
Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 1 of 34 ARM DOC 100878_0100_en

Connect User Guide
Version 0.1

 ARM DD1
0388E ID113009

Fundamentals of ARMv8-A
Version 1.0

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 2 of 34 ARM DOC 100878_0100_en

Revision Information

The following revisions have been made to this User Guide.

Date Issue Confidentiality Change

03 March 2017 0100 Non-Confidential First release

Proprietary Notice

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM® in the
EU and other countries, except as otherwise stated below in this proprietary notice. Other brands
and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this
document may be adapted or reproduced in any material form except with the prior written
permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements.
All particulars of the product and its use contained in this document are given by ARM in good
faith. However, all warranties implied or expressed, including but not limited to implied warranties
of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM shall not be
liable for any loss or damage arising from the use of any information in this document, or any error
or omission in such information, or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be
subject to license restrictions in accordance with the terms of the agreement entered into by ARM
and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

http://www.arm.com/

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 3 of 34 ARM DOC 100878_0100_en

Contents

1 Fundamentals of ARMv8-A ... 4

1.1 Execution states .. 6

1.2 Changing Exception levels .. 7

Mapping the processor modes onto the Exception levels .. 8

Privilege levels in ARMv8-A.. 9

2 Changing Execution state .. 11

3 Registers .. 13

3.1 Special registers ... 13

The Zero register ... 14

The stack pointer .. 14

The Program Counter ... 15

The Exception Link Register (ELR) ... 15

4 Processor state .. 16

5 System registers ... 19

6 The System Control Register ... 24

Accessing the SCTLR ... 25

7 Changing Execution state (registers) .. 27

8 Registers at AArch32 ... 28

8.1 System registers at AArch32 ... 30

8.2 PSTATE at AArch32 .. 30

9 A64 instructions .. 32

10 The ARMv8-A instruction sets... 33

10.1 Switching between instruction sets .. 33

10.2 Addressing .. 34

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 4 of 34 ARM DOC 100878_0100_en

1 Fundamentals of ARMv8-A
In ARMv8-A, a program executes at one of four Exception levels. In the 64-bit Execution state, the
Exception level determines the level of execution privilege, in a similar way to the privilege levels
defined in ARMv7-A.

The concept of the Exception level is fundamental to the ARMv8-A architecture. All operations
take place at a defined Exception level, and a register can exist in one or more Exception levels.
Changing a bit in a register at one Exception level can have a different effect at another Exception
level.

Exception levels provide a logical separation of software execution privilege that applies across all
operating states of the ARMv8-A architecture. System software determines the Exception level,
and therefore the level of privilege, at which software runs. Exception levels are similar to, and
support the concept of, hierarchical protection domains common in computer science.

The type of software that typically runs at each of the Exception levels is:

EL0 Normal user applications. EL0 corresponds to the lowest privilege level and is often
described as unprivileged, whereas execution at any Exception level above EL0 is often
referred to as privileged execution.

EL1 An operating system kernel typically described as privileged.

EL2 Hypervisor.

EL3 Low-level firmware, including the Secure Monitor.

An Exception level (ELn) with a larger value of n than another one is said to be at a higher
Exception level. An Exception level with a smaller value of n than another is described as being at a
lower Exception level.

In general, a piece of software, such as an application, the kernel of an operating system, or a
hypervisor, occupies a single Exception level. An exception to this is in-kernel hypervisors such as
KVM, which operates across both EL2 and EL1.

ARMv8-A also provides two Security states. The ARM® Architecture Reference Manual uses the
terms Secure and Non-secure to refer to these System security states. Here, the Non-secure state
is referred to as the Normal world. Non-secure state does not indicate any security vulnerability,
but rather refers to normal operation, and is therefore the same as the Normal world. The word
‘world’ is used to emphasize the relationship between the Secure world and other states that the
device is capable of.

