode. This feature is not available to Ethernet users and most UNIX users.

Command Forms
pponly loadice.ini file
-q Command line

Syntax
pponly parallel_device_name [address]

where
parallel_device_name (string) The LPT number or the device name

(Solaris) where PromICE units are attached.

address (optional hex) Non-standard port address.

Description
The LoadICE will communicate with a single PromICE only using the parallel
port.

Notes
You cannot daisy chain multiple PromICE units over the parallel port alone.
You must use the serial daisy chain adapter with the parallel bus cable and add
"ppbus" and "output" to your loadice.ini file. Refer to the installation section
for more information about daisy chaining.

The precedence of the pponly command and the output command, which
specifies the host COM port address, is as follows:

1. A command line switch overrides all other occurrences.

2. The last occurrence in the loadice.ini file overrides earlier
occurrences in loadice.ini.

The pponly command cannot be used with most UNIX systems or Ethernet
print servers. You must use the serial and optionally the parallel port. See the
ppbus command.

112 LoadICE Command Reference

PromICE User Manual

Examples
pponly lpt2
Use LPT2 as the bi-directional parallel port to communicate with PromICE.

-q /dev/bpp0
Specifies the pponly port as '/dev/bpp0' from the LoadICE command line under
Solaris.

LoadICE Command Reference 113

© 1999 Grammar Engine

promiceid
Display the PromICE Identification number.

Command Forms
promiceid Dialog mode.

Syntax
promiceid

Default
Display the PromICE Identification number for the first PromICE unit.

Description
Each PromICE processor can have a 32 bit Identification number or serial
number to uniquely identify the unit. This command displays the ID number.

The promiceid command allows PromICE to be bundled with other tools that
will only work with PromICE specific units. If you would like specific ID
numbers in units you purchase, contact Grammar Engine and request this
service. Normally PromICE ID numbers are not unique.

Examples
promiceid
Report the PromICE Identification number on the first unit.

114 LoadICE Command Reference

PromICE User Manual

reset
Initiate a target reset. Also can specify the duration of target reset signal (RST).

Command Forms
reset loadice.ini file, Dialog mode
-R Command line
R Dialog mode

Syntax
reset [milliseconds]

where
milliseconds (optional integer) The length of the PromICE target reset

signal in milliseconds (0-3000) for this and future reset
events.

Default
The default reset time is 500 milliseconds.

Description
Normally, LoadICE and PromICE will operate in auto-reset mode. This means
that whenever PromICE is in Load mode, the target reset signal is asserted and
whenever PromICE is in emulation mode, then the reset is released (goes tri-
state). However, you can cause a target reset using this command.

Notes
Specifying reset with a time of '0' will disable auto-reset. Then the target can
be reset either manually or by issuing the reset command. Target reset is not
automatically asserted while in Load mode.

Examples
r 500
Reset the target with a 500 millisecond pulse. Remembers pulse length for
future resets.

LoadICE Command Reference 115

© 1999 Grammar Engine

resetfp
Controls whether LoadICE resets the FastPort before connecting with PromICE.

Command Forms
resetfp loadice.ini file
-rfp Command line

Syntax
resetfp [num]

where
num (optional integer) ethernet print server reset control

0 Disables the FastPort reset.

1 Enables the FastPort reset.

Default
The FastPort is not reset. When num is omitted, FastPort reset is enabled.

Description
The resetfp command resolves the condition when the FastPort-to-PromICE
link is hung and LoadICE cannot connect via the FastPort.

LoadICE will connect with the FastPort's built-in monitor and reset it. After
the FastPort reset has completed, LoadICE then connects to the PromICE
unit(s).

Notes
Whenever a reset command is used, it will take about 20 seconds for LoadICE
to connect with PromICE, instead of the 1 or 2 seconds required without a
FastPort reset. To break an AI communications session, the FastPort must be
reset every time LoadICE connects. This will be remedied in a future FastPort.

Examples
resetfp 1
Reset the FastPort from the loadice.ini file.

-rfp 0
Disable FastPort reset from the LoadICE command line.

116 LoadICE Command Reference

PromICE User Manual

restart
Restart the LoadICE to PromICE communication link.

Command Forms
restart Dialog mode

Syntax
restart

Description
The restart command will reestablish the communication link with PromICE
without the need to restart the LoadICE application.

Notes
If you have reset or power cycled PromICE then you need to reestablish the link
with this command. If LoadICE has timed out waiting for PromICE, then use
this command. However, LoadICE will try to recover the link automatically
unless the noautorecovery command was specified.

Examples
restart
Regardless of what state PromICE is in, restart the link with PromICE.

LoadICE Command Reference 117

© 1999 Grammar Engine

rom
Specify ROM emulation memory size.

Command Forms
rom loadice.ini file, Dialog mode
-r Command line

Syntax
rom size[k]

OR
rom size[m]

OR
rom gen_part_number

where

size (integer) The size of emulated memory, measured in the
current word size (see the word command.). The specified
number must be a power of 2.

k (optional literal) Use to indicate the size in thousands of the
current word size.

m (optional literal) Use to indicate the size in millions of the
current word size.

gen_part_number
(string of digits) JEDEC standard ROM part number for
either 8 or 16 bit word size. The number must begin with a
27, such as 27512, 27010, 27040, 27080, or 27160.

Default
The maximum emulation size is the amount of emulation memory in the
smallest PromICE unit in the current PromICE ROM configuration.

Description
The rom command specifies the size of ROM for PromICE to emulate. It must
be less than or equal to the amount of emulation memory in the smallest
PromICE unit in the current PromICE ROM configuration.

118 LoadICE Command Reference

PromICE User Manual

When emulating word sizes greater than 8 bits, state the target memory size as
nnn K by the iii word size. For example, an 8 megabit device in 16 bit mode is
stated 512K by 16 where nnn is 512 and iii is 16. So the commands for this
memory are: word=16 and rom=512k.

Notes
Note that gen_part_numbers are scanned as decimal integers and all letters are
ignored. The part AM27C020 is the same as 27020.

If your target is wired for a socket larger than the size of ROM you are
emulating, then refer to the description of the socket command. Typically this
can be the case for 1, 2 and 4 Mbit ROMs. A socket wired for 4Mb can be used
with 1, 2 or 4 Mbit ROMs without any jumper changes.

Examples
rom=27010
rom=131072
rom=128k
These three examples all specify a 128K Byte (1Mbit ROM) to be emulated.

rom=256k
Lets you emulate a 256K Byte ROM (27020).

word 16 1 0
rom=256k
Lets you emulate a 256K by 16 ROM (28F400).

LoadICE Command Reference 119

© 1999 Grammar Engine

save
Save PromICE emulation memory contents to a binary file on the host.

Command Forms
save Dialog mode

Syntax
save file_name [start end]

where
file_name (string) The name of the host file in which PromICE memory

contents are to be saved. Path names may be included.

 [start end] (optional hex pair) Specifies an address range for the save
(see below). Note: Both addresses are PromICE ROM-
relative addresses.

start (hex) Specifies the starting address of the range to save.

end (hex) Specifies the ending address of the range to save.

Default
Save the entire current ROM configuration’s memory contents.

Description
The save command reads the contents of PromICE emulation memory and
saves it to a binary file. Optionally, it can save the contents in the PromICE
ROM-relative address range start to end. The resulting binary file can be
reloaded with the image command.

Examples
save newfile.bin 100 3fff
Save the data from the range 0x100 to 0x3FFF to a host file called newfile.bin.

120 LoadICE Command Reference

PromICE User Manual

search
Search PromICE emulation memory for an ASCII data pattern.

Command Forms
search Dialog mode
S Dialog mode

Syntax
search [start end] pattern

where

[start end] (optional hex pair) Specifies an address range (see below).
Note: Both addresses are PromICE ROM-relative addresses.

start (hex) start is the beginning address of the range to search.

end (hex) end is the ending address of the range to search.

pattern (quoted string) The text string to be located. Enclose the
string in double quotation marks (" ").

Default
Search all current PromICE ROM configuration.

Description
The search command will search the current PromICE ROM configuration’s
memory for an ASCII string.

Notes
The start and end address range is optional. The entire specified range is
searched for multiple occurrences of the string.

Examples
S 0 1000 "Enter new value:"
Search from 0x0 to 0x1000 for the string.

LoadICE Command Reference 121

© 1999 Grammar Engine

setup
Access a menu-driven tool that can be used to configure PromICE. You can
generate a loadice.ini file to store your settings.

Command Forms
setup Dialog mode
-setup Command line

Syntax
setup

Description
The setup command invokes a menu-driven interface for LoadICE/PromICE
configuration. Please follow the on-screen instructions. Be sure to save your
settings to the loadice.ini file before exiting the menu interface.

Examples
setup
Invoke a menu-driven interface for configuring PromICE.

122 LoadICE Command Reference

PromICE User Manual

socket
When unused address lines cannot be pulled high, you may need the socket
command to modify the PromICE address mask. Unused address lines are those
that are available from the target ROM socket but are not needed to emulate the
ROM.

Command Forms
socket loadice.ini file, Dialog mode

Syntax
socket size[k | m]

OR
socket gen_part_number

where
size (integer) The socket size, measured in the current word size

(bytes or words) as defined by the most recent word
command. The specified number must be a power of 2.

k (optional literal) Use to indicate the size in thousands of the
current word size.

m (optional literal) Use to indicate the size in millions of the
current word size.

gen_part_number (string of digits) JEDEC standard ROM part number for
either 8 or 16 bit word size. The part number must begin
with a 27 or a 29.

Default
The default socket size is the same as ROM size. As a result, all address lines
beyond the emulation ROM address space must be high.

Description

Please see the Unused Address Lines chapter, in the back of this manual, which
deals with the socket command in detail.

Examples
socket=27040
rom=27010
Lets you emulate a 128K Byte ROM in a socket wired for a 512K Byte ROM.

LoadICE Command Reference 123

© 1999 Grammar Engine

status
Displays the status of the target system as detected by PromICE.

Command Forms
status loadice.ini file, Dialog mode
-st Command line
st Dialog mode

Syntax
status

Description
The status command is a quick way to find out if the target has power and if
the target is accessing the ROM being emulated by PromICE.

Notes
The status is reported only from the master 8 bit unit of the first PromICE.

Sometimes you may need to issue the status command multiple times if the
target has recently changed state such as after a reset. Check the status several
times to determine if it is running. Use <CR> to repeat the previous command.

Examples
status
Displays the target status from LoadICE Dialog mode or in the loadice.ini file.

-st
Displays the target status from the LoadICE command line.

124 LoadICE Command Reference

PromICE User Manual

stop
Cause PromICE to exit emulation mode and enter Load mode.

Command Forms
stop loadice.ini file, Dialog mode
 <ESC> Dialog mode (toggles Emulation/Load modes)

Syntax
stop

Description
Force PromICE to stop emulating and enter Load mode. The target reset signal
is asserted and held while in Load mode, unless the auto-reset feature has been
de-activated by the reset 0 command. To reactivate auto-reset, exit LoadICE
and invoke it again.

Notes
The target will crash if it is executing out of the PromICE ROM emulation
memory, unless the reset line is attached to the target.

When the stop command is issued, the buffers inside the PromICE unit(s) are
shut off. If the target attempts to access code in PromICE memory, it will not
receive correct data. If the reset line is connected, the reset will be held until a
go command is issued.

Examples
stop
The load light should come on so you can execute commands that modify
PromICE emulation memory contents.

LoadICE Command Reference 125

© 1999 Grammar Engine

test
Test PromICE ROM emulation memory on a particular PromICE 8 bit unit.

Command Forms
test Dialog mode
t Dialog mode

Syntax
test [id | c] [pass_count]

where
[id | c] (optional integer or literal) Select the PromICE unit to test

OR test the current configuration (see below).

id (optional integer) A valid PromICE unit ID number (0-255).
Do not follow id with a colon. Tests all of unit's memory
with an iterative pattern.

c (optional literal) Test the current PromICE emulation
configuration with a non-repeating 32 bit pattern.

pass_count (optional integer if first argument is present) The number of
times to perform the memory test.

Default
Test PromICE 8 bit unit ID=0 memory once.

Description
The test command runs a simple RAM test on the memory of a PromICE 8 bit
unit. If the test fails, then the addresses of the failures are reported.

Notes
This command destroys all data in PromICE emulation memory.

A failed test may indicate: 1) a damaged data buffer, 2) a problem with the
non-volatile emulation memory controller (weak battery or failed Super
Capacitor), or 3) a failure of a RAM chip inside PromICE.

Examples
t
Test memory once on PromICE unit ID=0.

126 LoadICE Command Reference

PromICE User Manual

version
Report micro-code version of the PromICE and the LoadICE version.

Command Forms
version Dialog mode
v Dialog mode

Syntax
version

Default
Display the LoadICE version number and micro-code version of the first
PromICE.

Description
The version command reports the version of software and micro-code you are
running. This information is helpful when seeking technical support.

Notes
Please have this information readily available when contacting Technical
Support.

Examples
version
Report version of the LoadICE and micro-code version numbers.

LoadICE Command Reference 127

© 1999 Grammar Engine

word
Specify the emulation data word width for the current PromICE ROM emulation
configuration.

Command Forms
word loadice.ini file, Dialog mode
-w Command line
w Dialog mode

Syntax
word word_width [unit_ID { unit_ID_n }]

where
word_width (integer) defines the word width for the file. It must be an

integral multiple of 8 and cannot be larger than the maximum
data bus width determined by the total number of PromICE 8
bit units.

unit_ID { unit_ID_n }
 (optional variable length integer list) The list of PromICE 8
bit unit IDs to define the byte order.

unit_ID (optional integer) The first PromICE 8 bit unit number
corresponding to the byte at the lowest memory address
within the word.

unit_ID_n (optional integers following unit_ID) The nth PromICE 8 bit
unit number specifying the byte order within the word size
defined by word_width.

Default
The default word size is 8 bits. Unless the byte order is specified, the default
byte order is: all known PromICE 8 bit units arranged in ascending unit ID
order.

Description
The word command is used to set the word size for the current PromICE ROM
emulation configuration. The 8 bit unit IDs to be used, as well as their byte
order within the word, can also be specified.

128 LoadICE Command Reference

PromICE User Manual

The word size specification and the ROM specification are used by most
LoadICE commands that reference PromICE emulation memory.

Notes
The word command should precede the checksum, dump, edit, fill, load,
move, and rom commands when used in the loadice.ini file. These commands
depend on the data width of the target system.

When using a dual PromICE (models starting with “P2”) to emulate a single 8
bit ROM, be sure to specify a single unit ID as the byte order. For example:

word 8 0
Otherwise, any load data overflow from the single 8 bit ROM’s address space
will not be reported.

The bus width is determined by the ROM bus width, not the processor’s bus. If
you are using a 32 bit processor with one 8 bit ROM, you should specify the
word size as 8 bit for the word command.

Examples
w 16 0 1
This specifies a 16 bit word size to be used. The first byte of data (all the even
numbered bytes) will be loaded into the bottom or master unit (unit ID0). The
second data byte (odd numbered bytes) will be loaded into the top or slave unit
(unit ID1). This is typical for Intel-style targets, based on how GEI target
cables connect to dual PromICE units.

w 16 1 0
This specifies a 16 bit word size to be used. The first byte of data (all the even
numbered bytes) will be loaded into the top or slave unit (unit ID1). The
second data byte (odd numbered bytes) will be loaded into the bottom or master
unit (unit ID0). This is typical for Motorola-style targets, based on how GEI
target cables connect to dual PromICE units.

LoadICE Command Reference 129

© 1999 Grammar Engine

pponly=lpt1
rom=27010
file myfile.hex 8000=0
begin
word 8 1
fill AA
load
word 8 0
fill BB
load
Works with one 8 bit unit at a time. This example loads myfile.hex into each
8 bit unit but uses different fill patterns. It works with 8 bit unit number 1
followed by 8 bit unit number 0. Unit number 0 remains the current unit for
subsequent LoadICE commands.

130 LoadICE Command Reference

PromICE User Manual

xmask
When unused address lines cannot be pulled high, you may need the xmask
command to specify an arbitrary address mask. Unused address lines are those that
are available from the target ROM socket but are not needed to emulate the ROM.

Command Forms
xmask loadice.ini file

Syntax
xmask mask_byte

where
mask_byte (hex) The address mask byte for target address lines A16 to

A24.

Default
The default mask_byte is 0xFF.

Description

Please see the Unused Address Lines chapter, in the back of this manual, which
deals with the xmask command in detail

Examples
xmask F3
Set address mask to 0xF3FFFF, which sets address lines A18 and A19 to zero.

LoadICE Environment 131

© 1999 Grammar Engine

5. The LoadICE Environment

Contents
OVERVIEW
LoadICE Syntax Details

Case Sensitivity
Comments
Numeric Arguments
ROM-Relative Address Arguments

Introduction to LoadICE Command Processing
INI Command scope: the entire LoadICE session
INI Command scope: the first load command
Command scope: the current set of files to load
INI File Processing
Configuration Dependencies

ROM Configuration Types
The current PromICE ROM emulation configuration
PromICE 8 bit unit configuration
Application Note: Emulating multiple 8 bit ROMs

132 LoadICE Environment

PromICE User Manual

OVERVIEW
The LoadICE environment includes the information on command syntax details,
how loadice.ini is processed, and a basic explanation of PromICE ROM
configuration models.

• LoadICE Syntax Details
• LoadICE commands are case sensitive
• Comments in loadice.ini
• Numeric Arguments
• ROM-Relative Address Arguments

• Introduction to how LoadICE processes the command line and loadice.ini
file commands and the scope (or duration) of their actions.

• ROM Configuration Types

Be sure to visit www.promice.com for a free upgrade to the latest LoadICE
software and documentation. If you don't have web access, contact your Sales
Representative to obtain a copy.

Note: LoadICE version 4.0 or higher is required to use the commands
documented in this version of the PromICE User Manual.