The Operating System (OS) runs in the Normal world, in parallel with a trusted OS running in the
Secure world on the same hardware. ARM TrustZone® technology enables the system to be
partitioned between the Normal and Secure worlds. This provides protection against certain
software attacks and hardware attacks. The Secure monitor acts as a gateway for moving between
the Normal and Secure worlds. The Secure monitor in the ARMv8-A architecture is at a higher
Exception level than all other software.

The following figure shows the Exception levels in the Normal and Secure worlds.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 5 of 34 ARM DOC 100878_0100_en

Secure firmwareApplication

Normal world Secure world

Application Application Application

No EL2 in Secure
world

EL0

EL1

EL3

EL2

Guest OS Guest OS Trusted OS

Hypervisor

Secure monitor

ARMv8-A also provides hardware support for virtualization. In the Normal world, virtualization
enables more than one OS to co-exist and operate on the same system. This means that a
hypervisor or Virtual Machine Manager (VMM) can run on the system and host multiple guest
operating systems. Each of the guest operating systems is then, running on a virtual machine. Each
OS is unaware that it is sharing time on the system with other guest operating systems.

This means that the Normal world has the following components:

Applications Applications running in the Normal world.

Guest Operating
Systems

These include Linux or Windows running in Non-secure EL1. When
running under a hypervisor, the OS kernels can be running either as a
guest or a host, depending on the hypervisor model.

Hypervisor This runs at EL2. The hypervisor, when present and enabled, switches
operation between multiple Guest operating systems.

The Secure world has the following components:

Secure firmware On an application processor, Secure firmware must be the first thing that
runs at boot time. It provides several services, including platform
initialization, the installation of the Trusted OS, and routing of Secure
monitor calls. The Secure firmware executes at EL3.

Trusted OS The Trusted OS provides Secure services to the Normal world and
provides a runtime environment for executing Secure or trusted
applications. It executes at Secure EL1 when EL3 is using AArch64 and at
Secure EL3 when EL3 is using AArch32.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 6 of 34 ARM DOC 100878_0100_en

2 Execution states
The ARMv8-A architecture also defines two Execution States, AArch64 and AArch32. AArch64 state
is unique to ARMv8-A, and uses 64-bit general-purpose registers, while AArch32 state provides
backwards compatibility with ARMv7-A using 32-bit general-purpose registers. GNU and Linux
documentation (except for Redhat and Fedora distributions) sometimes refers to AArch64 as
ARM64.

The AArch32 Execution state is compatible with an ARMv7-A implementation that includes the
Virtualization Extensions, the Security Extensions, and the Large Physical Address Extensions. The
ARMv8-A architecture allows the execution of different software layers, such as an Application, or
an Operating System Kernel or a Hypervisor layer using either AArch32 or AArch64. The ARMv8-
A architecture defines how the execution in AArch32 and AArch64 interact.

The following diagram show the organization of the Exception levels in AArch64.

Secure firmwareApplication

Normal world Secure world

Application Application Application

No EL2 in Secure
world

EL0

EL1

EL3

EL2

Guest OS Guest OS Trusted OS

Hypervisor

Secure monitor

The following diagram show the organization of the Exception levels in AArch32.

Secure firmwareApplication

Normal world Secure world

Application Application Application

No EL2 in Secure
world

EL0

EL1

EL3

EL2

Guest OS Guest OS Trusted OS
 (operates at EL3)

Hypervisor

Secure monitor

In AArch32 state, Trusted OS software executes in Secure EL3, and in AArch64 state it primarily
executes in Secure EL1.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 7 of 34 ARM DOC 100878_0100_en

3 Changing Exception levels
Previous versions of the ARM architecture defined an Exception model based on processor modes.
For each exception type, the architecture defines the mode to which the exception is taken. This
mode is called the target mode for the exception. However, configurable traps, enables, and
routing controls can often change the target mode for an exception. ARMv8-A AArch32 follows
this model.

When the processor takes an exception it:

• Saves the current program state in the SPSR of the target mode.