LoadICE Environment 133

© 1999 Grammar Engine

 LoadICE Syntax Details

Case Sensitivity
LoadICE commands are case sensitive. All entries should be lower case unless
otherwise specified.

Comments
Comments in loadice.ini begin with asterisk "*" and hide the remainder of the line.

Numeric Arguments
Numeric arguments of LoadICE commands each have an implicit radix defined by
the particular command’s syntax. LoadICE does not support explicit prefix or
suffix letters to indicate the base of numeric arguments. For instance, all address
arguments must be entered using hexadecimal digits.

Note that when LoadICE scans a numeric argument, all letters are ignored. For
instance, generic ROM parts are scanned as decimal integers. The part AM27C020
is the same as 27020.

ROM-Relative Address Arguments
Most LoadICE commands that refer to PromICE emulation memory require
PromICE ROM-relative address arguments. PromICE ROM-relative addresses are
based at the beginning of ROM being emulated and are always hexadecimal.

For instance, the PromICE ROM-relative address 10 refers to the target address
80010H when the ROM starts at address 80000H.

134 LoadICE Environment

PromICE User Manual

Introduction to LoadICE Command Processing
LoadICE commands can be issued three ways: on the command line at
LoadICE invocation time, in the loadice.ini initialization file during program
startup, and in the interactive Dialog mode

Certain commands, when used on the command line or in the loadice.ini, will
have lasting effects on the system. The duration of a command’s effect is
referred to as it’s scope.

Commands in this section are listed by scope. Also loadice.ini processing is
briefly explained.

INI Command scope: the entire LoadICE session
These commands issued on the command line or in the loadice.ini file will act
upon the current PromICE ROM configuration emulation memory each time a
load command is issued. To cancel the actions of these commands, end the
LoadICE session by exiting from the program.

fill – write pattern into the ROM emulation memory (before load)

fillall – write pattern into the entire PromICE emulation memory (before load)

checksum – calculate checksum and write into memory (after load)

INI Command scope: the first load command
These commands issued on the command line or in the loadice.ini file will act
upon the current PromICE ROM configuration emulation memory only for the
first load command issued after LoadICE is executed. These actions expire
automatically once completed.

edit – write bytes into emulation memory (after load)

move – move bytes to new location within emulation memory (after load)

Command scope: the current set of files to load
These commands, whenever issued, accumulate into a set of files to be loaded.
When the load command is issued, all files belonging to the load set are sent to
the PromICE according to the current PromICE ROM configuration in
conjunction with their individual settings. To clear the current load set, issue
the clearfiles command.

LoadICE Environment 135

© 1999 Grammar Engine

file – setup a hex record file for ROM emulation

image – setup an image record file for ROM emulation

INI File Processing
Normally LoadICE begins communicating with PromICE after loadice.ini file
processing has finished. The commands in the loadice.ini file serve as
configuration settings, not as a general-purpose scripting language. For
instance, a fill command used in loadice.ini affects every load during the
LoadICE session (see above).

You can use the begin command to cause LoadICE to immediately initiate
communication with PromICE and treat the remaining commands in the
loadice.ini file one at a time, much like Dialog mode commands. Commands
following begin do not have INI Command Scope.

When you need to load more than one set of files inside a loadice.ini file, you
can use the begin command followed by the load command to load the current
set of files. Once loaded, the loadice.ini file processing resumes. Next use the
clearfiles command to empty the current load set. Then you can issue file
and/or image commands to specify new files and load them.

Example of INI File Loading
bank 2 * define number of banks
bank 1 * switch to second bank (#1)
file=myfile1.hex 400000=0
begin
load
clearfiles
bank 0 * switch to first bank (#0)
file=myfile2.hex 401000=0
load

During the loadice.ini file processing, the begin command initiates connection
to PromICE and loads myfile1.hex into logical bank 1. Then it loads
myfile2.hex to into logical bank 0 at the conclusion of loadice.ini processing.

Configuration Dependencies
During loadice.ini file processing, the order of certain commands is
significant. The placement of the word command and the order of the pponly
and output commands will affect the success of your configuration.

136 LoadICE Environment

PromICE User Manual

The word command should precede the checksum, dump, edit, fill, load,
move and rom commands when used in the loadice.ini file. These commands
depend on the word command, which defines the data width of the target
system.

The output command specifies the host COM port address. The pponly
command specifies that LoadICE use the parallel port exclusively for all
communications with PromICE. Both of these commands can be specified as
switches on the command line that invokes LoadICE.

The precedence of the pponly and output commands are as follows:

1. A command line switch overrides all other occurrences.

2. The last occurrence in the loadice.ini file overrides earlier
occurrences in loadice.ini.

All commands that configure Host-to-PromICE communications should
precede the begin command, which initiates LoadICE communication with
PromICE.

LoadICE Environment 137

© 1999 Grammar Engine

ROM Configuration Types
LoadICE supports two types ROM emulation configurations:

1) The current PromICE ROM emulation configuration

2) PromICE 8 bit unit configurations

The current PromICE ROM emulation configuration
The current PromICE ROM emulation configuration is the central, general
purpose configuration that can be built with any number of PromICE 8 bit
units. Most LoadICE commands refer to this configuration by default.

The word, rom, and socket commands define the basic configuration
architecture. The emulation word size can be any multiple of 8 up to 64 bits,
such as 8, 16, 32, or 64 bits, limited only the number of PromICE 8 bit units in
the system. The emulation ROM size is limited to the smallest memory
capacity of all the 8 bit units included in the word’s byte order definition.

PromICE 8 bit unit configuration
See the chapter entitled PromICE Unit IDs.

Application Note: Emulating multiple 8 bit ROMs
When using dual PromICEs (Models starting with “P2”), LoadICE, by default,
allocates the second 8 bit unit of the dual PromICE into an alternate bank with
the same addresses but presumably a separate target chip select signal.
PromICE ROM-relative addressing places the second 8 bit unit addresses above
the first unit’s address range. For example:

rom=27010
word 8

Is the same as:
rom=27010
word 8 0 1

Unit 0 has PromICE ROM-relative addresses 0 to 1FFFF and Unit 1 has 20000
to 3FFFF.

138 LoadICE Environment

PromICE User Manual

To work exclusively with one 8 bit unit, issue the word command with a word
size of 8 followed by the unit ID. This example loads myfile.hex into each 8
bit unit but uses different fill patterns. It works with 8 bit unit number 1
followed by 8 bit unit number 0.

pponly=lpt1
rom=27010
file myfile.hex 8000=0
begin
word 8 1
fill AA
load
word 8 0
fill BB
load

Troubleshooting 139

© 1999 Grammar Engine

6. Troubleshooting
CONTENTS

Introduction

NOTE: All warranties are void if unit is opened!

Host to PromICE

Windows / 95 / NT

LoadICE Version

Switch box / extension cable / software key

Port specification

Baud rate

Serial/parallel daisy chain

Noise

Damaged serial/parallel port

PromICE to Target

Load File Mapping

Load Light Stays On

Emulation Size

Noise

Parasitic Power

Incorrect Byte Order

Stopped Working After A Move

Emergency Repairs

Replacing ROM Interface Buffers

140 Troubleshooting

PromICE User Manual

Replacing the Parallel Port Buffers

Technical Support Request Form

RMA Information

Troubleshooting 141

© 1999 Grammar Engine

Introduction
Often additional information is helpful in resolving PromICE configuration
problems. The interactive Dialog mode has commands that report useful data. For
more information on using Dialog mode, see the introduction in the LoadICE
Environment chapter.

Once in Dialog mode, the following commands are particularly useful. Use the go
command to access Emulate mode before using these commands.

status Reports if target is powered and if the target is accessing PromICE
memory. Also, it will report trace status information if the
PromICE has the Trace Option.

config Reports the current PromICE memory configuration and load file
information.

analyze Reports information about a hex or image file.

log Report on LoadICE / PromICE communications that should be
sent to Grammar Engine for analysis.

Once in Dialog mode, the following commands can only be used in Load mode.
Use the stop command to access Load mode.

test Test PromICE emulation memory (overwrites contents).

compare Compares contents of PromICE memory with the original files.

dump Displays the contents of PromICE emulation memory.

fillall Fills PromICE emulation memory with a fixed pattern. Use to
prevent execution of old code fragments.

WARNING: If proper Electro Static Discharge (ESD) precautions have not been
taken, you may have damaged buffers. If your PromICE appears to load fine but
will not emulate or emulates to a point in code and hangs up repeatedly, there is a
good possibility that the buffers have been damaged.

NOTE: All warranties are void if unit is opened!

Contact Grammar Engine Technical Support
for All Technical Support Related Information.

142 Troubleshooting

PromICE User Manual

HOST TO PROMICE

Windows / 95 / NT
Make sure you are using the latest version of LoadICE for your version of
Windows. If you are using the NT parallel port driver, make sure you logged in
as administrator to install the driver and that the PromICE.ini and BIOS
settings are correct.

LoadICE Version
Check your LoadICE version. Upgrades can be downloaded from
www.promice.com.

Switch box / extension cable / software key
Connect PromICE to the host using only the supplied cables. Disconnect any
switch boxes, extension cables and/or software keys (hardware security keys or
dongles). These are not recommended for use with PromICE. Software keys
may intercept codes intended for PromICE and stop communication. Once the
problem has been solved, you can experiment with reconnecting these devices.

Port specification
Make sure that you are connected to the correct port.

If the port has a non-standard address, specify it using a command line switch
or in the loadice.ini file as follows:

output=com1:3f8
OR

pponly=lpt1:378

Baud rate
Make sure you have specified a valid baud rate in the baud command.
PromICE supports 1200, 2400, 4800, 9600, 19200 and 57600 baud. If a
slower baud rate works, then noise may be the problem.

Serial/parallel daisy chain
Make sure the daisy chain modules are connected properly. Refer to the
"Hardware Installation" Section of this manual for more information.

Troubleshooting 143

© 1999 Grammar Engine

Noise
Move the communications lines away from any power cables, monitors, power
supplies, etc.

Damaged serial/parallel port
If communication is impossible through the serial port, try using another port,
preferably on another host system. (The TTY interface feature has been
retired.)

PromICE TO TARGET
This section covers emulation problems including configuration, connectivity, and
run-time issues. The target either fails to emulate, or stops emulating. Problems
experienced with emulation may show up in a number of ways.

Grammar Engine Inc. Technical Support is available to help with emulation
problem resolution.

Load File Mapping
If the file specification in the loadice.ini or command line is incorrect, the target
code will not run or will run to a point and crash.

If your load file does not load any code or data into target RAM, make sure NOT to
use the noaddrerr command in your loadice.ini or on the command line. This
way, if data loads outside the PromICE address range, LoadICE will show the error
and location.

If the file address and/or the ROM address are specified incorrectly the program
won't run or will crash. Make sure you know your file's starting address and where
you want it to load into ROM.

Example: Assume you have a file called tst.hex that starts at 0x400000 (the hex
records in the file say to start loading data at this address). Assume that the file
contains 16 bit data and the first byte is emulated by module ID1 (slave unit) and
the second by module ID0 (master unit). The specification would be:

file=tst.hex 400000=0 16 1 0

The "16 1 0" suffix is optional when the word command has already specified the
byte order as in "word=16 1 0".

144 Troubleshooting

PromICE User Manual

Example: Assume you have a file called tst.bin that has a 14 byte load header.
Assume that the file contains 16 bit data and the low order byte is emulated by unit
ID0 (master) and the high order byte by unit ID1 (slave). The specification would
be:

image=tst.bin 14=0 16 0 1

Again, the "16 0 1" suffix is optional when the word command has already set the
byte order using "word=16 0 1". When in doubt, specify all command parameters.

Load Light Stays On
When the Load light on the PromICE front panel remains On, the main cause is
that PromICE is not sensing target power on the target ROM socket or probe.
PromICE will not emulate if it cannot sense target power.

Check your target cables and jumper settings. Inspect the target ROM socket and
the probe for damage. Most sockets are rated for a limited number of insertions.
Minimize the number of insertions when using the older ET probes included with
the PL32C target cables.

When using the 3 Volt Adapter, be sure that you have jumpers on EXT, ROM and
32 on the back of PromICE. Failing to use both the EXT and ROM jumpers will
cause the Load light to remain on. Note that when using the 3 Volt Adapter
properly configured with the jumpers listed above, PromICE monitors its own
power source.

Emulation Size
In resolving configuration problems, begin by emulating the largest size that your
PromICE can emulate and work down to the size the target's ROM socket is wired
for, if smaller. If the ROM you are emulating is a 27512, but your target's socket
can handle a 27020, try to emulate the 27020.

 If you are not sure whether your target can use larger ROM sizes, then start by
emulating the largest size ROM that your PromICE can emulate. Work your way
down from there until you find the correct emulation size.

Noise
Check the cabling between PromICE and the target. Make sure the cable is not
near any power supplies, monitors or cables. If your target is sensitive to noise or is
itself noisy, it may not emulate reliably. Keep the cables as short as possible and
route them as far away as possible from noise sources. Grammar Engine ships
shielded cables.

Troubleshooting 145

© 1999 Grammar Engine

Parasitic Power
PromICE should be powered using the external power supply shipped with it. Your
target should not parasitically power the PromICE unit.

Incorrect Byte Order
If you are emulating more than one ROM and/or are using a target with a 16 bit or
larger word size, define the byte order using the word command in the loadice.ini
file or on your command line. If the byte order is not correct, the code will not load
into memory correctly. When the target reads the disorganized code, it will fail.

Stopped Working After A Move
Whenever handling PromICE or your target be sure to use proper anti-static
protective procedures. See the Installation chapter for details. If PromICE has
taken static damage or been exposed to high voltages, the buffers within the
PromICE are the first to be damaged, by design. Call for a Repair RMA number.

Be advised that replacing the buffers yourself will void your warranty and is done
entirely at your own risk.

Check your target cables. Inspect the target ROM socket and the probe for damage.
Always disconnect any adapter boards from the ROM probe before pulling it from
the target socket. Be sure to pull the probe straight up. Failing to do so can damage
the probe and/or the socket.

Most ROM sockets are rated for a limited number of insertions. Especially
minimize the number of insertions when using the older ET probes included with
the PL32C target cables. A probe for each target board is a good investment.

146 Troubleshooting

PromICE User Manual

EMERGENCY REPAIRS
WARNING:

OPENING THE PROMICE CASE WILL VOID ALL WARRANTIES.

When you are on a tight schedule, you may choose to repair the PromICE yourself.
For such cases, these instructions are provided.

Warning: This will definitely void any warranty. You assume the full risk of
applying any repairs described here. Any mistakes may further damage the unit or
your target system.

If you are very careful and take full precautions against static damage, you can
reduce the chances of damaging your unit. Grammar Engine will not be liable for
any damages incurred, even when you follow these instructions.

Replace parts only with identical replacements. For Example: An HCT244 and
ALS244 are not the same. If you replace an ALS with an HCT PromICE may not
emulate properly.

Replacing ROM Interface Buffers
If the PromICE will not emulate or LoadICE is reporting Memory Size Zero
errors when you connect with PromICE, then you may have damaged buffers
on the PromICE ROM interface. One or more damaged buffers can block
address or data lines and cause the previously mentioned problems.

To replace the buffers:

1. To open the PromICE unit, use a #1 Phillips screw driver and remove the
two screws from the underside of the PromICE box. Remove the flat head
screw on the back panel that is attached to a heat-sink.

2. Slide out the circuit boards and the panel. Keep them all together as you
take them out or they may bind in the case. If you have a duplex unit and/or
AI option installed, then remove the panels and gently pry apart the circuit
boards.

3. The address input buffers, marked U11, U12 and U13, are located behind
the ROM cable header. These are 74ALS244 chips, which are 20 pin
socketed devices. They should be replaced with identical chips. If you lack
enough chips then replace them one at a time, until the defective chip is
replaced.

Troubleshooting 147

© 1999 Grammar Engine

4. The data buffer, marked U14, is a 74ALS245. Replace it with an identical
chip.

5. The interface chips are marked the same on both the master board (the one
with main PromICE circuit on it) and the slave board (mounted onto the
master board).

6. After the chips are replaced, reassemble the boards by carefully lining up the
44 pin headers on both sides of the board. You may test the unit now to see
if the problem is fixed.

7. To completely reassemble the unit, hold the panels in position with the
boards and gently slide the whole assembly into the bottom portion of the
box. Attach the heat sink back to the back panel with the flat head screw.
Slide on the top half of the box and close it with the Phillips on the
underside of the box.

Replacing the Parallel Port Buffers
If you are having problems with the parallel port, and you have tried the regular
troubleshooting section, then the parallel port buffers may be damaged.

While the unit is open, check the two buffers right behind the parallel port
connector. These are 74ALS244 and 74LS244 chips, which are also 20-pin
socketed devices. Replace them with identical chips.

148 Troubleshooting

PromICE User Manual

PRIORITY FAX
To: GRAMMAR ENGINE TECHNICAL SUPPORT
Fax: (614)899-7888

From: ___________________________________
Company: ___________________________________

Voice: () _________________________
Fax: () _________________________

Model #: P_____________________ (Please include complete number)
Serial #: ________________ (Below model number)

(The model and serial numbers are located on the front or bottom of the unit.)

Jumper settings on PromICE: EXT ROM 32 28 24
LoadICE version number: _____________
(Run LoadICE or type "v" in Dialog mode to get full version #)

Contents of the loadice.ini file: Target Information:

_________________________ Target CPU: _____________________
_________________________ Clock Rate: _____________________
_________________________ ROM access time: _____________________
_________________________ ROM part #: _____________________
_________________________ ROM wait states: ________
_________________________ Bus width: 8 16 24 32

Command line arguments: __
Error messages: ___

Host type and speed: ______________ Switchbox: YES / NO
Network: YES NO Windows: YES NO
Connection to PromICE: Serial / Parallel / Both Extension cables: YES / NO
Debugger used: ____________________________________

Additional Information:

Troubleshooting 149

© 1999 Grammar Engine

RMA INFORMATION
SHIP TO: Grammar Engine Inc.

921 Eastwind Dr.
Suite 122
Westerville, OH 43081

ATTN. RMA# ______________
(Contact Grammar Engine Technical Support for RMA number.)

PromICE MODEL # (On front panel or bottom of unit):
P___________________________

PromICE SERIAL NUMBER (Under model number):

Purchase Order number
(If out of warranty and/or for special shipping): ______________

Return Shipping instructions:
__

Return Address: ___________________________

Contact Name: ___________________________
Contact Phone # ___________________________

Reason for Return: _____ Upgrade _____ Repair

Problem Description:

150 Error Messages

PromICE User Manual

7. Error Messages
Most messages from LoadICE inform you of PromICE's status and display
information you have requested. The following are the messages displayed when
errors occur. Unless you are in Dialog mode, errors will terminate LoadICE.
Dialog mode will prompt for more command input.

Error messages are identified by their header. Additional data is often displayed to
provide more information on particular errors. Sometimes a system error message
is also displayed (if the global variable 'errno' has been set). The system error
message usually indicates a failed system call and may be cryptic.

LoadICE will also display the user input that was being processed when the error
occurred. In some cases, the error condition may not correspond to the current
command input. Negative error numbers are failure codes returned from the
PromICE emulation unit(s). Positive error numbers are from LoadICE itself.

Error Messages 151

© 1999 Grammar Engine

Errors reported by LoadICE at a glance:

 (-6) Interface is not available / active

 (-5) Interface is busy

 (-4) Timer expired while waiting

 (-3) DataOverflow - lost host data

 (-2) No data available from the target

 (-1) Feature not implemented

 (1) LoadICE parser internal error #1

 (2) Illegal command

 (3) LoadICE parser internal error #2

 (4) Too many arguments supplied

 (5) Expected argument not supplied

 (6) Filename error

 (7) Invalid baud-rate

 (8) Invalid ROM size

 (9) Invalid word size

 (10) Invalid ID list

 (11) Open failed

 (12) Unable to skip file data

 (13) Device I/O error

 (14) Bad port name

 (15) End-o-File

 (16) Bad parameters to picmd()

 (17) Communication error

 (18) Name too long

 (19) Timed out waiting for response

 (20) Feature Not Implemented Yet!

 (21) Verify failed

 (22) Invalid unit ID

 (23) Address out of range

 (24) LoadICE internal error #3

 (25) Bad arguments

 (26) Bad checksum in record

 (27) Feature not supported on this unit

 (28) Bad argument for driver call

 (29) Bad data in the hex record

 (30) Unit is LOCKED

 (31) Not enough units to emulate word-size

 (32) Memory Size Zero

 (33) Operation terminated by user

 (34) Data over-run

 (35) Key NOT assigned

 (36) Can't do while Emulating!

 (37) Not emulating! - do a 'go' first

 (38) No operation!

 (39) No link with units...

 (40) Must have AI Rev3.1...

 (41) Must include 'word=' statement...

152 Error Messages

PromICE User Manual

(-6) Interface is not available or not active
Causes:
Relates to programming the AI option. Either the AI option is not installed or it
has not been activated by the software, or the PI option has not been activated before
use.
Solution:
Check your configuration.
Contact Grammar Engine Sales for an upgrade.

(-5) Interface is busy
Cause:
AI interface cannot accept more data. The interface is busy with the previous
command or is busy processing target data.
Solution:
Check your software.

(-4) Timer expired while waiting
Cause:
Command timed out on the AI or PI interface. Either AI or PI operation has timed
out.
Solution:
Check your software.

(-3) DataOverflow - lost host data
Cause:
The target is not servicing the interface. It may be hung. A write to the AI or the
PI has failed due to previous write not completing.
Solution:
Rerun LoadICE.

(-2) No data available from the target
Cause:
A read operation from the AI failed. Interface is hung or target has crashed. A read
command was sent and no data was available from the target.
Solution:
Retry the read attempt. Run LoadICE to reset the link.

Error Messages 153

© 1999 Grammar Engine

(-1) Feature not implemented
Cause:
You are trying to use an unimplemented feature.
Solution:
Contact Grammar Engine Technical Support for assistance.

(1) LoadICE parser internal error #1
Cause:
This error should only occur if LoadICE has been modified.
Solution:
Correct the loadice.ini file and retry the command.

(2) Illegal command
Cause:
Spelling or capitalization error.
Solution:
Check spelling and retry. All commands are case sensitive.

(3) LoadICE parser internal error #2
Cause:
Internal error.
Solution:
Contact Grammar Engine Technical Support for assistance.

(4) Too many arguments supplied
Cause:
Too many arguments were specified on the command.
Solution:
Check command syntax and retry the command.

(5) Expected argument not supplied
Cause:
Required input was omitted.
Solution:
Check the command syntax.

154 Error Messages

PromICE User Manual

(6) Filename error
Cause:
Filename doesn't exist in directory or specified path.
Solution:
Check the path and filename for errors.

(7) Invalid baud-rate
Cause:
Invalid baud rate specified
Solution:
Specify a supported baud rate (i.e.,1200,2400, 4800, 9600, 19200, or 57600)

(8) Invalid ROM size
Cause:
ROM size specified is not valid.
Solution:
Specify a generic part number (i.e. 27512), the size in KBytes (i.e. 64k) or the
actual decimal number (i.e. 65536). See the rom command.

(9) Invalid word size
Cause:
Word size is not a multiple of 8.
Solution:
Specify a valid word size (i.e. 8, 16, 32, 64...). See the word command.

(10) Invalid ID list
Cause:
Word size is too large.
Solution:
Set word size to a smaller value. See the Software Configuration chapter for more
information.

(11) Open failed
Cause:
File name not specified correctly or is not in the current path.
Solution:
Make sure the file and it's extension are correctly spelled and in lower case. The
file should either be in the same directory as the loadice.ini or the path should be
specified.

Error Messages 155

© 1999 Grammar Engine

(12) Unable to skip file data
Cause:
Skipping more data than is in file.
Solution:
Check your skip count. It should not be larger than your file size.

(13) Device I/O error
Cause:
Error internal to the host operating system.
Solution:
Check your host system for problems. Check the host system message or error log
for a more detailed description.

(14) Bad port name
Cause:
A serial or parallel port does not exist or has a bad port address.
Solution:
Check the port name and address. See the Software Configuration chapter for more
information.

When using the ailoc command, this error will occur if an output command is not
specified. The AI option initialization uses the serial port defined by the output
command.

(15) End-o-File
Cause:
Corrupt record in hex file.
Solution:
Remake the file.

(16) Bad parameters to picmd()
Cause:
Count field larger than allowed.
Solution:
Should only occur if LoadICE has been modified. Recopy LoadICE from the
distribution disks or download a new copy from www.promice.com.

156 Error Messages

PromICE User Manual

(17) Communication error
Cause:
LoadICE could not establish a link with PromICE or the link failed.
Solution:
Check your connection and try to reconnect. If serial connection isn't working, try
using the parallel connection and vice versa. Check the cable connections at both
the host and PromICE sides.

(18) Name too long
Cause:
File or device name too long.
Solution:
Shorten the name to no more than 128 characters.

(19) Timed out waiting for response
Cause:
Noisy connection or incorrect version of LoadICE.
Solution:
Move cables away from monitors and/or power supplies. If you are using Windows
95 or NT, download the latest version of LoadICE from www.promice.com.

(20) FEATURE NOT IMPLEMENTED YET!
Cause:
Internal error.
Solution:
Contact Grammar Engine Technical Support for assistance.

(21) Verify failed
Cause:
Noisy connection with the PromICE.
Solution:
Rerun LoadICE. Run a test on the PromICE memory (see the test command in the
command reference). If the test fails or if the problem persists contact Grammar
Engine Technical Support for assistance.

Error Messages 157

© 1999 Grammar Engine

(22) Invalid unit ID
Cause:
ID specified is larger than the total number of PromICE units.
Solution:
Check file and word specifications for an invalid ID. Refer to the installation
section for more information.

(23) Address out of range
Cause:
Incorrect file offset or ROM size set too small. Some of the code may be intended
for RAM.
Solution:
Correct the file offset. See the file command in the Command Reference chapter for
more information on file offsets. Set the ROM size to emulate a larger part. To
ignore data addresses outside of the PromICE emulation space, add the noaddrerr
command to the loadice.ini file.

(24) LoadICE internal error #3
Cause:
Internal error.
Solution:
Recopy LoadICE from the distribution disks or download it from
www.promice.com.

(25) Bad arguments
Cause:
A command has invalid input.
Solution:
This usually occurs when the ailoc and pponly commands are included in the
loadice.ini file. Add “output=<com>” (where <com> is the serial port to which
PromICE is connected) as the first line in the loadice.ini file. See the Command
Reference chapter to verify syntax for a particular command.

(26) Bad checksum in record
Cause:
File has been manually edited (patched).
Solution:
Use the nochecksum command or -x option to process and load the edited records.

158 Error Messages

PromICE User Manual

(27) Feature not supported on this unit
Cause:
Unit does not have feature installed.
Solution:
Contact Grammar Engine Sales for an upgrade.

(28) Bad argument for driver call
Cause:
Corrupt LoadICE application.
Solution:
Recopy LoadICE from the distribution disks or download it from
www.promice.com.

(29) Bad data in the hex record
Cause:
The file processor found data that it doesn't know how to handle.
Solution:
Recompile the hex file and retry. The error string contains information about the
error. Correct any problems and retry.

(30) Unit is LOCKED
Cause:
Internal error.
Solution:
Contact Grammar Engine Technical Support for assistance.

(31) Not enough units to emulate the word-size
Cause:
Emulating a word size larger than the current number of PromICE units.
Solution:
Select a smaller word size. Divide the word size by 8. There should be the same
number of PromICE units as the number you come up with. PromICE models
beginning with "P2" count as two units and "P1" units count as one.

Error Messages 159

© 1999 Grammar Engine

(32) Memory Size Zero
Cause:
The PromICE memory controller hasn’t charged yet.
Solution:
PromICE may contain a super capacitor that will take a few seconds to charge.
Once charged, it will hold for at least several hours and at most a week (depending
on the PromICE memory size and speed). If the error still occurs after 30 seconds,
check the PromICE power supply. Replace the power supply, if necessary.

If you are using the ROM jumper and are not using a 3 Volt Adapter, remove the
ROM jumper and use an EXT jumper in order to connect the external power
supply.

If jumpers were on both ROM and EXT without a 3 Volt Adapter attached, then be
advised that PromICE power was delivered to your target.

(33) Operation terminated by user
Cause:
A command was terminated during processing
Solution:
Retry the command.

(34) Data over-run
Cause:
Interference from a network.
Solution:
Move all files to the local drive.

(35) Key NOT assigned
Cause:
You pressed a function key that has no assigned value.
Solution:
Assign or press a different key. See afn or fn command to assign a key.

160 Error Messages

PromICE User Manual

(36) Can't do while Emulating!
Cause:
A command was issued that requires the PromICE to be in Load mode.
Solution:
Use the stop command or press the escape key (The escape key in DOS/Windows
toggles the PromICE between Emulation and Load modes). When emulation is
stopped, the target will crash and will need to be reset after the go command is
issued. If the reset signal is connected to the PromICE, the target will be held in
reset until emulation is turned back on.

(37) Not emulating! - do a 'go' first
Cause:
A command was issued that requires the PromICE to be in emulation mode.
Solution:
Type “go” or press the escape key (escape not supported under UNIX). If the reset
line is not connected from PromICE to the target, the target will have to be reset
after the “go" is issued.

(38) No operation!
Cause:
The operation was canceled by the user.
Solution:
Retry the operation

(39) No link with units...
Cause:
Attempted to issue a command while the Host/PromICE link was down due to
timeout, etc.
Solution:
Issue a restart command. Alternately, exit LoadICE and run it again.

(40) Must have AI Rev3.1...
Cause:
Command requires a newer Analysis Interface option.
Solution:
Contact Grammar Engine Sales for an upgrade.

Error Messages 161

© 1999 Grammar Engine

(41) Must include 'word=' statement...
Cause:
You are using a command that requires the word command to already be defined.
Solution:
Place the word command into your loadice.ini file. Refer to the Software
Configuration chapter for more information.

Analysis Interface Configuration 162

PromICE AI User Manual

8. AI Configuration
Introduction

Description

How AI Works

How Debuggers Work With the AI

LoadICE Software for AI

AI Versions

AI Configuration Reference: Overview

1. Configure PromICE so that your target emulates

2. Configure the debugger monitor with a target serial port, if
present

3. Reconfigure the debugger monitor to work with AI.

4. Consider these debugger monitor configuration issues

5. AI Register Offsets for word sizes 16 bits and greater

6. AI Register Offsets for targets with burst mode ROM accesses
OR long processor read cycles

7. Combine the AI Register layout analysis done in the preceding
two steps

8. On AI 1 units: setup the address mask, if needed

9. Miscellaneous Configuration Issues

10. Configure the debugger monitor to work with AI in polled mode

11. Optionally, configure the debugger monitor to work with AI
interrupts

12. Optionally, connect the write line for debugger monitor use

Conclusion

Analysis Interface Configuration 163

© 1999 Grammar Engine

Download Options

LoadICE Example: AI Setup

Analysis Interface Configuration 164

PromICE AI User Manual

Introduction
The PromICE Analysis Interface option, referred to as "AI," implements a virtual
serial channel, which is accessible through the target’s ROM socket. This virtual
channel operates like a ROM-based UART. The host connects to the PromICE
serial port in place of a target serial port. PromICE functions as a pass-through
data-forwarding device.

The PromICE AI option is available on units with "AI" or "AI2" as part of the
model number. If you want to be able to debug via the target ROM socket and your
PromICE lacks this option, contact your Grammar Engine Sales Representative for
an upgrade.

On a dual PromICE, AI is only accessible through the master PromICE 8 bit unit,
ID=0. The master unit connects to your target through the lower connector on the
back of a dual PromICE. Internally, the AI option is a PromICE daughter board.

How AI Works
The target system can communicate with the host computer using the AI option like
a serial port. The AI control registers are mapped into a region within the PromICE
ROM emulation memory. The target can accomplish bi-directional communication
with the host entirely by performing reads of the AI interface. AI does not require
the ability to write to ROM addresses to communicate.

With minimal code on the target system, you can communicate bi-directionally with
no cost to target hardware resources. The AI option can provide interrupt driven
communications. If your target allows write access to ROM addresses, your
debugger monitor can write into ROM emulation memory.

How Debuggers Work With the AI
An embedded debugger has two components, the host-side front-end and the target-
based monitor. The front-end runs on your host, manages the target, and provides
debugging with the help of its target monitor program. This monitor communicates
with the front-end via a connection between the target and the host system.

Conventionally, the link is a serial channel connected to COM ports on the host and
the target. Adding a PromICE with the AI option is like adding a spare serial port
to your target. PromICE AI operates similar to a UART on your target system.

Analysis Interface Configuration 165

© 1999 Grammar Engine

The only required modification to your target monitor is to install support for the AI
virtual UART. Many third party debugging packages support PromICE/AI as a
communication option.

LoadICE Software for AI
Be sure to visit www.promice.com for a free upgrade to the latest LoadICE
software and documentation. If you don't have web access, contact your Sales
Representative to obtain a copy.

Note: LoadICE version 4.0 or higher is required to use the commands
documented in this version of the PromICE User Manual.

AI Versions
The PromICE AI option has two versions: AI1 and AI2. To determine which
version is present in a PromICE, use the “config rom” command to display as a
status similar to the following:

EMULATION UNITS PRESENT:
 PromICE ID0 Memory=524288 Emulating=524288 FillChar=0xFF Master/AI2

A PromICE 8 bit unit with the AI Option will have either “AI1” or “AI2” as the last
item on its line. Be sure to note which version you have before reading the
following section.

Analysis Interface Configuration 166

PromICE AI User Manual

AI Configuration Reference: Overview
1. Configure PromICE so that your target emulates

2. Configure the debugger monitor with a target serial port, if present

3. Reconfigure the debugger monitor to work with AI.

4. Consider these debugger monitor configuration issues

5. AI Register Offsets for word sizes 16 bits and greater

6. AI Register Offsets for targets with burst mode ROM accesses OR long
processor read cycles

7. Combine the AI Register layout analysis done in the preceding two steps

8. On AI 1 units: setup the address mask, if needed

9. Miscellaneous Configuration Issues

10. Configure the debugger monitor to work with AI in polled mode

11. Optionally, configure the debugger monitor to work with AI interrupts

12. Optionally, connect the write line for debugger monitor use

Analysis Interface Configuration 167

© 1999 Grammar Engine

AI Configuration Reference
Follow this procedure to setup your debugging configuration:

 1. Configure PromICE so that your target emulates

The first step is to configure PromICE ROM emulation to work with your
target. Once PromICE emulation is working, then work with the debugger.
Follow the instructions in the beginning of the manual. If you have some
known working code, use it to test your emulation setup. Once the target is
emulating with PromICE connected, be sure to store that configuration in your
loadice.ini file.

At this point, the only changes you will need to make to your loadice.ini file
will be to change the files to be loaded and to add AI commands. You should
avoid changing your rom, word, or socket commands.

2. Configure the debugger monitor with a target serial port, if present

If your target has a serial port, temporarily configure the debugger’s monitor to
work with that target serial port. Verify that the debugger works.

3. Reconfigure the debugger monitor to work with AI.

 Most debuggers that support AI will offer convenient reconfiguration.

4. Consider these debugger monitor configuration issues

While configuring your debugger’s monitor, consider the following items:

Step 5: On target systems with word sizes of 16 bits or greater, determine
the offsets for the AI control registers, as seen by the target.

Step 6: On target systems which use burst mode accesses to ROM
addresses (or when the target processor read cycle is greater than
the ROM width), determine which burst mode is in use and adjust
the offsets for the AI control registers.