• Saves the return address for the exception:

o In the Link Register (LR) of the target mode if the target mode is not Hyp mode.

o In ELR_hyp if the target mode is Hyp mode.

• Moves into the target mode. Unless the exception targets Monitor mode, it does so without
changing Security state.

The ARMv7-A architecture used Privilege levels PL0 to PL2. In ARMv8-A, the Exception levels have
replaced the Privilege levels, but this section explains how PL1 continues to have a particular use.
The following table shows the full set of processor modes for an ARMv7-A processor that includes
the Virtualization Extensions and the Security Extensions. It also shows the Privilege level that
ARMv7-A assigns to each mode, which defines its execution privilege. Execution privilege is defined
independently in each Security state.

Mode Function Security
state

ARMv7-A
Privilege level

User (USR) Unprivileged mode in which most
applications run

Both PL0

FIQ Entered on an FIQ interrupt exception Both PL1

IRQ Entered on an IRQ interrupt exception Both

Supervisor
(SVC)

Entered on reset or when a Supervisor
Call instruction (SVC) is executed

Both

Monitor
(MON)

Entered when the SMC instruction
(Secure Monitor Call) is executed or
when the processor takes an exception
that is configured to be taken to
Monitor mode.

Provided to support switching between
Secure and Non-secure states.

Secure only

Abort (ABT) Entered on a memory access exception Both

Undef (UND) Entered when an UNDEFINED
instruction is executed

Both

System (SYS) Privileged mode, sharing the register
view with User mode

Both

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 8 of 34 ARM DOC 100878_0100_en

Hyp (HYP) Entered by the Hypervisor Call and Hyp
Trap exceptions.

Non-secure
only

PL2

In the ARMv7-A architecture, the processor mode can change under privileged software control or
automatically when taking an exception. When an exception occurs, the core saves the current
Execution state and the return address, enters the mode that is required to deal with the
exception, and possibly disables hardware interrupts. Applications operate at the lowest level of
privilege, PL0, previously unprivileged User mode.

Operating systems run at PL1. In a system with the Virtualization Extensions the Hypervisor runs
at PL2. The Secure monitor, which acts as a gateway for moving between the Secure and Normal
worlds, also operates at PL1.

ARMv8-A does not change this Exception model, but adds the following rules to cover cases that
were not possible in ARMv7-A:

• If EL2 is using AArch64, then any exception that targets Hyp mode is taken to EL2 using
AArch64.

• If EL3 is using AArch64, then any exception that targets Monitor mode is taken to EL3 using
AArch64.

In AArch64, the processor modes are mapped onto the Exception levels as in the following figure.

Secure firmwareApplication

Normal world Secure world

User

SVC, ABT, IRQ,
FIQ, UND, SYS

HYP

MON

Application Application Application

No Hypervisor in
Secure world

Guest OS Guest OS Trusted OS

Hypervisor

Secure monitor

EL1

EL2

EL0

EL3

When an exception is taken, the processor changes to the Exception level (equivalent to processor
mode in ARMv7-A) which supports the handling of that exception type. The Secure monitor, which
operates at PL1 at AArch32, operates at EL3 in AArch64.

3.1 Mapping the processor modes onto the
Exception levels
Exception levels that are present in Secure state depend on whether EL3 is using AArch64. This
affects how the processor modes map onto the Exception levels.

The following figure shows how the AArch32 processor modes map onto the Exception levels
when EL3 is using AArch64:

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 9 of 34 ARM DOC 100878_0100_en

Secure
User modeUser mode

Normal world Secure world

Supervisor, Abort, IRQ, FIQ,
Undefined and System modes

Supervisor, Abort, IRQ, FIQ,
Undefined and System modes

Hyp mode

Secure monitor, executing in AArch64 state

EL0 using AArch32

EL1 using AArch32

EL2 using AArch32

EL3 using AArch64

The Monitor mode that was used in ARMv7-A is not present in ARMv8-A. This is because EL3
provides the Secure Monitor functionality, and EL3 is using AArch64.