Step 7: Combine the analysis in the preceding two steps, both of which
can affect the code used in the debugger monitor, to locate and
read the AI control registers

5. AI Register Offsets for word sizes 16 bits and greater

The AI control registers, as seen by 8 bit targets, occupy four consecutive byte
addresses within the memory of PromICE 8 bit unit ID=0.

 On systems with larger word sizes, the AI control registers occupy byte
positions within four consecutive words. The location of the control registers
within the words depends on the position of the PromICE unit ID=0 in the
current ROM configuration’s word layout.

Analysis Interface Configuration 168

PromICE AI User Manual

Most debugger code for working with the AI control registers assumes that the
registers occupy the low order byte within the word. On Intel-style systems
(little endian), the word command commonly looks like:

word 16 0 1 *where unit 0 has D0 to D7

On Motorola-style systems (big endian), the word command commonly looks
like:

word 16 1 0 *where unit 0 has D8 to D15

If the word command cannot be made to resemble the above, then the code in
the debugger monitor will likely have to change. The monitor must access
PromICE 8 bit unit ID=0 where it appears in the target’s data word.

On various targets, the AI control register offsets can be as follows:

Word Offsets Word Offsets
8 0, 1, 2, 3 32 0, 4, 8, 12 or 1, 5, 9, 13; etc.

16 0, 2, 4, 6 or 1, 3, 5, 7 64 0, 8, 16, 24 or 1, 9, 17, 25; etc.

6. AI Register Offsets for targets with burst mode ROM accesses OR long
processor read cycles

On targets with burst mode ROM access, add the AI burst command to your
loadice.ini file. The AI burst command is also needed if the target processor
read cycle is greater than the ROM width, such as a long word processor
booting from an 8 bit ROM.

Also, adjust the locations of the AI control registers to compensate for the
multiple reads generated by each burst read. AI1 PromICE units support burst
modes of 0, 4, 8, and 16 bytes. AI2 PromICE units support burst modes of 0, 2,
4, 8, 16, and 32 bytes. For each power of two increase in burst length,
PromICE ignores a low order address bit as follows:

Burst Ignores Offsets Burst Ignores Offsets
0 none 0, 1, 2, 3 8 A2 – A0 0, 8, 16, 24
2 A0 0, 2, 4, 6 16 A3 – A0 0, 16, 32, 48

4 A1 – A0 0, 4, 8, 12 32 A4 – A0 0, 32, 64, 96

The target monitor code must account for the control register offsets due to the
burst mode accesses. The effect is to insert additional filler bytes between the
control registers. This is in addition to the register spacing due to target word
size.

Analysis Interface Configuration 169

© 1999 Grammar Engine

7. Combine the AI Register layout analysis done in the preceding two steps.

The previous two steps can both affect the memory layout of the AI control
registers as seen by the target. Now combine the offset information from the
two previous steps into a single register layout. Modify the debugger monitor
to use these offsets to locate and read the AI control registers.

For example, on a system with 2KB ROM (2716) on a 16 bit word and 4 byte
burst mode, the AI register layout is as follows:

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0 Address Lines

..1 X X X X X X X X X X X rom 2kb

..1 X word 16

..1 X X burst 4

..1 0 0 0 1 1 0 X X X X X ailoc C0

..1 0 0 0 1 1 0 0 0 X X X ZERO

..1 0 0 0 1 1 0 0 1 X X X ONE

..1 0 0 0 1 1 0 1 0 X X X HOST_DATA

..1 0 0 0 1 1 0 1 1 X X X STATUS

As shown in the example above, the AI registers can be accessed within the
following word address ranges on an Intel-style target:

Register Word Address Range word 16 0 1 word 16 1 0

ZERO 0xF8C0 to 0xF8C6 low byte high byte

ONE 0xF8C8 to 0xF8CE low byte high byte

HOST_DATA 0xF8D0 to 0xF8D6 low byte high byte

STATUS 0xF8D8 to 0xF8DE low byte high byte

During AI setup, it may be helpful to write a test program that can discover the
AI locations. This is done by filling the region surrounding the AI control
registers with 0xCC and scanning that region for the registers. Determine the
size of the entire register region and divide by four to obtain the register
spacing.

Analysis Interface Configuration 170

PromICE AI User Manual

8. On AI 1 units: setup the address mask, if needed

AI2 users can skip this item because AI2 register address decoding ignores all
address lines beyond the ROM emulation size.

On AI1 units, additional LoadICE commands may be necessary if it is not
possible to pull high all unused address lines available from the target ROM
socket. See the Unused Address Lines chapter for details.

9. Miscellaneous Configuration Issues

Cache

The AI option will not function if its memory range is cached. Either disable
the cache during debugging or find a way of forcing a cache miss for every AI
access.

Adjusting AI Timing

Depending on the memory access timing of the target processor, the aicontrol
command may be needed. See the aicontrol command for details. The 683xx
and DSP processors use this command most often. If the target works reliably,
do not use this command.

Watchdog Timers

If you have a watchdog timer on your target that is not used by the debugger,
then disable it in the monitor startup code. The debug monitor will not come
up if a watchdog timer is enabled but not configured by the monitor.

Using the pponly command with Serial AI

LoadICE is used to create a serial AI communications session. When using the
LoadICE pponly command to control PromICE only through the parallel port,
you must still add the output command to specify the host serial port in the
loadice.ini file:

output=com2
pponly=lpt1
..
..
ailoc 200, 19200

10. Configure the debugger monitor to work with AI in polled mode

Add the ailoc command to your loadice.ini file. Add other AI commands as
needed.

Begin with polled mode communication. By using polled communications, you
can verify that your target monitor configuration is working. Once properly
configured, you will be able to debug through the ROM socket.

Analysis Interface Configuration 171

© 1999 Grammar Engine

11. Optionally, configure the debugger monitor to work with AI interrupts

Interrupt driven communications is primarily used as a way for a debugger to
establish efficient character-level communication with the target. When not
used at the character level, interrupts can be used to regain control of a free-
running application.

Interrupt setup includes connecting a line from the interrupt output pin, int-
(low asserted) or int+ (high asserted), to an interrupt input on your target.
Usually, the int pin is connected to NMI on the target system to allow for
debugging. Most debugger monitors require you to supply your own routines to
handle interrupt driven communications.

Use the aircvint command to activate AI target receiver interrupts, which will
cause an interrupt for every character received from the host. Only on AI2, you
can use the aixmtint command to activate AI target transmitter ready
interrupts, which interrupts each time the data transmitter becomes idle.

Interrupts do not occur until the target AI initialization is complete (see AI
Porting, the AIinit routine in the code example). If target communication fails
when you switch to interrupt driven communications, first check the interrupt
handler for problems.

Connecting the Interrupt Line

The interrupt signals are among the auxiliary signals on the PromICE back
panel.

req swr int- rst-

inth mwr mwr int+ rst+

ack

int- and int+: (outputs) These interrupt signals are driven by PromICE
whenever the HDA bit is set in the AI status register. This occurs during AI
communications, or when caused by a host command. Both polarities of the
signal are provided. They are driven by a 74LS125 tri-state buffer. The signals
are driven when asserted and are tri-stated when not asserted. This allows
these signals to be shared by other sources.

If the target interrupt line is low asserted, connect the int- line from PromICE
to the desired interrupt on the target. If the target interrupt line is high

Analysis Interface Configuration 172

PromICE AI User Manual

asserted, connect the int+ from PromICE to the desired target interrupt line.
Usually, you will want to connect this line to the NMI line on the target system.

Debuggers can request PromICE to interrupt the target system (using the DTR
or INIT line). The debugger can use this feature to regain control of the target
when your program is running. When connecting the interrupt signal, note the
interrupt line on your target. Some debuggers will want to know which target
interrupt line receives PromICE interrupt signals.

12. Optionally, connect the write line for debugger monitor use

Note: Most debuggers with AI support require the write line to be connected.

If your target allows write access to ROM addresses, you can enable write
cycles to ROM emulation memory. This will allow your debugger to download
code directly into PromICE emulation memory from the target side, set
breakpoints in ROM addresses, and single step.

Newer PromICE units have three write pins: two mwr (master with D0 - D7)
pins and one swr (slave with D8 - D15) pin. When used with one write line,
use a jumper to connect one of the mwr pins to the swr pin and connect the
line from the target to the remaining mwr pin. Note that on single PromICE
units with a master but no slave board, the swr pin is not connected.

Older PromICE units have a single write called wrt pin (both master and
slave), which does not support multiple write lines for byte-writes on 16 or 32
bit configurations. Older dual PromICEs can be upgraded to byte-write
capability.

Connecting the Write Line

The following explains the details of connecting write lines to the newer
PromICEs, which have the back panel connector as shown below.

Connect the write line inputs, mwr/swr, on the back of PromICE to the write
line on your target.

req swr int- rst-

inth mwr mwr int+ rst+

ack

mwr / swr: (input) These are low asserted inputs that are connected to the
system write line on the target. The target can do write cycles to PromICE
ROM emulation memory. The mwr pin is used to write to the master unit

Analysis Interface Configuration 173

© 1999 Grammar Engine

(bottom back connector). The swr pin is used to write to the slave unit (upper
back connector) of a dual PromICE (model prefix P2xxx).

Analysis Interface Configuration 174

PromICE AI User Manual

Connecting the Write Line for a singe ROM

The following describes how to connect the target’s write line into the
PromICE for a single ROM:

8 bit ROM

Leave the jumper on the swr and mwr pins, and connect the target’s write
line to the spare mwr pin. Connect the target cable into the master unit
(the lower connector on the back of a dual PromICE).

16 bit ROM using Dual PromICE

Leave the jumper on the swr and mwr pins, and connect the target’s write
line to the spare mwr pin. Connect the two cables from the 16 bit adapter
board to the connectors on the back of the dual PromICE.

Variations on Connecting the Write Line for Multiple ROMs

Target systems implement write access to multiple ROMs in two basic ways:

• Each ROM chip has its own chip_select decoding and is
connected to a system-wide write line.

• Multiple ROMs share a common chip_select and the system
write line is decoded into chip-specific write lines.

The following describes how to connect the target’s write line to PromICE
depending on the target’s chip select/write configuration:

8 bit word (two ROMs, system-wide write line)

Leave the jumper on the swr and mwr pins, and connect the target’s write
line to the spare mwr pin. Connect the target cables into a dual PromICE
or daisy chained PromICEs.

16 bit word (two 8 bit ROMs, system-wide write line)

If your target has a system-wide write line, jumper the swr and mwr pins
together, and connect the target’s write line to the spare mwr pin. Connect
the target cables into a dual PromICE or daisy chained PromICEs.

If your target supplies separate chip selects for each ROM, byte writes are
possible. Otherwise all writes will be 16 bit word writes.

16 bit word (two 8 bit ROMs, decoded write lines)

If your target has one chip select and decodes the write line to determine
which ROM to write, remove the jumper between mwr and swr. Then,
connect the write line for ROM that is cabled to the master unit (bottom
connector on the back of PromICE) to one of the mwr pins on the

Analysis Interface Configuration 175

© 1999 Grammar Engine

PromICE. Connect the other write line to the slave unit input, which is the
swr pin on the PromICE. It is important that the correct ROM write line
be connected to the corresponding write pin.

32 bit word (four 8 bit ROMs, system-wide write line)

This configuration requires two dual PromICEs (models starting with
P2xxx). Connect the target’s write line to each of the PromICE unit’s mwr
lines. Leave the jumper between the other mwr and the swr pins in place.

If your target decodes separate chip selects for each ROM, byte writes are
possible. Otherwise all writes will be 32 bit word writes.

32 bit word (two 16 bit ROMs, system-wide write line)

This configuration requires two dual PromICEs (models starting with
P2xxx). Connect the target’s write line to each of the PromICE unit’s mwr
lines. Leave the jumper between the other mwr and the swr pins in place.

If your target decodes separate chip selects for each ROM, 16 bit word
writes are possible. Otherwise all writes will be 32 bit word writes.

32 bit word (four 8 bit ROMs, four decoded write lines)

This configuration requires two dual PromICEs (models starting with
"P2"). Remove the jumpers on mwr and swr on each of the PromICE
units. Connect one of the target’s four write lines to each of the pins on
the PromICE units. Be careful to connect the write signal for each ROM to
the corresponding PromICE master or slave unit, in accordance with the
byte order specified in the word command.

32 bit word (two 16 bit ROMs, two decoded write lines)

This configuration requires two dual PromICEs (models starting with
"P2"). Leave the jumpers on mwr and swr on each of the PromICE units.
Connect one of the target’s two decoded write lines to each PromICE unit.
Be careful to connect the write signal for each ROM to the corresponding
PromICE, in accordance with the byte order specified in the word
command.

Note: Some target debuggers support writing only words. They do not
depend on the availability of byte writes.

Conclusion

The procedure for configuring a debugger monitor to work with PromICE
varies somewhat from debugger to debugger. However, the modifications
necessary to work with PromICE AI are a minor part of the overall monitor
configuration. The next section will describe the basics of monitor based
debugging - how it works and how PromICE AI fits into the solution.

Analysis Interface Configuration 176

PromICE AI User Manual

Download Options
There are two ways to load your application into the target system for debugging:

1. Download the debugger monitor to PromICE directly and then use the
debugger to load your application into target RAM or PromICE emulation
memory. For the debugger monitor to load data into PromICE memory, the
target write line(s) must be connected to mwr/swr on the PromICE.

While this is the fastest way to setup your system, there are disadvantages:
• Although you can download the debug monitor over the parallel port

quickly, you still have to download your application via the serial port.
• When loading your application into PromICE ROM emulation memory

using the target monitor, your application must not overwrite the monitor.
If this occurs, the target system will crash during the application download.
To recover, reload the monitor using LoadICE and restart the system.

2. Several debuggers support using LoadICE to pre-load the debugger monitor
and your application code into PromICE. These debuggers can then begin
operation without having to load more code.

The advantage to this configuration is that you can download the debugger
monitor and your application to PromICE at the same time. You can download
using either the host serial or parallel port. This is the fastest way to load code
to your target system.

Once you have the target running with the monitor and application, you can
command the debugger to load the symbol information corresponding to the
pre-loaded code and begin debugging.

Also, you can easily detect when a file is being loaded over the other by using
the LoadICE compare command to verify the monitor and application data
after they have loaded.

To use the compare command, first setup Dialog mode (see the introduction in
the LoadICE Environment chapter). Then use the compare (“c”) command to
verify the files that have been loaded against the files on your disk. If one of
the files overlaps the other, the address that is overlapping will be listed.
Relocate your application if necessary.

Analysis Interface Configuration 177

© 1999 Grammar Engine

LoadICE Example: AI Setup

Example of a loadice.ini file that loads a file, programs an AI session,
and exits.

C:\LoadICE>type loadice.ini
output COM1
baud 57600
pponly LPT1
rom 27512
word 8 0
file ai8051.hex 0=0
ailoc 7800 19200

C:\LoadICE>loadice

LoadICE version 4.0 for Windows 95/98
(C) Copyright 1989-99 Grammar Engine Inc.

 Opening initialization file 'loadice.ini'

Connecting.. Please WAIT..
 Opening Serial Port COM1 @BR-57600
 Opening Parallel Port LPT1 (@0x378)
Connecting to PromICE via the Parallel Port.
 Connection established
 AI virtual serial channel to be enabled on exit

EMULATION UNITS PRESENT:
 PromICE ID-0 Memory=512KBytes Emulating=64KBytes FillChar=0xFF Master/AI2
 PromICE ID-1 Memory=512KBytes Emulating=64KBytes FillChar=0xFF Slave of 0
Opening file `ai8051.hex` for processing./Done
Transferred 1856 (0x740) data bytes
 PROMICE ID-0 putting AI in transparent mode
 AILOC = 0x7800 (0xFF7803)
 HostLink - serial port @ 19200 baud
 Binary transparency - no breakCharacter
 Host interrupts (DTR/INIT toggles) to ignore: ALL

LoadICE Exiting with NO Errors
C:\LoadICE>

Analysis Interface Configuration 178

PromICE AI User Manual

AI Command Reference 179

© 1998 Grammar Engine

9. AI Command Reference

Overview
AI setup begins with the ailoc command. This command programs a PromICE
with the AI option to emulate a serial link between a host-based debugger and
its target resident monitor. This allows you to debug your target code without
using additional target hardware resources. The rest of the AI commands
condition and modify how the AI link operates.

The host and target communicate as if they were connected using a
conventional serial link. The only exception is that the target monitor will
need code to access the AI control registers. This mode of communication is
called “transparent” because PromICE does not modify or interpret the data
exchanged between the host and the target.

In addition, the host debugger can use PromICE to interrupt or reset the target.
The AI interface can support target systems that make burst accesses to the
ROM (refer to the preceding setup section).

aicontrol Controls the AI's access timing

aidirt Enables AI transmitter to send data written to register ZERO
(AI2 only)

aifast Selects higher speed (unbuffered) transparent
communications

ailoc Specify the address of AiCOM virtual channel

ainorci Disables per-character receive interrupts

aircvint Control AI per-character receiver interrupts

aireset Allows host debugger to reset the AI interface (via DTR or
INIT)

aitint Allows the host debugger to directly interrupt the target

aitreset Allows debugger to reset the target interface (via DTR or
INIT)

aixmtint Control AI transmitter ready interrupts (AI2 only)

burst Allows support for burst mode access to ROM interface

intlen Set AI interrupt length

180 AI Command Reference

PromICE User Manual

aicontrol
Control AI timing characteristics

Command Forms
aicontrol loadice.ini file, Dialog mode
-aic Command line

Syntax
aicontrol ai1num

OR
aicontrol ai2num

where
ai1num (integer) Specify an AI1 timing mode:

0 Default no delay. Timing derived from target system.
1 Insert a 50ns delay for target data sent to host.
2 #1 above plus use 50ns delay on target read of data

received from the host.

ai2num (integer) Specify an AI2 timing mode for both transmit and
receive data:

0 Default 20ns delay.
1 Use 40ns delay.
2 Use 60ns delay.
3 No delay. Timing derived from target system.

Default
For AI1, use no delay. For AI2, use 20ns delay.

Description
The AI circuit clocking is based on the timing of target memory accesses.
Specifically, clocking is derived from chip_enable, output_enable and the
addresses selected by the Ailoc address mask.

Depending on the target system’s memory cycle timing, these signals may need
additional settling time to properly clock the AI circuit. The aicontrol
command selects among delay times for AI memory accesses related to
transmitted and received data. This enables the AI clock to be decoded
correctly.

AI Command Reference 181

© 1998 Grammar Engine

Notes
Avoid selecting a delay that is greater than the PromICE emulation access time.
The longer delay can cause AI to fail completely.

Examples
aicontrol 1
On AI1, use a 50ns delay for transmitted data. On AI2, use a 40ns delay for
transmitted and received data.

182 AI Command Reference

PromICE User Manual

aidirt
Enables direct writes for data transmission on AI2 units.

Command Forms
aidirt loadice.ini file, Dialog mode
-aiw Command line

Syntax
aidirt

Default
The target transmits data to the host using the technique that reads the AI
registers to transmit bits.

Description
On AI2 units, the aidirt command enables the ability for the target to transmit
data to the host by writing the data to AI register ZERO.

Examples
aidirt
Enable AI transmission of data written to AI register ZERO.

AI Command Reference 183

© 1998 Grammar Engine

aifast
Selects non-buffered AI communications.

Command Forms
aifast loadice.ini file, Dialog mode
-aif Command line

Syntax
aifast num

where
num (integer) Specifies an AI timing mode:

0 Disable non-buffered communications

1 Enable non-buffered communications

Default
Use the buffered receive method. Up to 40 bytes can be buffered before data is
lost.

Description
The aifast command allows you to disable I/O buffering. Only data from the
host for the target can be buffered. When buffering is disabled, communication
speed increases but places reliable communications at risk.

Notes
If you expect the target to be busy servicing an interrupt or to receive bursts of
traffic from the host, then use the default, buffered method. If buffered I/O
works, you can try the non-buffered option for faster throughput.

Examples
aifast

OR
aifast 1
Enable non-buffered communication from loadice.ini file.

-aif 0
Disable non-buffered communication from the LoadICE command line.

184 AI Command Reference

PromICE User Manual

ailoc
Setup the AI communication channel between the host and the target.

Command Forms
ailoc loadice.ini file, Dialog mode
-ai Command line

Syntax
ailoc [id:] address baud [break_char [int_count]]

where
id (optional integer) A valid PromICE 8 bit unit ID number (0-

255). Follow id with a colon. This number is the unit ID of
the PromICE unit with the AI option. On Dual PromICEs, AI
is on the master module. If you are using multiple PromICEs
for 16 or 32 bit emulation, the other serial daisy chained units
are automatically programmed for “pass through” mode.

address (hex) The base address of the AI control registers as seen by
the target system, specified as an offset from the beginning of
PromICE ROM-relative emulation memory. This value has
these constraints:

On 8 bit systems, the AI interface occupies four consecutive
bytes so address must be on a quad boundary (i.e. lowest two
bits are zero). On 16 bit systems, address must be on an octal
boundary (lowest three bits are zero). For a 32 bit system,
address must be on a 16 byte boundary (lowest nibble is zero).

On systems with burst mode ROM accesses, the address must
be aligned both by word size and burst count. See AI
Configuration Reference.

baud (integer) A valid baud rate (1200, 2400, 4800, 9600, 19200,
or 57600) for the link between the host serial port and
PromICE during AI communications. Debuggers can use a
baud rate of zero (0) to invoke AI communications over the
parallel port.

break_char (optional hex) A character used to break PromICE out of the
AI communication session. Use with ASCII host-target
communication protocols. Use -1 to select binary

AI Command Reference 185

© 1998 Grammar Engine

transparency and use the next argument to specify the
condition for breaking the AI communication session.

int_count (optional integer) A number of consecutive host interrupt
signals to ignore before PromICE breaks out of the AI
communication session. Used with binary host-target
communication protocols. Use -1 to ignore all interrupt
signals.

Some debuggers will toggle DTR line on startup and thus
cause PromICE to restart and break the session. By
increasing int_count, you can overcome this problem.

Default
The default id is 0. The default for the break-char is none, which is binary
character transparency. The default for int_count is to ignore all interrupts
from the host. In most cases, you only need specify the address and the baud
rate.

Description
The ailoc command is used to establish an AI communications session in
PromICE at the time the LoadICE application exits. During an AI
communications session, PromICE functions as a pass-through data-forwarding
device, relaying information between the PromICE serial port and target
monitor (via the AI control registers).

In the loadice.ini file, place the ailoc command at the end. The address and
baud arguments must be specified. The address offset specified is where the
target will access the AI control registers. The baud argument sets the serial
baud rate between the host and PromICE.

Use LoadICE to download a debugger monitor and create the AI session before
starting the debugger's host-side front end. Once the AI communication
session is established, the host-side debugger can communicate with the target
monitor as if they were connected with a standard serial link.

If your debugger supports the PromICE bi-directional parallel port AI protocol,
you can have faster AI communication.

Notes
The bus width is determined by the ROM bus width, not the processor’s bus. If
you are using a 32 bit processor with one 8 bit ROM, your bus width would be 8
bit for the word command.

186 AI Command Reference

PromICE User Manual

The address is normalized to map to the master PromICE unit according to
word size specification (see word size in AI Configuration Reference).

In order to run the LoadICE application again, any existing AI session must be
broken. LoadICE breaks the session by toggling the serial port DTR line (or
parallel port INIT line) 4 times within a sensing period. The sensing period is
5 seconds on PCs and 30 seconds on UNIX. This tells PromICE to break the
session.

Examples
ailoc 8 19200
The AI control registers are mapped in the target ROM memory at location
(offset from beginning of ROM) 0x8. The host and PromICE will
communicate at 19200 baud during the AI session.

AI Command Reference 187

© 1998 Grammar Engine

ainorci
Disables per-character receive interrupts during AI communications.

Command Forms
ainorci loadice.ini file, Dialog mode
-ainri Command line

Syntax
ainorci

Default
Both the interrupt lines, int- and int+, on the back of PromICE are asserted
whenever host data is available to the target (HDA bit set in AI status register).

Description
By default, the AI receiver will act like an interrupt driven device, i.e. every
time a character is available from the host (HDA set), both the interrupt lines,
int- and int+, are asserted. The target clears the interrupt condition by reading
the host data. However, the ainorci command can be used to disable receiver
interrupts. Then the target must poll the status for HDA. Via loadice.ini,
debuggers can use this to disable receive interrupts from PromICE/AI on the
target system and then use the DTR line to directly cause the interrupt when
needed, such as to break a run away application.

Notes
Use this command when the per character interrupt overhead is not desired or
not useful. The debugger can then control the reset explicitly via DTR/INIT
and aitint command. You may choose not to connect the int line to your
target.

Examples
-ainri
Disable interrupts from the LoadICE command line.

188 AI Command Reference

PromICE User Manual

aircvint
Use this command to control the AI target receiver interrupts, which will cause an
interrupt for every character received from the host during AI communications.

Command Forms
aircvint loadice.ini file, Dialog mode
-aircvi Command line

Syntax
aircvint num

where
num (integer) Enables or disables AI receiver interrupts

0 Disable AI receiver interrupts

1 Enable AI receiver interrupts

Default
By default, the AI receiver will act like an interrupt driven device, i.e. every
time a character is available from the host (HDA bit set in the AI status
register), both the PromiCE interrupt lines, int- and int+, are asserted. The
target clears the interrupt condition by reading the host data.

Description
The aircvint command can be used to enable or disable receiver interrupts.
When disabled, the target must poll the status for the HDA bit. Via loadice.ini,
debuggers can use this to disable receive interrupts from PromICE/AI on the
target system and then use the DTR line to directly cause the interrupt when
needed, such as to break a run away application.

Notes
Use this command to disable receiver interrupts when the per character
interrupt overhead is not desired or not useful. Then the debugger must control
the reset directly via DTR/INIT and aitint command.

Examples
-aircvi 0
Disable receiver interrupts from the LoadICE command line.

AI Command Reference 189

© 1998 Grammar Engine

aireset
Controls a host debugger’s ability to reset the PromICE AI option.

Command Forms
aireset loadice.ini file, Dialog mode
-aire Command line

Syntax
aireset [num]

where
num (optional integer) specify the mode for AI option reset.

0 Disable debugger-controlled AI reset

1 Enable debugger-controlled AI reset

Default
When not specified, the aireset feature is disabled. When specified, the default
num is 1 for enabled.

Description
The aireset command allows the host debugger to signal a reset of the AI
option. The debugger signals by toggling the serial DTR or the parallel INIT
line. A debugger can use this capability only during an AI communications
session. An AI reset clears all AI status bits and discards any data in the AI
system. The AI session continues following AI reset.

Notes
Debugger-controlled AI reset is only available during an AI communications
session. AI sessions begin when the LoadICE application instructs the
PromICE to begin a session and then LoadICE terminates.

This command can be used with aitreset command but is not suitable to use
with the aitint command.

190 AI Command Reference

PromICE User Manual

Examples
aireset

OR
aireset 1
Enable the debugger AI reset feature

-aire 0
Disables the debugger AI reset feature from the command line

AI Command Reference 191

© 1998 Grammar Engine

aitint
Enable a host debugger’s ability to signal an interrupt of the target system

Command Forms
aitint loadice.ini file, Dialog mode
-aiti Command line

Syntax
aitint

Default
No interrupt is generated to the target by the DTR/INIT toggle.

Description
When the host debugger toggles the serial DTR line or the parallel INIT line,
this PromICE AI feature will generate an interrupt on the target system. The
PromICE interrupt output is the int-/int+ pins on the back of PromICE (see the
AI Configuration Reference). The aitint command allows the host-based
debugger to interrupt the target application and return control to the debugger
monitor.

Generally you will need to use the ainorci command to disable receive
character interrupts. Then this command permits the debugger to request
interrupts on demand.

Notes
The interrupt is generated for a fixed duration. The default is 100
microseconds and can be changed using the intlen command.

This command is not suitable to use with the aireset or aitreset commands.

Examples
aitint
Enable host debugger-controlled interrupt from the loadice.ini file.

-aiti
Enable host debugger-controlled interrupt from the LoadICE command line.

192 AI Command Reference

PromICE User Manual

aitreset
Enables a host debugger to directly reset the target system.

Command Forms
aitreset loadice.ini file, Dialog mode
-aitr Command line

Syntax
aitreset

Default
No target reset can be done.

Description
The aitreset command enables the AI feature that allows a host-based debugger
to signal PromICE to briefly assert target reset. The debugger signals by
toggling the DTR or the INIT line.

Notes
This is a convenient way to restart when the target system is unable to recover
from an error.

This command can be used with the aireset command but is not suitable for use
with the aitint command.

The duration of the reset pulse can be changed (up to 500ms) using the reset
command in loadice.ini.

Examples
aitreset
Enable debugger reset from the loadice.ini file or in LoadICE Dialog mode.

-aitr
Enable debugger reset from the loadice.ini command line.

AI Command Reference 193

© 1998 Grammar Engine

 aixmtint
Use the aixmtint command to activate AI2 target transmitter ready interrupts,
which interrupt each time the data transmitter becomes idle during AI
communications.

Command Forms
aixmtint loadice.ini file, Dialog mode
-aixmti Command line

Syntax
aixmtint num

where
num (integer) Enables or disables AI transmitter interrupts

0 Disable AI transmitter ready interrupts

1 Enable AI transmitter ready interrupts

Default
Both the interrupt lines, int- and int+, on the back of PromICE are not asserted
to the target when the transmitter becomes idle (TDA bit cleared in AI status
register).

Description
By default, the AI2 transmitter will act like a polled device. The target clears
the interrupt condition by writing a new character to be sent to the host or
reading the status register. The aixmtint command can be used to enable or
disable transmitter ready interrupts. When disabled, the target must poll the
status for the TDA bit.

Notes
This command is available only on AI2 units. Use this command to disable
transmitter ready interrupts when the per character interrupt overhead is not
desired or useful.

Examples
-aixmti 1
Enable transmitter ready interrupts from the LoadICE command line.

194 AI Command Reference

PromICE User Manual

burst
Program the AI option to handle burst mode ROM accesses.

Command Forms
burst loadice.ini file
-B Command line

Syntax
burst num

where
num Specifies the number of reads executed during the cycle. AI1

PromICE units support burst modes of 0, 4, 8, and 16 bytes.
AI2 PromICE units support burst modes of 0, 2, 4, 8, 16, and
32 bytes.

Default
Burst mode is disabled.

Description
Some target systems do burst mode reads from ROM addresses. The processor
holds chip-select and output-enable low, and reads either 2, 4, 8, 16 or 32 bytes
of data. During this time, chip-select and output-enable are held low and the
address lines change.

The burst command is also needed if the target processor read cycle is greater
than the ROM width, such as a long word processor booting from an 8 bit
ROM.

This command adjusts the locations of the AI control registers to compensate
for the multiple reads generated by each burst read. AI1 PromICE units
support burst modes of 0, 4, 8, and 16 bytes. AI2 PromICE units support burst
modes of 0, 2, 4, 8, 16, and 32 bytes. For each power of two increase in burst
length, PromICE ignores a low order address bit as follows:

Burst Ignores Offsets Burst Ignores Offsets
0 none 0, 1, 2, 3 8 A2 – A0 0, 8, 16, 24
2 A0 0, 2, 4, 6 16 A3 – A0 0, 16, 32, 48

4 A1 – A0 0, 4, 8, 12 32 A4 – A0 0, 32, 64, 96

AI Command Reference 195

© 1998 Grammar Engine

The target monitor code must account for the control register offsets due to the
burst mode accesses. The effect is to insert additional filler bytes between the
control registers. This is in addition to the register spacing due to target word
size.

Notes
This command is only needed when using the ailoc command. Target burst
reads work correctly in normal emulation.

Examples
burst 4
Specifies a 4 byte burst in the loadice.ini file.

196 AI Command Reference

PromICE User Manual

intlen
Sets the duration of AI interrupt signals.

Command Forms
intlen loadice.ini file, Dialog mode
-il Command line
il Dialog mode

Syntax
intlen num

where
num (integer) Specifies the length for all AI interrupt signals in

milliseconds.

Default
The default interrupt duration is 100 microseconds.

Description
The intlen command specifies the duration of all interrupt requests generated
by the AI option.

Examples
intlen 150
Set AI interrupt length to be 150 milliseconds.

AI Porting 197

© 1999 Grammar Engine

10. AI Porting
Contents

Overview

AI Register Description

AI Operation

PromICE AI Initialization

Target Initialization

Target Data Reception

Target Data Transmission

AI Algorithms

Initialization Algorithm

Read Algorithm

Write Algorithm

AI Code Example

198 AI Porting

PromICE User Manual

Overview
Your target sees the AI option as a memory-mapped peripheral located within
PromICE emulation memory at an address defined by the LoadICE ailoc command.

The AI target-side interface consists of four 8 bit control registers. The AI registers
are mapped into the PromICE ROM emulation memory. On dual PromICEs, all
four registers are on the master (bottom) PromICE 8 bit unit. Once an AI
communications session begins, the AI control registers are accessed by reading
these four locations.

AI communications sessions begin when the LoadICE application instructs the
PromICE to begin a session and then LoadICE terminates. Once established, the AI
session transports data between the host and the target systems.

AI Register Description
This section contains the bit-level descriptions for each of the four registers.

ZERO
(read only) Offset Address: 0

7 0

- - - - - - - -

Bit # Mnemonic Function

7-0 - Reading this register sends a ‘zero bit’ to the AI transmit buffer.

ONE
(read only) Offset Address: 1

7 0

- - - - - - - -

Bit # Mnemonic Function

7-0 - Reading this register sends a ‘one bit’ to the AI transmit buffer.

AI Porting 199

© 1999 Grammar Engine

HOST_DATA
(read only) Offset Address: 2

7 0

RB7 RB6 RB5 RB4 RB3 RB2 RB1 RB0

Bit # Mnemonic Function

7-0 RB7:0 Received Character Buffer, a byte of data from the host

STATUS
(read only) Offset Address: 3

7 0

X X X X FLG OVR HDA TDA

Bit # Mnemonic Function

7-4 - Reserved. These bits are undefined; for compatibility
with future devices. Mask off these bits.

3 FLG Used to detect AI Registers at startup, value of 0 (see below)

2 OVR Host data overflow bit

1 HDA Valid host data in buffer

0 TDA Data Transmitter Busy

AI Operation
Typically, a host debugger initiates the connection to a target monitor. LoadICE is
used to configure the AI option upon its termination. The host debugger then
begins trying to contact the target and establishes communication. When the AI
communication session begins, the target will see the AI control registers instead of
the contents of emulation memory at those addresses.

PromICE AI Initialization
For complete details, see the AI Configuration chapter and the ailoc and burst
commands.

200 AI Porting

PromICE User Manual

Target Initialization
The target software must know where the AI control registers were positioned
by the interaction between the LoadICE ailoc, word, and burst commands (see
the AI Command Reference chapter). Note that on systems with word size 16
or greater, the target software must extract the AI register contents from the
correct byte within the word.

Initialize the emulation memory location to be occupied by the AI STATUS
register with the pattern 0xCC, which has a “1” in FLG, bit #3. (When the AI
control registers become available, FLG in the AI STATUS register will be
zero.) Use the LoadICE fill command or the target software to set the 0xCC
pattern.

When the target boots or restarts, the target software should wait for the AI
session to be established before attempting to talk to the host. The target
monitor enters a loop that polls for the presence of the AI STATUS register.
When FLG, bit #3, in the AI STATUS register becomes zero, the AI control
registers are now available. The target should discard the first received
character.