When EL3 is using AArch32, the mapping of the AArch32 processor modes onto the Exception
levels is:

Secure
User modeUser mode

Normal world Secure world

Supervisor, Abort, IRQ, FIQ,
Undefined and System modes

Supervisor, Abort, IRQ, FIQ,
Undefined and System modes

Hyp mode

Secure monitor, executing in AArch64 state

EL0 using AArch32

EL1 using AArch32

EL2 using AArch32

EL3 using AArch32

Comparing the two figures, the mapping is unchanged in the Normal world, but in the Secure
world the Supervisor mode, Abort mode, IRQ mode, FIQ mode, Undefined mode, and System
mode are promoted from EL1 to EL3. This happens because:

• EL3 provides the Secure Monitor functionality.

• The ARMv6 Security Extensions defined Monitor mode as a Secure state mode as peer of
Supervisor mode, Abort mode, IRQ mode, FIQ mode, Undefined mode, and System mode.
These modes therefore appear as EL3 along with the Secure Monitor functionality

This remapping has no effect on the operation of the processor. Operation within AArch32 state is
defined completely in terms of interactions between the processor modes, without reference to
any associated Privilege levels or Exception levels.

3.2 Privilege levels in ARMv8-A
The set of modes (Supervisor, Abort, IRQ, FIQ, Undefined, and System) are EL3 modes in Secure
state when EL3 is using AArch32, and are EL1 modes under all other circumstances.

To avoid this complicated description, these modes can be described as PL1 modes, reflecting their
Privilege level in ARMv7-A. Related to this:

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 10 of 34 ARM DOC 100878_0100_en

• Controls that affect execution in these modes, in both Security states, can be described as PL1
controls.

• The translation system that is used when executing in these modes or in User mode is called
the PL1&0 translation regime.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 11 of 34 ARM DOC 100878_0100_en

4 Changing Execution state
Sometimes the Execution state of your system has to change. This could be, for example, if you are
running an AArch64 operating system, and want to run a 32-bit application at EL0. To do this, the
system must switch to AArch32. You can only change Execution state by changing Exception level.
Taking an exception can change Execution state from AArch32 to AArch64, and returning from an
exception can change it from AArch64 to AArch32.

When the application has completed or execution returns to the OS, the system can switch back
to AArch64. The following figure shows that you cannot do it the other way around. An AArch32
operating system cannot host a 64-bit application. This is shown in the following figure:

AArch64
App

EL0

EL1

EL2

An AArch64
OS can host

a mix of
AArch64

and AArch32
applications

An AArch32
OS cannot host

an AArch64
application

An AArch32
hypervisor

cannot host
an AArch64 OS

An AArch64
hypervisor
can host

an AArch64 and
AArch32 OS

AArch64 OS AArch32 OS

Hypervisor

AArch32
App

AArch32
App

AArch64
App

Moving between the two states is performed at the level of the Secure monitor, hypervisor or
operating system. A hypervisor or operating system executing in AArch64 state can support
AArch32 operation at lower privilege levels. This means that an OS running in AArch64 can host
both AArch32 and AArch64 applications. Similarly, an AArch64 hypervisor can host both AArch32
and AArch64 guest operating systems. However, a 32-bit operating system cannot host a 64-bit
application and a 32-bit hypervisor cannot host a 64-bit guest operating system.

To change between Execution states at the same Exception level, the system must switch to a
higher Exception level and then return to the original Exception level.

As an example, you might have 32-bit and 64-bit applications running under a 64-bit OS. In this
case, the 32-bit application can execute and generate a Supervisor Call (SVC) instruction, or
receive an interrupt, causing a switch to EL1 and AArch64. The OS can then switch tasks and
return to EL0 in AArch64. Practically speaking, this means that you cannot have a mixed 32-bit and
64-bit application, because there is no direct way of calling between them.