After an AI communications session begins, the host debugger and the target
monitor can now communicate.

Target Data Reception
When HDA, bit #1, in the AI STATUS register becomes one, the target can
read host data from the HOST_DATA register. The target should discard the
first received character. AI receiver buffers up to 39 characters of host data. If
the target does not keep up with received data, then the buffer overflows. When
host data is lost, OVR, bit 2, is set to one to signal the need for error recovery.
Reading HOST_DATA will clear HDA and OVR, if set.

Target Data Transmission
When TDA, bit 0, in the AI STATUS register becomes zero, the transmitter is
available to send data to the host. The procedure for sending data to the host
involves a series of read accesses to AI registers ZERO and ONE. See the
following AI Write Algorithm flow chart for details.

While the transmitter is busy, TDA, bit 0, in the AI STATUS register will
remain one.

AI Porting 201

© 1999 Grammar Engine

On AI2 units, when the target write line has been connected to PromICE, the
target can write byte data to register ZERO for transmission to the host. Use
the aidirt command to enable transmission by register ZERO writes.

202 AI Porting

PromICE User Manual

 AI Algorithms

Initialization Algorithm

STATUS
= 0xCC ?

Yes

Read DATA
Register

No

Start

End

Read Algorithm

HDA
set?

No

Read DATA
Register

Yes

Start

End

AI Porting 203

© 1999 Grammar Engine

Write Algorithm

TDA
set?

Yes

Read “1”
Register

Counter = 0

Data & 1
= 1 ?

No

No

Yes
Read “1”
Register

Read “0”
Register

Start

Counter
= 8 ?

Yes

No

Read “1”
Register

End
Shift Data
1 bit Right

Increment
Count

204 AI Porting

PromICE User Manual

AI Code Example
The following example was written using Borland C/C++ 4.5 and Paradigm Locate
5.0. The target system is a 386EX development board (available from Grammar
Engine) with a 512K x 8 ROM in address range from 80000H - FFFFFH. This
example provides simple AI Register data structures for various word size
configurations where the PromICE 8 bit unit containing the AI Option is in the
lower order byte of the word size.

Note: If the burst command is used or the AI Option is not on the PromICE
8 bit unit corresponding to the byte at the lowest memory address
within the word, you will need to create a custom data structure (see AI
Configuration Reference).

#define BUS_SIZE 8 // Target ROM bus size (8,
// 16, 32)

#define AILOC 0x82000UL // AI base address (Base
// ROM address = 80000H)

// AI status register masks
#define TDA 0x01 // Target data available
#define HDA 0x02 // Host data available
#define OVR 0x04 // Host data overflow

#if BUS_SIZE == 8
typedef struct{
unsigned char ZERO;
unsigned char ONE;
unsigned char DATA;
unsigned char STATUS;

}FPORT, far * AISTRUCT;
#endif // BUS_SIZE = 8

#if BUS_SIZE == 16
typedef struct{
unsigned int ZERO;
unsigned int ONE;
unsigned int DATA;
unsigned int STATUS;

}FPORT, far * AISTRUCT;
#endif // BUS_SIZE = 16

#if BUS_SIZE == 32
typedef struct{
unsigned long ZERO;

AI Porting 205

© 1999 Grammar Engine

unsigned long ONE;
unsigned long DATA;
unsigned long STATUS;

}FPORT, far * AISTRUCT;
#endif // BUS_SIZE = 32

// Create a pointer to the AI memory location
// using above structure

volatile AISTRUCT AI = (AISTRUCT) MK_FP((unsigned int)
(AILOC >> 4), (unsigned char)(AILOC & 0x0f));

/**
 * FUNCTION: AIinit *
 * *
 * INPUT: NA *
 * RETURNS: NA *
* DESCRIPTION: Waits for AI regs. to become *
* available and for data to be received from *
* the host. The first byte read from the AI *
* at startup is not valid. *
 **/
void AIinit(void)
{
unsigned char dummy;
while(AI->STATUS == 0xcc){} // Wait for bit #3

// to become zero
dummy = AI->DATA; // clear interface
return;

}

/**
 * FUNCTION: AIputc *
 * *
 * INPUT: Data to be output *
 * RETURNS: NA *
* DESCRIPTION: Sends data one bit at a time *
* to the host. Start and stop *
* bits are also sent. *
 **/
void AIputc(char data)
{
int count;
unsigned char dummy;

while(AI->STATUS & TDA){} // Wait while data
// transmitter busy

dummy=AI->ONE; // Send start bit

206 AI Porting

PromICE User Manual

for (count = 0; count < 8; count++)
{

if(data & 1)
dummy=AI->ONE; // Send a 1 bit

else
dummy=AI->ZERO; // Send a 0 bit

data >>= 1; // rotate right one bit
}
dummy=AI->ONE; // Send stop bit

}

/**
 * FUNCTION: AIgetc *
 * *
 * INPUT: NA *
 * RETURNS: Data received from host *
 * DESCRIPTION: Receives 8 bit data from the *
 * host. *
 **/
char AIgetc(void)
{
while(!(AI->STATUS & HDA)){} // Wait for host data
return AI->DATA; // Return data received

}

loadice.ini file:

output=com1
pponly=lpt1
socket=27040
rom=27040
word=8
fillall cccc
noverify
file=aitest.hex 80000=0
ailoc 2000, 57600

AI Troubleshooting 207

© 1999 Grammar Engine

11. AI Troubleshooting
This chapter should help to resolve communications problems you may encounter
when using a debugger with PromICE. Following these simple issues is a section
on debugger diagnosis.

Common Problems
Target using Burst Mode access to ROM

If your target makes burst mode accesses to ROM, add the burst command to
your loadice.ini file. Refer to the burst command in the AI Command
Reference chapter.

Receiving Bad Data Back from Target
Add the aicontrol command to your loadice.ini file. Depending on your target
system, you may want to try other values. Refer to the aicontrol command in
the AI Command Reference chapter.

Debugger crashes during download
If your target debugger crashes at some point while downloading your
application into PromICE memory, your application may be overwriting the
debugger monitor.

For an alternative, see Download Options in the AI Configuration chapter.

Watchdog Timer
If you have a watchdog timer on your target that is not used by the debugger,
then disable it in the monitor startup code. The debug monitor will not come
up if a watchdog timer is enabled but not configured by the monitor.

Failure to establish an AI Communications Session
This can occur if you are trying to connect your debugger through an AI
communications session in one window while LoadICE is running in another
window. AI sessions are only established at the time that the LoadICE
application exits.

Byte Order Swapped
Debuggers usually expect the AI option, which is on the master PromICE 8 bit
unit, to be mapped to the low order byte within the target word. See the AI
Configuration chapter for details.

208 AI Troubleshooting

PromICE User Manual

Can't Interrupt Target
In order to bring control back to the monitor from a free-running application or
to enable interrupts for character-level communications, you need to hook the
PromICE interrupt line. See the AI Configuration chapter.

The target monitor must be configured to handle the interrupt. Refer to your
debugger’s monitor documentation for information on interrupt driven
communications.

Can't Write, Single Step or Set Breakpoint in ROM
Emulation Memory

In order for the target to write into the ROM emulation memory, the PromICE
write input pins must be connected to the target's write line. See the AI
Configuration Reference.

Some target systems will not allow write cycles to the ROM addresses. Usually
a PAL controls this. Determine if the target supports write cycles to ROM
addresses and make the appropriate modifications, if necessary.

DEBUGGER DIAGNOSIS
Never Worked

Step 1: Verify your loadice.ini configuration. First configure PromICE to
emulate some known working code, if available. At this point, you
should not be trying to use the debugger. If possible, back up a
working ROM to a binary image and load it into PromICE.

If this works, the next items to check in your loadice.ini file would
be the socket, file, and AI control commands.

Otherwise repeat the installation section of this manual to
reconfigure your loadice.ini file.

Step 2: Once you have verified your loadice.ini file, verify your monitor
configuration. If possible, try to configure the monitor to work
through a serial port on your target. If the monitor doesn't work
there, it won't work with the AI. If this is the case, check your
monitor configuration.

AI Troubleshooting 209

© 1999 Grammar Engine

Step 3: Next, uncomment or insert (depending on the monitor) the test
code in the monitor. Refer to your debugger manuals if you are
unsure how to do this.

If you are not receiving any characters from the target, your ailoc
command is probably incorrect. Verify that the ailoc address is on
the correct boundary and is at the beginning of the AI mapped area.

Verify that the baud rate specified in the ailoc command matches
the baud rate specified to the debugger. If you are still getting
incorrect characters back from the target, add the aicontrol
command to your loadice.ini file.

If the monitor appears to be running, but you aren't getting any characters back
at this point, contact Grammar Engine Technical Support for assistance.

Note: You should be able to see the Rx and Tx lights flashing on the front
panel of PromICE as the host and target attempt to communicate with
each other.

Worked previously
If something fails (i.e. The debugger can't connect and/or the monitor crashes)
then carefully review all recent changes to your configuration and/or source
files. Go back over your configuration, step by step. Look at even the simplest
changes.

AI Technical Support
If you have a question, feel welcome to call Grammar Engine. We will answer your
question or direct you to someone who can. Here is a referral index:

Call The Debugger Vendor for:

Compiler and/or locator questions.
Target specific monitor configuration questions.
Debugger switches and options.

Call Grammar Engine Technical Support for:

PromICE / LoadICE questions.
AI specific configuration questions.

210 AI Troubleshooting

PromICE User Manual

PromICE Unit IDs 211

© 1999 Grammar Engine

12. PromICE Unit IDs
This chapter supplements the LoadICE Command Reference by showing how to use
PromICE 8 bit unit numbers or IDs with LoadICE commands. For all other
information on LoadICE commands, see the Command Reference chapter.

Contents

PromICE 8 bit units

Uses for 8 bit unit configurations

Split 16 bit files

16 bit system with 8 bit boot ROM

PromICE 8 bit unit configurations

Using one 8 bit unit at a time

Commands Supporting PromICE 8 bit Unit Ids

checksum

dump

editfile

fill

fillall

find

image

move

promiceid

rom

save

search

socket

test

version

212 PromICE Unit IDs

PromICE User Manual

PromICE 8 bit units
PromICE technology is built on emulation memory units, which are 8 bits in
data width and the memory size of the particular unit. Ordinarily, the 8 bit
units need only to be included in the word command's units list, as a part of the
general purpose ROM emulation configuration. Occasionally it is useful to
work with individual 8 bit units.

Uses for 8 bit unit configurations
The following examples illustrate the benefit of working directly with the
PromICE 8 bit units.

Split 16 bit files

On 16 or 32 bit word size ROM configurations, the load files may have
been split into byte width files by a utility. The load files, having been split
into 8 bit versions, are loaded by specifying the individual PromICE 8 bit
units. Then the general 16 bit ROM configuration can be used to work
with the emulation memory as whole words.

For example:
word 16 1 0
file lowbyte.hex 1000=0 8 1 * load low order data into unit #1
file hibyte.hex 1000=0 8 0 * load high order data into unit #0
load
dump * displays 16 bit words

16 bit system with 8 bit boot ROM

The target system has an 8 bit boot ROM in addition to a main memory (8,
16, or 32 bits wide). The boot ROM is connected to a PromICE 8 bit unit
that is not included in the word command's unit list. The word command
is used to specify the main memory's word width.

For example:
word 16 0 1
file maincode.hex 1000=0 * load main code into 16 bit ROM
file bootcode.hex 0=0 8 2 * load System boot code into unit #2
load

PromICE 8 bit unit configurations
Each 8 bit unit can have its own configuration information. The rom and
socket commands, used with the unit “id:” argument, modify that unit’s
configuration information.

PromICE Unit IDs 213

© 1999 Grammar Engine

Note: When using the rom or socket commands without an unit ID argument,
all PromICE 8 bit unit configurations are changed, including those not listed in
the word command. Also, 8 bit units included in the word command's unit ID
list must not be reconfigured at the 8 bit unit level.

To setup a general configuration along with unit-specific configurations:

1. First build the general PromICE ROM emulation configuration and specify
the 8 bit units list on the word command.

2. PromICE 8 bit units, not used in the general configuration (not in the word
command’s units list), can be individually configured by specifying their
id: as an argument.

The individual units as well as the units belonging to the general configuration
can be individually referenced using the 8 bit unit id: argument with the
commands documented in the following section.

Using one 8 bit unit at a time
Working with 8 bit units individually is accomplished with the word
command. While the rom and socket commands can modify an 8 bit unit’s
configuration, the word command controls which units are in the current
configuration.

The following example repeats the 'Split 16 bit files' example above but works
with each unit, one at a time.

begin
word 8 1
file lowbyte.hex 1000=0
load * load low order data into unit #1
word 8 0
file hibyte.hex 1000=0
load * load high order data into unit #0
word 16 1 0
dump * displays 16 bit words

Commands Supporting PromICE 8 bit Unit Ids
This section is a supplement to the Command Reference chapter. This section
specifically shows how to use PromICE 8 bit unit IDs with these selected LoadICE
commands.

For all other command documentation, see the Command Reference chapter.

214 PromICE Unit IDs

PromICE User Manual

Most of these command share this attribute:
id (optional integer) A valid PromICE unit ID number (0-255).

Operate only on PromICE 8 bit unit id, overriding the current
PromICE ROM configuration. Follow id with a colon.

The default for unit ID is 0.

checksum
Perform checksum on ROM and store result in PromICE emulation memory.

Syntax
checksum [id :] start end store [function] [sum_size] [order]

Examples
checksum 1: 0 fffb fffc a 32
Compute the checksum on 0 through FFFB on unit ID=1.

dump
Display contents of PromICE emulation memory on the screen.

Syntax
d [id:] [start [end]]

Examples
d 1:100 ff
Dump data from unit ID-1 from 0x100 to 0x1FF.

edit
Modify PromICE ROM emulation memory.

Syntax
edit [id:] [address { value }]

PromICE Unit IDs 215

© 1999 Grammar Engine

Examples
edit 1:500 ab cd
Set locations 0x500 and 0x501 in PromICE unit 1 to values 0xAB and 0xCD.

file
Setup a hex record file for ROM emulation or a comparison operation.

Syntax
file file_name file_address = ROM_offset [word_width unit_ID

{ unit_ID_n }] [(range_start, range_end)]

where
word_width (integer) defines the word width for the file. It must be an

integral multiple of 8 and can not be larger than the
maximum data bus width determined by the total number of
PromICE 8 bit units.

unit_ID (integer, required if word_width is present) The first
PromICE 8 bit unit number corresponding to the byte at the
lowest memory address within the word.

unit_ID_n (optional integers following unit_ID) The nth PromICE 8 bit
unit number specifying the byte order within the word size
defined by word_width for this file configuration.

Notes
You need not use the arguments listed above unless you are loading files "per
ROM" (i.e. one file gets loaded into a PromICE 8 bit unit and another file gets
loaded into another PromICE 8 bit unit). If you have a word size of 16 or
larger, then specifying these arguments forces the file to load into the PromICE
8 bit unit with that ID. For example, forcing 8 bit loads is necessary if your 16
bit hex file has already been split by a utility into two 8 bit files.

On targets with word size greater than 16, you can use other values for
word_width. For instance, if the target's 32 bit word is made up of 16 bit
ROMs then use word_width equal to 16 and list two unit IDs to load 16 bit
slices of the target code.

The old file command syntax using the id: argument has been retired. Use the
syntax shown above to specify PromICE 8 bit unit IDs.

216 PromICE Unit IDs

PromICE User Manual

Examples
word 16 1 0
file=myfile.hex 400000=0 8 1
On a 16 bit target, load data from 'myfile.hex' with addresses starting at
0x400000 in the file to be mapped to 0x0 into emulation memory of PromICE 8
bit unit number one. The file must contain 8 bit data.

word 32 0 1 2 3
file=myfile.hex 400000=0 16 2 3
On a 32 bit target, load data from 'myfile.hex' with addresses starting at
0x400000 in the file to be mapped to 0x0 into emulation memory configuration
including of PromICE 8 bit unit numbers two and three. The file must contain
16 bit data.

fill
Write a fill pattern into emulation space in the individual PromICE 8 bit unit.

Syntax
fill [id:] start end data [data2] fill_size

Notes
You can specify unique fill parameters for each ROM using the id: parameter.

Examples
f 1:200 300 ab
Fill unit ID=1 from 0x200 to 0x300 with data value 0xAB

fillall
Fill the entire 8 bit PromICE memory unit capacity with a repeating data pattern.

Syntax
fillall [id:] data [data2] fill_size

PromICE Unit IDs 217

© 1999 Grammar Engine

Examples
fillall 0:ab
Fill all unit ID=0 PromICE memory with data value 0xAB

find
Find binary data pattern in the PromICE 8 bit unit's emulation memory.

Syntax
find [id:] start end find_count data_byte { data_bytes }

Examples
F 0:0 1ffeo 4 de ad fe ed
Looks on unit ID=0 for the byte pattern 0xDE 0xAD 0xFE 0xED in a 128kB
ROM space, in the ROM-relative address range 0x0 to 0x1FFE0. For example:
0000021C: DEADFEED
00000340: DEADFEED

image
Setup a binary file for ROM emulation or a comparison operation.

Syntax
image file_name skip_count = [id:] ROM_offset

OR
image file_name skip_count = ROM_offset [word_width unit_ID {

unit_ID_n }] [(start_offset, end_offset)]

where
.id (optional integer) A PromICE 8 bit unit ID number (0-255).

Specifying id forces a load to that unit id using an 8 bit word
size. This temporarily overrides the system word size defined
by the word command. Follow id with a colon.

Do not use id with word_width (see below).

word_width (integer) defines the word width for the file. It must be an
integral multiple of 8 and can not be larger than the
maximum data bus width determined by the total number of
PromICE 8 bit units.