The main points when changing between AArch64 and AArch32 Execution states can be
summarized as follows:

• Changing to AArch32 requires going from a higher to a lower Exception level. This is the result
of exiting an exception handler by executing the ERET instruction.

• Changing to AArch64 requires going from a lower to a higher Exception level. The exception
can be the result of an instruction execution or an external signal.

• If, when taking an exception or returning from an exception, the Exception level remains the
same, then the Execution state also cannot change.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 12 of 34 ARM DOC 100878_0100_en

• Both AArch64 and AArch32 Execution states have Exception levels that are similar, but there
are some differences between Secure and Non-secure operation. The Execution state the
processor is in when the exception is generated can limit the Exception levels available to the
other Execution state.

• Where an ARMv8-A processor operates in AArch32 Execution state at a particular Exception
level, it uses the same exception model as in ARMv7-A for exceptions that are taken to that
Exception level.

• Code at EL3 cannot take an exception to a higher Exception level, so cannot change Execution
state, except by going through a reset.

For the highest implemented Exception level (EL3 on most ARMv8-A processors), the Execution
state to use for each Exception level when taking an exception is fixed. The Exception level can
only be changed by resetting the processor. For EL2 and EL1, when not the highest implemented
Exception level, this is controlled by a higher privilege level using System registers.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 13 of 34 ARM DOC 100878_0100_en

5 Registers
ARMv8-A provides 31 × 64-bit general-purpose registers, always accessible, and accessible in all
Exception levels. In the AArch64 Execution state, each register (X0-X30) is 64 bits wide. The
increased width helps to reduce register pressure in most applications.

Each 64-bit general-purpose register (X0 - X30) also has a 32-bit form (W0 - W30).

31 0

Wn

3263

Xn

The 32-bit W register forms the lower half of the corresponding 64-bit X register. That is, W0
forms the lower word of X0, and W1 forms the lower word of X1.

Reads from W registers ignore the higher 32 bits of the corresponding X register and leave them
unchanged. Writes to W registers set the higher 32 bits of the X register to zero. So, writing
0xFFFFFFFF into W0 sets X0 to 0x00000000FFFFFFFF.

Note
Occasionally Rn is used to designate an ARMv8-A register. This means that the register can be
either Xn or Wn.

5.1 Special registers
In addition to the thirty one (X0 to X30) ARMv8-A core registers, there are also several special
registers.

Special
registers

Stack pointer
Zero register

Program counter

EL0 EL1 EL2 EL3

Program Status Register
Exception Link Register

XZR/WZR
SP_EL0

PC

SP_EL1

SPSR_EL1

ELR_EL1

SP_EL2

SPSR_EL2

ELR_EL2

SP_EL3

SPSR_EL3

ELR_EL3

X30X30X30X30

Note

There is no register that is called X31 or W31. Some instructions are encoded so that the
number 31 represents the zero register, ZR (WZR/XZR). There is also a restricted group
of instructions in which one or more of the arguments are encoded so that number 31
represents the stack pointer (SP).

Name Size Description

WZR 32 bits Zero register

XZR 64 bits Zero register

WSP 32 bits Current stack pointer

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 14 of 34 ARM DOC 100878_0100_en

SP 64 bits Current stack pointer

PC 64 bits Program counter
Table 2 Special registers in AArch64

Note

The 64-bit form of the stack pointer does not use an X prefix.

When executing in AArch64, the exception return state is held in the following dedicated registers
for each Exception level:

• Exception Link Register (ELR).

• Saved Processor State Register (SPSR).

The following table identifies special registers by Exception level:

 EL0 EL1 EL2 EL3

Stack pointer (SP) SP_EL0 SP_EL1 SP_EL2 SP_EL3

Exception Link Register (ELR) - ELR_EL1 ELR_EL2 ELR_EL3

Saved Process Status Register (SPSR) - SPSR_EL1 SPSR_EL2 SPSR_EL3

The Procedure Call Standard (PCS) also defines a dedicated Frame Pointer (FP), which makes
debugging and call-graph profiling easier by making it possible to unwind the stack reliably.

The Zero register
The zero register does what its name implies.

It ignores all writes to it and all reads of the zero register return 0. You can use the zero register
in most, but not all, instructions.

The stack pointer
The stack pointer (SP) is a register that points to the top of the stack. The choice of stack pointer
to use is separated to some extent from the Exception level. By default, taking an exception selects
the stack pointer for the target Exception level (SP_ELn). For example, taking an exception to EL1
selects SP_EL1. Each Exception level has its own stack pointer.

However, when in AArch64 at an Exception level other than EL0, the processor can use either:

• The 64-bit stack pointer that is associated with that Exception level (SP_ELn), or,

• The stack pointer that is associated with EL0 (SP_EL0). EL0 can only access SP_EL0.

The SP cannot be referenced by most instructions. However, some arithmetic instructions, for
example, the ADD instruction, can read and write to the current stack pointer to adjust the stack
pointer in a function. For example:

ADD SP, SP, #0x10 // Adjust SP to be 0x10 bytes before its current value

ADD SP, SP, #256 // SP = SP + 256

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 15 of 34 ARM DOC 100878_0100_en

The Program Counter
The Program Counter (PC) holds the current program address. It cannot be referred to by
number as if part of the general register file and therefore cannot be used as the source or
destination of arithmetic instructions, or as the base, index or transfer register of load and store
instructions.

The only instructions that read the PC are those whose function is to compute a PC-relative
address (ADR, ADRP, literal load, and direct branches), and the branch-and-link instructions that
store a return address in the link register (BL and BLR). The only way to modify the program
counter is using branch, exception generation, and exception return instructions.

Where the PC is read by an instruction to compute a PC-relative address, then its value is the
address of that instruction. Unlike ARMv7-A, there is no implied offset of 4 or 8 bytes.

The Exception Link Register (ELR)
The Exception Link Register holds the address to return to after an exception.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 16 of 34 ARM DOC 100878_0100_en

6 Processor state
AArch64 does not have a direct equivalent of the ARMv7-A Current Program Status Register (CPSR).
In AArch64, the components of the traditional CPSR are supplied as fields that can be accessed
independently. These are referred to collectively as Processor State (PSTATE). There are also
instructions that operate on elements of PSTATE.

The Processor State, or PSTATE fields, for AArch64 have the following definitions:

Name Description

N Negative condition flag.

Z Zero condition flag.

C Carry condition flag.

V oVerflow condition flag.

D Debug mask bit.

A SError mask bit.

I IRQ mask bit.

F FIQ mask bit.

SS Software Step bit.

IL Illegal Execution state bit.

EL (2) Exception level.

nRW Execution state

0 = 64-bit

1 = 32-bit

SP Stack pointer selector.

0 = SP_EL0

1 = SP_ELn

PSTATE fields are accessed using special-purpose registers. The Special-purpose registers are read
directly using the MRS instruction, and written directly using MSR instructions.

The special registers are:

Special purpose register Description PSTATE fields

CurrentEL Holds the current Exception level. EL

DAIF Specifies the current interrupt mask bits. D, A, I, F

NZCV Holds the condition flags. N, Z, C, V

SPSel At EL1 or higher, this selects between the SP
for the current Exception level and SP_EL0.

SP

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 17 of 34 ARM DOC 100878_0100_en

For example, to access the SPSel:

MRS X0, SPSel //Read SPSel into X0
MSR SPSel, X0 //Write X0 to SPSel

Exception handler code, for example, can switch from using SP_ELn to SP_EL0.