218 PromICE Unit IDs

PromICE User Manual

Notes
You need not specify the ID (id:) unless you are loading files "per ROM" (i.e.
one file gets loaded into a PromICE 8 bit unit and another file gets loaded into
another PromICE 8 bit unit). If you have a word size of 16 or larger, then
specifying id: forces the file to load into the PromICE 8 bit unit with that ID.
For example, forcing 8 bit loads is necessary if your 16 bit image file has
already been split by a utility into two 8 bit files.

Examples
image=myfile.bin 20=1:0
Load data from myfile.bin with addresses starting at 0x21 in the file to be
mapped to 0x0 into emulation memory of PromICE 8 bit unit number one. The
file must contain 8 bit data.

move
Copy bytes within the PromICE 8 bit unit's emulation memory.

Syntax
 move [id:] start end destination

Examples
m 1:100 120 300
Move data from 0x100 to 0x120 to 0x300 (to 0x320) on 8 bit unit #1.

promiceid
Display the PromICE Identification number.

Syntax
promiceid [id:]

Examples
promiceid 2:
Report the PromICE Identification number on the third unit (ids are zero-
based).

PromICE Unit IDs 219

© 1999 Grammar Engine

rom
Specify ROM emulation memory size.

Syntax
rom [id:] size [k]

OR
rom [id:] gen_part_number

Examples
word 16 0 1
rom=2:128k
Specify that unit #2 emulate a 128K Byte (1Mbit ROM) separately from the
general memory configuration which uses units #0 and #1.

save
Save PromICE 8 bit unit's emulation memory contents to a binary file on the host.

Syntax
save file_name [id:] [start end]

Examples
save newfile.bin 0:100 3fff
Save the data from unit-0 from 0x100 to 0x3FFF to a file called “newfile.bin”
on the host.

search
Search PromICE 8 bit unit's emulation memory for an ASCII data pattern.

Command Forms
search Dialog mode
S Dialog mode

Syntax
search [id:] [start end] pattern

220 PromICE Unit IDs

PromICE User Manual

Examples
S 1:0 1000 "Enter new value:"
Search unit #1's 8 bit memory from 0x0 to 0x1000 for the string.

socket
Specify handling for unused upper address lines. See the Unused Address Lines
chapter.

Syntax
socket [id:] size [k]

OR
socket [id:] gen_part_number

Examples
socket=1:27040
rom=1:27010
Lets you emulate a 128K Byte ROM in a socket wired for a 512K Byte ROM
using PromICE unit #1.

test
Test a PromICE 8 bit unit's ROM emulation memory.

Syntax
test [id [pass_count]]

where
id (optional integer) A valid PromICE unit ID number (0-255).

Do not follow id with a colon.

Examples
t 3
Test unit-3 once.

PromICE Unit IDs 221

© 1999 Grammar Engine

version
Report micro code version of the PromICE and the LoadICE version.

Syntax
version [id:]

Examples
version 3
Report version of the micro-code in unit-3.

222 PromICE Unit IDs

PromICE User Manual

Unused Address Lines 223

© 1999 Grammar Engine

13. Unused Address Lines
This chapter explains how to configure PromICE to handle unused address lines
using LoadICE commands. Floating address lines must be physically pulled high or
low for PromICE to work properly.

The recommended approach is to use as much of PromICE emulation memory as
possible and to pull up the remaining address lines on the target's ROM socket. Use
10K pull up resistors to Vcc.

If pull-ups are not possible, this chapter delves into the LoadICE commands that
may be needed to get PromICE to emulate and the AI option to function properly.

This chapter contains information on the:
• socket command
• xmask command
• AI 1-related issues (uses all address lines up to A20)

NOTE: PromICE will not emulate properly if there are any floating address
lines on the ROM socket. Likewise, AI1 will fail when there are floating
address lines.

224 Unused Address Lines

PromICE User Manual

socket
Modifies the PromICE address mask when address lines, available from the target
ROM socket, are not used by ROM emulation and are not pulled high.

Command Forms
socket loadice.ini file, Dialog mode

Syntax
socket size[k | m]

OR
socket gen_part_number

where
size (integer) The socket size, measured in the current word size

(bytes or words) as defined by the most recent word
command. The specified number must be a power of 2.

k (optional literal) Use to indicate the size in thousands of the
current word size.

m (optional literal) Use to indicate the size in millions of the
current word size.

gen_part_number (string of digits)
JEDEC standard ROM part number for either 8 or 16 bit
word size. The part number must begin with a 27 or a 29.

Default
The default socket size is the same as ROM size. As a result, all address lines
beyond the emulation ROM address space must be high.

Description
If your target’s socket has more address lines than ROM you are emulating, and
those unused address lines are not pulled high, then you will need this
command and/or the xmask command to set the PromICE address mask
correctly. The socket command works by left shifting zeros into the PromICE
emulation address mask beyond the emulation size. If the address mask created
by shifting zeros is insufficient, use the xmask command to set an arbitrary
address bit mask.

Unused Address Lines 225

© 1999 Grammar Engine

This command, along with the xmask command, affects both memory
emulation and the AI option configuration by providing LoadICE the
appropriate mask for the address lines beyond the emulation size.

The following diagram illustrates the address line relationships between:
1) A target ROM socket with A0 to A20.
2) The capacity of a P1080 PromICE emulation memory with A0 to A19.
3) A 128KB ROM emulation size with a base address of 0x180000.
4) The use of the socket command to right shift two zeros beyond the

emulation size.
A
20

A
19

A
18

A
17

A
16

A
15

A
14

A
13

A
12

A
11

A
10

A
9 Address Lines

1. 1 1 0 0 X X X X X X X X Rom Socket

2. X X X X X X X X X X X P1080 Capacity

3. X X X X X X X X rom=128k

4. 1 0 0 X X X X X X X X socket=512k
Equals

1 0 0 X X X X X X X X Emulation Mask

The actual emulation address mask is created by a bitwise AND of the mask
created by the socket command with the 8 bit mask specified in the xmask
command. The emulation address mask must be accurate to the PromICE
memory capacity.

226 Unused Address Lines

PromICE User Manual

Examples

socket=27040
rom=27010
Lets you emulate a 128K Byte ROM in a socket wired for a 512K Byte ROM.

socket=1m
rom=256k
Lets you emulate a 256K byte ROM in a socket wired for a 1M Byte ROM.

word 16 1 0
socket=27040
rom=27010
Lets you emulate a 128K Word ROM in a socket wired for a 512K Word ROM.

word 16 1 0
socket=1m
rom=256k
Lets you emulate a 256K Word ROM in a socket wired for a 1M Word ROM.

Unused Address Lines 227

© 1999 Grammar Engine

xmask
Specify an arbitrary address mask to be used by PromICE when address lines,
available from the target ROM socket, are not used by ROM emulation and are not
pulled high.

Command Forms
xmask loadice.ini file

Syntax
xmask mask_byte

where
mask_byte (hex) The address mask byte for target address lines A16 to

A24.

Default
The default mask_byte is 0xFF size.

Description
If your target’s socket has more address lines than ROM you are emulating, and
those unused address lines are not pulled high, then you may need this
command to set the PromICE address mask correctly. The xmask command
works by using a bit-wise AND of mask_byte onto the PromICE emulation
address mask. In this way, address bits in the mask can be set to zero.

This command affects both memory emulation and the AI option configuration
by providing LoadICE the appropriate mask for the address lines beyond the
emulation size.

The address mask is controlled by two commands. The socket command can
right shift zeros into the mask. The socket command can shift starting at A11
and up. The xmask command controls 8 bits, A16 to A24.

228 Unused Address Lines

PromICE User Manual

The following diagram illustrates the address line relationships between:

1) A target ROM socket with A0 to A20.
2) The capacity of a P1080 PromICE emulation memory with A0 to A19.
3) A 128KB ROM emulation size with a base address of 0x140000.
4) The use of the socket command to right shift a zero beyond the

emulation size.
5) The use of the xmask to specify the upper address lines.

A
20

A
19

A
18

A
17

A
16

A
15

A
14

A
13

A
12

A
11

A
10

A
9 Address Lines

1. 1 0 1 0 X X X X X X X X Rom Socket

2. X X X X X X X X X X X P1080 Capacity

3. X X X X X X X X rom=128k

4. 1 1 0 X X X X X X X X socket=256k
And

5. 1 0 1 1 1 xmask=F7
Equals

0 1 0 X X X X X X X X Emulation Mask

The actual emulation address mask is created by a bitwise AND of the mask
created by the socket command with the 8 bit mask specified in the xmask
command. The emulation address mask must be accurate to the width of the
PromICE capacity.

Examples
xmask F3
Set address mask to 0xF3FFFF, which sets address lines A17 and A18 to zero.

Unused Address Lines 229

© 1999 Grammar Engine

On AI 1 units: setup the address mask, if needed
AI2 users can skip this item because AI2 register address decoding ignores all
address lines beyond the ROM emulation size.

On AI1 units, the register address decoding uses all address lines up to A20. If all
the unused address lines on the target ROM socket are not pulled high, then AI1
may not work even if PromICE memory emulation works correctly. In this case,
use the socket and/or xmask commands as explained above to establish the correct
address mask.

The AI1 address mask is controlled by two commands. The socket command can
right shift zeros into the mask. The socket command can shift starting at A11
(2716 ROMs) and up. The xmask command controls 8 bits, A16 to A20. The AI1
address mask must be accurate to A20 or the highest order address line on the target
ROM socket.

NOTE: The 27010, 27020 and the 27040 parts (128k; 256k and 512k bytes) can be
plugged into a socket wired for the 27040 part without changing any jumpers. This
must be handled using the address mask for AI1 to work properly.

The following diagram illustrates the address line relationships between:

1) A target ROM socket with A0 to A20.
2) The capacity of a P1040 PromICE emulation memory with A0 to A18.
3) A 128KB ROM emulation size with a base address of 0x140000.
4) The use of the socket command to right shift a zero beyond the emulation

size.
5) The use of the xmask to specify the upper address lines.

A
20

A
19

A
18

A
17

A
16

A
15

A
14

A
13

A
12

A
11

A
10

A
9 Address Lines

1. 1 0 1 0 X X X X X X X X Rom Socket

2. X X X X X X X X X X P1040 Capacity

3. X X X X X X X X rom=128k

4. 1 0 X X X X X X X X socket=256k
And

5. 1 0 1 1 1 xmask=F7
Equals

1 0 1 0 X X X X X X X X AI Mask

230 Unused Address Lines

PromICE User Manual

The actual AI address mask is created by a bitwise AND of the mask created by the
socket command with the 8 bit mask specified in the xmask command. The
resulting mask, combined with the address specified by ailoc, is used to detect target
accesses to the AI registers.

Technical Specifications 231

© 1999 Grammar Engine

14. Technical Specifications

Identification
The format of PromICE model numbers can be any of the following:

Psnnn-aa
Psnnn-aa-AI
Psnnn-aa-AI2
Psnnn-aa-AI2-ttt

where
s (integer) count of 8 bit units:

1 Single (master) 8 bit unit for emulating 1 ROM.
2 Dual 8 bit units (master and slave in one case) for

emulating two 8 bit ROMs (with separate chip selects)
or one 16 bit ROM.

nnn (integers, optional letter suffix) capacity of the unit’s emulation
memory as follows:

nnn Emulation per 8 bit unit Generic Part

512 2 KB to 64 KBytes 27512

010 2 KB to 128 KBytes 27010

020 2 KB to 256 KBytes 27020

040 2 KB to 512 KBytes 27040

080 2 KB to 1 Mbytes 27080

160 2 KB to 2 Mbytes 27160

The optional letter suffix is a record keeping designation.

aa (integers) Emulation memory access time in nanoseconds. Values
include 35, 45, and 90ns. Older units may have values including
55, 70, 100, 120, and 150ns.

AI (literal) AI1 Communications Option. Older units may have AI0.

AI2 (literal) AI2 Communications Option

ttt (alphanumeric) Trace/Code Coverage Options include:
DT 512KB Trace and 512KB Code Coverage memory
DTE 512KB Trace and 512KB Code Coverage memory,

external inputs

232 Technical Specifications

PromICE User Manual

1E 128KB Trace and 128KB Code Coverage, external
inputs

Older Trace/Code Coverage Options include:
1 128KB Trace and 128KB Code Coverage memory
128 128KB Trace and 128KB Code Coverage memory
2 128KB Trace and 256KB Code Coverage memory

External Power Supply
The original PromICE units use a 9Volt DC 1A (unregulated)
wall plug-in power supply with a 2.1mm Pin and sleeve plug
with positive in the center and sleeve as ground.

The newer PromICE units use a 5Volt DC 2.2A (regulated) desk
top power supply with a 2.5mm Pin and sleeve plug with positive
in the center and sleeve as ground. These units include the
P2160-45 and P2160-35 and all AI2, Trace, and FlashICE units. VDC

Power Consumption
Power consumption will vary depending on the buffers in the ROM emulation
interface. Also, faster models consume more power due to faster SRAMs and
buffers. The figures below are based on a 4 Meg unit built with 4 1Mbit SRAMs and
the ALS buffers. The external power supply is the 9VDC ~1A (unregulated) one.

PromICE Master: +5VDC < 200mA
PromICE Slave: +5VDC < 150mA
PromICE Analysis Interface: +5VDC < 70mA

Technical Specifications 233

© 1999 Grammar Engine

Interfaces

Serial Interface / DB9 female
The RS232-C connects to the host or a terminal via 9 conductor serial cable.
Pinout are GND-5, RXD-3, TXD-2, CTS-8, DTR-4. GND is signal ground.
TXD is data out of PromICE and RXD is data into PromICE. DTR is used as
interrupt from the host.

1 5

6 9

Parallel Interface / DB25 male header
It is a Centronics compatible parallel printer port configured for direct
connection to DB25 connector on the back of PCs or Compatibles. It can
operate bidirectionally by using 'error status lines' for sending data back 4 bits
at a time.

1

25

13

14

PIN# SIGNAL SIGNAL PIN#

1 STROBE AUTOFEED 14
2 D0 ERROR 15
3 D1 INIT 16
4 D2 SELECTIN 17
5 D3 GND 18
6 D4 GND 19
7 D5 GND 20
8 D6 GND 21
9 D7 GND 22
10 ACK GND 23
11 BUSY GND 24
12 PE GND 25
13 SELECT

The data transfer protocol is modified so that the parallel port can be used bi-
directionally. The STROBE line is used to send data from the host to
PromICE. The BUSY signal is asserted by PromICE to indicate that it either

234 Technical Specifications

PromICE User Manual

has not read the previous data from the host or it has data to send to the host.
The SELECTIN signal is used to acknowledge the state of the BUSY line to
PromICE. This ensures that the sense of the BUSY line is never confused by
the host.

When sending data to the host, PromICE places data 4-bits at a time on the
ACK, PE, SELECT, and ERROR lines and asserts the BUSY signal.

When two PromICE units are daisy-chained on a parallel port, the AUTOFEED
signal is used as a STROBE line for the second unit, and the PE signal is used
as the BUSY line. Because of this, the port is used for download only and the
serial daisy-chain must also be used.

PromICE Back Panel

The back panel of a dual PromICE is shown below.

Note the dual set of ROM cable headers and power headers. Each set configures
one of the two 8 bit units inside the dual PromICE.

The RESET button will reset PromICE’s internal processor and the target, if
the reset line labeled rst is connected to the target. Reset does not affect the
contents of PromICE emulation memory.

Technical Specifications 235

© 1999 Grammar Engine

ROM Cable Header
Pinout for PromICE ROM cable header as seen from the back of the unit.

1

234

33

PIN# SIGNAL SIGNAL PIN#
1 GND A0 26
2 A20 A1 24
3 VCC-32 A2 22
4 A19 A3 20
5 A18 A4 18
6 A16 A5 16
7 A17/vcc-28 A6 14
8 A15 A7 12
9 A14 A8 13
10 A12 A9 15
11 A13/vcc-24 A10 21
12 A7 A11 17
13 A8 A12 10
14 A6 A13/vcc-24 11
15 A9 A14 9
16 A5 A15 8
17 A11 A16 6
18 A4 A17/vcc-28 7
19 OE_ A18 5
20 A3 A19 4
21 A10 A20 2
22 A2 CS_ 23
23 CS_ OE_ 19
24 A1 D0 28
25 D7 D1 30
26 A0 D2 32
27 D6 D3 33
28 D0 D4 31
29 D5 D5 29
30 D1 D6 27
31 D4 D7 25
32 D2 VCC-32 3
33 D3 GND 34
34 GND GND 1

vcc-nn -> is the vcc for the appropriate pin device

236 Technical Specifications

PromICE User Manual

Optional Connection Header

req swr int- rst-

inth mwr mwr int+ rst+

ack

The Optional Connect Header is on the PromICE back panel. It has auxiliary
signals that allow you to control the target system from the host, as well as
additional features that allow PromICE to interact with the target. These signals
are as follows:

rst- and rst+: (outputs) These are reset signals that are driven by PromICE
whenever the unit is in LOAD mode or is instructed by the reset command
from LoadICE. Both polarities of the signal are provided and are driven by a
74LS125 tri-state buffer. The signals are driven when asserted and are tri-
stated when not asserted. This allows these signals to be shared by other
sources.

int- and int+: (outputs) These are interrupt signals that are driven by PromICE
during AI communications, or when caused by a host command. Both
polarities of the signal are provided. They are driven by a 74LS125 tri-state
buffer. The signals are driven when asserted and are tri-stated when not
asserted. This allows these signals to be shared by other sources.

mwr / swr: (input) These are low asserted inputs that are connected to the
system write line on the target. The target can do write cycles to PromICE
ROM emulation memory. The mwr pin is used to write to the master unit
(bottom back connector). The swr pin is used to write to the slave unit (upper
back connector) of a dual PromICE (model prefix P2xxx). To do byte writes to
16 bit ROM emulation memory, you must attach two separate write signals to
the mwr and the swr inputs.

inth: (input) This signal directly drives the CTS pin on the RSR232 interface
on the PromICE front panel. It allows the target to directly interrupt or alert
the host.

Technical Specifications 237

© 1999 Grammar Engine

req: (output) This signal is driven directly by the PromICE micro-controller to
request the target systems bus for PiCOM protocol use. Its polarity is
programmable via LoadICE.

ack: (input) This is the input from the target responding to req above. Its
sense polarity is programmable by LoadICE.

Power Header
Target power sense

24 28 32 rom ext

PromICE power source

Always use the ext jumper to supply external power to PromICE. Use the
power supply shipped with that PromICE.

Use the rom jumper only when connecting the 3 volt adapter or to parasitically
power a small, low power target. Your target should not parasitically power the
PromICE unit.

Use the 32 jumper for all other cables except the 24 and 28 pin DIP. Use the 24
jumper when using a 24 pin DIP cable. Use the 28 jumper when using a 28 pin
DIP cable.

When using the GEI 3 Volt Adapter, use the EXT, ROM, and 32 jumpers.
The 3 Volt Adapter ships with a spare, long handled jumper on one of the
Write pins that you can use for the ROM jumper.

Front Panel Indicators
RUN - a programmable run light, blinks during connect sequence; Rx & Tx - two
LEDs for received and transmitted data signals (serial data only); LOAD -
indicates when the unit is in Load mode, i.e. not emulating. PromICE will not exit
Load mode if target power is not detected.

238 Technical Specifications

PromICE User Manual

Enclosure
Dual PromICE with AI: 5.08" Wide, 2.5" High w/o rubber feet, 5.25" Deep,
Impact-resistant, ABS-molded, Grade DFA/R Plastic.

All other PromICE models: 5.08" Wide, 1.5" High w/o rubber feet, 5.25" Deep,
Impact-resistant, ABS-molded, Grade DFA/R Plastic.

Environmental Restrictions
Operating Temperature: 5 to 32 degree C (41 to 90 degrees F)
Storage Temperature: -40 to 70 degrees C (-40 to 158 degrees F)
Humidity: 90% maximum without condensation.

Technical Specifications 239

© 1999 Grammar Engine

Timing Diagrams
Here is how the target signals are received by PromICE. The address bus and the
chip_select and output_enable control signals are received by uni-directional
buffers (74ALS244) and the data bus is connected to a bi-directional buffer
(74ALS245). When PromICE is in 'load' mode, these buffers are turned off and
their outputs are tri-stated.

When PromICE is emulating, these buffers are turned on and the address buffers
supply the address to the emulation memory within PromICE. The data buffer is
enabled by a combination of the chip_select and output_enable signals. The
direction of the data buffer is controlled by a target supplied write signal.

Emulation memory is made up of SRAM chips that are selected directly by the
address supplied by the target system (in other words without using chip_select or
the output_enable signals). This allows faster access to data. The data is placed on
the target's data bus by the data buffer. This achieves a faster response from
PromICE to a target driven ROM read cycle.

Address

Control

Benable

Data

Tce Ted Tcd Tdx

valid

valid

Tce - time from chip_select & Output_enable to internal buffer enable.

Ted - time from buffer enable to data valid (delay through 74xxx245)

Tcd - time from chip_select & output_enable to buffer disable

Tdx - time from buffer disable to data bus tri-state

These times will vary according to the buffers used. The typical values are:
Tce - 22ns, Ted - 12ns, Tcd - 22ns, and Tdx - 12ns.

240 Technical Specifications

PromICE User Manual

Index 241

© 1999 Grammar Engine

Index

A
Adapters

3 Volt Adapter, 237
Daisy Chain, 25

afn command, 51, 57, 160
AI

AI Porting, 5, 172, 197
AI Registers, 197, 198
Code Example, 197, 204

Command Overview, 5, 179, 200, 207
Commands

aicontrol, 171, 179-181, 207, 209
aidirt, 179, 182, 201
aifast, 179, 183
ailoc, 156, 158, 170, 171, 177, 179, 184, 185, 186, 195, 198-200, 206, 209, 230
ainorci, 179, 187, 191
aireset, 179, 189-192
aitint, 179, 187-192
aitreset, 179, 189-192
burst, 163, 167-170, 179, 184, 194, 195, 199, 200, 204, 207

Configuration, 5, 24, 43, 163, 167, 168, 184, 185, 191, 199, 204, 207, 208
Debuggers, 163, 165

Downloading code, 164, 176, 207
Troubleshooting, 207, 208

Interrupt target, 12, 14, 91, 172, 173, 187, 188, 193, 208, 236
Theory of operation, 163, 165, 197, 199
Write to emulation memory, 12, 163, 167, 173-175, 176, 201, 208, 236

aicontrol command, 171, 179-181, 207, 209
aidirt command, 179, 182, 201
aifast command, 179, 183
ailoc command, 156, 158, 170, 171, 177, 179, 184, 185, 186, 195, 198, 199, 200, 206, 209, 230
ainorci command, 179, 187, 191
aireset command, 179, 189, 190, 191, 192
aitint command, 179, 187, 188, 189, 191, 192
aitreset command, 179, 189, 191, 192
analyze command, 58, 81, 94

B
bank command, 59
baud command, 24, 39, 60, 143
begin command, 15, 18, 43, 61, 70, 71, 135, 136
Binary file, 35, 41, 93

242 Index

PromICE User Manual

burst command, 163, 167-170, 179, 184, 194, 195, 199, 200, 204, 207
byte writes on 16 bit emulation, 173, 236

C
Case Sensitivity, 131, 133
checksum command, 49, 51, 62, 63, 128, 134, 136, 152, 158, 211, 214
clearfiles command, 3, 51, 59, 64, 82, 94, 134, 135
Command Introduction, 5, 47
Commands

afn, 51, 57, 160
aicontrol, 171, 179-181, 207, 209
aidirt, 179, 182, 201
aifast, 179, 183
ailoc, 156, 158, 170, 171, 177, 179, 184, 185, 186, 195, 198-200, 206, 209, 230
ainorci, 179, 187, 191
aireset, 179, 189, 190, 191, 192
aitint, 179, 187-192
aitreset, 179, 189, 191, 192
analyze, 58, 81, 94
bank, 59
baud, 24, 39, 60, 143
begin, 15, 18, 43, 61, 70, 71, 135, 136
burst, 163, 167-170, 179, 184, 194, 195, 199, 200, 204, 207
checksum, 49, 51, 62, 63, 128, 134, 136, 152, 158, 211, 214
clearfiles, 3, 51, 59, 64, 82, 94, 134, 135
compare, 42, 65, 176
config, 41, 58, 66, 67, 96
cursor, 68
delay, 69
dialog, 15, 16, 18, 50, 51, 67, 70, 71, 96, 100
display, 49, 50, 51, 52, 58, 66, 68, 72, 73, 90, 97, 99, 104, 151, 166
dump, 73
edit, 74
ethernet, 3, 24, 48, 51, 75, 76, 115
exit, 77
fast, 78
fastport, 48, 52, 75, 76, 79
file, 3, 58, 80-82, 94, 132, 158, 215
fill, 52, 83, 135, 200
fillall, 3, 23, 52, 85, 86, 134, 142, 206, 211, 216, 217
find, 87, 90
fn, 52, 88, 160
go, 15, 17, 89, 102, 124, 142, 161
help, 28, 50, 52, 90, 144, 165, 207
hso, 50, 52, 91, 92
image, 41, 42, 64, 82, 93-96, 119, 135
load, 15, 17, 18, 35, 43, 64, 67, 70, 71, 80, 93, 96, 102, 131, 134, 135

Index 243

© 1999 Grammar Engine

log, 50, 52, 97, 98, 142, 156
map, 40, 49, 52, 96, 99, 185
modefixed, 3, 52, 102
modein, 3, 52, 100
modeout, 3, 52, 101
move, 103
noaddrerr, 49, 52, 104, 144, 158
number, 39, 105
output, 24, 106, 111, 135, 136, 156, 171
ppbus, 24, 39, 43, 48, 52, 67, 108, 111
ppmode, 39, 48, 52, 109
pponly, 15, 16, 18, 24, 38, 42, 45, 48, 52, 54, 71, 106, 111, 112, 129, 135, 136, 138, 143, 158,

171, 177, 206
promiceid, 52, 113, 211, 218
reset, 29, 114, 115, 192, 236
resetfp, 48, 53, 115
restart, 54, 57, 88, 116, 161
rom, 117, 128, 136, 155
save, 119
search, 120
socket, 40, 118, 122, 137, 168, 212, 213, 223-230
status, 17, 123
stop, 15, 16, 70, 124, 142, 161
test, 69, 125, 157
version, 126
word, 25, 28, 57, 74, 117, 122, 127, 128, 135-138, 144-146, 155, 162, 169, 175, 185, 212, 213,

217, 224
xmask, 49, 53, 130, 223-230

Commands-Misc.
afn, 51, 57, 160
begin, 15, 18, 43, 61, 70, 71, 135, 136
fn, 52, 88, 160
help, 90
hso, 50, 52, 91, 92
promiceid, 52, 113, 211, 218
version, 126

Communications Commands
baud, 15, 24, 38, 39, 42, 43, 48, 51, 60, 67, 105, 143, 155, 177, 184, 185, 186, 209
delay, 69
ethernet, 3, 24, 48, 51, 75, 76, 115
fast, 78
fastport, 48, 52, 75, 76, 79
number, 39, 105
output, 24, 106, 111, 135, 136, 156, 171
ppbus, 24, 39, 43, 48, 52, 67, 108, 111
ppmode, 39, 48, 52, 109
pponly, 15, 16, 18, 24, 38, 42, 45, 48, 52, 54, 71, 106, 111, 112, 129, 135, 136, 138, 143, 158,

171, 177, 206

244 Index

PromICE User Manual

compare command, 42, 65, 176
config command, 41, 58, 66, 67, 96
cursor command, 68

D
Debuggers

AI, 163, 165
Downloading code, 164, 176, 207
Troubleshooting, 207, 208

delay command, 69
dialog command, 15, 16, 18, 70, 96
Disconnecting PromICE, 21, 23
display command, 72, 97
dump command, 73

E
edit command, 74
Ethernet, 3, 24, 38, 48, 51, 75, 76, 115
exit command, 77

F
fast command, 78
Fastport, 38
fastport command, 48, 52, 75, 76, 79
file command, 3, 58, 80, 81, 82, 94, 132, 158, 215
File Commands

bank, 59
clearfiles, 3, 51, 59, 64, 82, 94, 134, 135
compare, 42, 65, 176
file, 3, 58, 80, 81, 82, 94, 132, 158, 215
image, 41, 42, 64, 82, 93-96, 119, 135
load, 15, 17, 18, 35, 43, 64, 67, 70, 71, 80, 93, 96, 102, 131, 134, 135
noaddrerr, 49, 52, 104, 144, 158
save, 119

fill command, 52, 83, 135, 200
fillall command, 3, 23, 85
find command, 87, 90
fn command, 52, 88, 160

G
go command, 15, 17, 89, 102, 124, 142, 161

Index 245

© 1999 Grammar Engine

H
help command, 90
Hex File, 35, 40
hso command, 50, 52, 91, 92

I
image command, 41, 42, 64, 82, 93-96, 119, 135
Indicators, 237
Install

Basics, 21, 23, 30, 143
Daisy Chaining, 11, 12, 24, 25, 26, 38-40, 48, 105, 108, 111, 139, 143, 174, 184
Host connection, 21, 24
Host to PromICE, 21, 24
Power sense jumpers, 27
Reset Line, 29
Software, 21, 31

UNIX, 21, 31, 32
Static safety, 22
Target connection, 21, 27
Unpacking, 21, 22
Win NT Parallel Driver, 21, 31

Interrupt line, 12, 14, 91, 172, 173, 187, 188, 193, 208

J
Jumper Settings, 27

L
load command, 15, 17, 18, 35, 43, 64, 67, 70, 71, 80, 93, 96, 102, 131, 134, 135
Load mode, 237
LoadICE

Case Sensitivity, 131, 133
Command Processing, 131, 134
Commands, 5, 47
Configuration, 5, 35, 155, 156, 162
Installation, 21, 31
Numeric Arguments, 131-133

ROM-Relative Addresses, 131-133
PromICE 8 bit unit configuration, 131, 137, 211-213
UNIX Installation, 21, 32
Win NT Parallel Driver, 21, 31

log command, 50, 52, 97, 98, 142, 156

246 Index

PromICE User Manual

M
map command, 40, 49, 52, 96, 99, 185
Mode Commands

dialog, 15, 16, 18, 70, 96
exit, 77
go, 15, 17, 89, 102, 124, 142, 161
modefixed, 3, 52, 102
modein, 3, 52, 100
modeout, 3, 52, 101
reset, 29, 114, 115, 192, 236
restart, 54, 57, 88, 116, 161
stop, 15, 16, 70, 124, 142, 161

modefixed command, 3, 52, 102
modein command, 3, 52, 100
modeout command, 3, 52, 101
move command, 103

N
noaddrerr command, 49, 52, 104, 144, 158
number command, 39, 105

O
output command, 24, 106, 111, 135, 136, 156, 171

P
Parallel Port, 16, 18, 24, 26, 31, 32, 35, 37-39, 42, 43, 48, 51, 52, 54, 71, 78, 106, 108, 109, 111,

112, 136, 139, 143, 144, 148, 156, 171, 176, 184-186, 233, 234
Power Consumption, 232
ppbus command, 24, 39, 43, 48, 52, 67, 108, 111
ppmode command, 39, 48, 52, 109
pponly command, 15, 16, 18, 24, 38, 42, 45, 48, 52, 54, 71, 106, 111, 112, 129, 135, 136, 138,

143, 158, 171, 177, 206
promiceid command, 52, 113, 211, 218

R
reset command, 29, 114, 115, 192, 236
Reset target, 29, 124, 161, 234, 236
resetfp command, 48, 53, 115
restart command, 54, 57, 88, 116, 161
rom command, 117, 128, 136, 155
ROM Commands

checksum, 49, 51, 62, 63, 128, 134, 136, 152, 158, 211, 214
dump, 73

Index 247

© 1999 Grammar Engine

edit, 74
fill, 49, 52, 83, 84, 85, 128, 129, 134, 135, 136, 138, 200, 211, 216
fillall, 3, 23, 52, 85, 86, 134, 142, 206, 211, 216, 217
find, 87, 90
load, 15, 17, 18, 35, 43, 64, 67, 70, 71, 80, 93, 96, 102, 131, 134, 135
move, 103
rom, 117, 128, 136, 155
search, 120
word, 25, 28, 57, 74, 117, 122, 127, 128, 135, 136, 138, 144-146, 155, 162, 169, 175, 185,

212, 213, 217, 224
xmask, 49, 53, 130, 223-230

ROM size, 35, 40, 48, 85, 104, 122, 137, 145, 152, 155, 158, 224

S
save command, 119
search command, 120
Serial Port, 11, 13, 14, 24, 25, 26, 35, 38, 39, 48, 52, 60, 75, 76, 79, 106, 108, 144, 156, 158,

163-168, 171, 176, 177, 184-186, 208
Setup

Binary files, 35, 41, 93
Fastport, 38
Hex Files, 35, 40
Loading Multiple Files, 35, 42
Parallel Port, 16, 18, 24, 26, 31, 32, 35, 37-39, 42, 43, 48, 51, 52, 54, 71, 78, 106, 108, 109,

111, 112, 136, 139, 143, 144, 148, 156, 171, 176, 184-186, 233, 234
PromICE 8 bit unit configuration, 131, 137, 211-213
ROM size, 35, 40, 48, 85, 104, 122, 137, 145, 152, 155, 158, 224
Serial Port, 11, 13, 14, 24, 25, 26, 35, 38, 39, 48, 52, 60, 75, 76, 79, 106, 108, 144, 156, 158,

163-168, 171, 176, 177, 184-186, 208
Software, 5, 35, 155, 156, 162
Unused Address Lines, 5, 35, 40, 122, 130, 171, 220, 223
Win NT Parallel Driver, 21, 31
Word size, 11, 25, 35, 39, 40, 48, 49, 66, 73, 81, 83, 85, 94, 117, 118, 122, 127, 128, 137, 138,

146, 152, 155, 159, 163, 167-169, 184, 185, 195, 200, 204, 212, 215, 217, 218, 224
Shipping, 21, 22
socket command, 40, 118, 122, 137, 168, 212, 213, 223-230
Solaris, 32, 108, 111, 112
Specifications, 5, 11, 27, 231

Power, 232
Static safety, 22
status command, 17, 123
Status Commands

config, 41, 58, 66, 67, 96
display, 72, 97
map, 99
status, 17, 123

stop command, 15, 16, 70, 124, 142, 161

248 Index

PromICE User Manual

Storage, 21, 22

T
Target cables, 10
Technical Specifications, 5, 11, 27, 231
Technical Support, 7, 126, 141, 142, 144, 150, 154, 157, 159, 209
test command, 69, 125, 157
Three Volt Adapter, 237
Troubleshooting

General, 5, 139

U
UNIX, 21, 31, 32

Solaris, 32, 108, 111, 112
Unused Address Lines, 5, 35, 40, 122, 130, 171, 220, 223
Utility Commands

dump, 73
edit, 74
log, 97, 98
move, 103
save, 119
search, 120
test, 69, 125, 157

V
version command, 126

W
Warranty, 6
word command, 25, 28, 57, 74, 117, 122, 127, 128, 135, 136, 138, 144-146, 155, 162, 169, 175,

185, 212, 213, 217, 224
Word size, 11, 25, 35, 39, 40, 48, 49, 66, 73, 81, 83, 85, 94, 117, 118, 122, 127, 128, 137, 138,

146, 152, 155, 159, 163, 167-169, 184, 185, 195, 200, 204, 212, 215, 217, 218, 224

X
xmask command, 49, 53, 130, 223-230