SP_EL1 might point to a piece of memory that holds a small stack that the kernel can guarantee to
always be valid. SP_EL0 might point to a kernel task stack that is larger, but not guaranteed to be
safe from overflow. This switch is controlled by writing to the SPSel bit, as shown in the following
code:

MSR SPSel, #0 // switch to SP_EL0
MSR SPSel, #1 // switch to the SP of the current Exception
 // level ELn

Further PSTATE fields can be accessed using the following operands.

Operand PSTATE fields Notes

DAIFSet D, A, I, F Sets any of the PSTATE.{D,A, I, F} bits to 1

DAIFClr D, A, I, F Sets any of the PSTATE.{D,A, I, F} bits to 0

SPSel SP Directly sets PSTATE.SP to either 1 or 0

For example:

MSR DAIFSet, #Imm4 // Used to set any or all of DAIF to 1

MSR DAIFClr, #Imm4 // Used to clear any or all of DAIF to 0

MSR SPSel, #Imm1 // Used to select the stack pointer, between SP_EL0

 // and SP_ELn

In AArch64, return from an exception is by executing the ERET instruction. This causes the
SPSR_ELn to be copied into PSTATE. The ALU flags, Execution state, Exception level, and the
processor branches are all restored. From this point, execution continues from the address in
ELR_ELn.

PSTATE.{N, Z, C, V} fields can be accessed at EL0. All other PSTATE fields can be accessed at EL1
or higher and are UNDEFINED at EL0.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 18 of 34 ARM DOC 100878_0100_en

7 The Saved Process Status Register
When taking an exception, the processor state is stored in the relevant Saved Program Status
Register (SPSR), in a similar way to the CPSR in ARMv7-A. The SPSR holds the value of PSTATE
fields before taking an exception and is used to restore the value of PSTATE fields when executing
an exception return.

The following figure shows the SPSR when exceptions are taken from AArch64:

31 30 29 28 27 26 25 24 14 13 12 11 10 3 2 1 01821 20 19 922 4567815161723

N Z C V SS IL D A I F M M [3:0]

The following figure shows the SPSR when exceptions are taken from AArch32:

31 30 29 28 27 26 25 24 14 13 12 11 10 3 2 1 01821 20 19 9

22 4567815161723

N Z C V Q IT J IL GE IT [7:2] E A I F T M M [3:0]

The individual bits represent the following values for AArch64:

N Negative result (N flag).

Z Zero result (Z) flag.

C Carry over (C flag).

V Overflow (V flag).

SS Software Step. Indicates whether software step was enabled when an exception was
taken.

IL Illegal Execution State bit. Shows the value of PSTATE.IL immediately before the
exception was taken.

D Debug exception mask bit. On a reset or taking an exception to AArch64 state, this bit
is set to 1.

A SError (System Error) mask bit.

I IRQ mask bit.

F FIQ mask bit.

M[4] Used to record the Execution state (0 indicates AArch64 and 1 indicates AArch32).

M[3:0] Mode or Exception level that an exception was taken from.

In ARMv8-A, the SPSR to be used depends on the Exception level. If the exception is taken in EL1,
then SPSR_EL1 is used. If the exception is taken in EL2, then SPSR_EL2 is used, and if the
exception is taken in EL3, SPSR_EL3 is used. The core populates the SPSR when taking an
exception.

Note

The register pairs ELR_ELn and SPSR_ELn that are associated with an Exception level
retain their state during execution at a lower Exception level.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 19 of 34 ARM DOC 100878_0100_en

8 System registers
System configuration in AArch64 is controlled through system registers accessed using MSR and
MRS instructions. This contrasts with ARMv7-A, where system registers are typically accessed
through coprocessor 15 (CP15) operations.

The name of a register tells you the lowest Exception level that it can be accessed from. For
example:

• TTBR0_EL1 is accessible from EL1, EL2, and EL3.

• TTBR0_EL2 is accessible from EL2 and EL3.

Registers that have the suffix _ELn have a separate, banked copy in some or all the levels, though
not EL0. Few system registers are accessible from EL0, although the Cache Type Register
(CTR_EL0) is an example of one that is.

Code to access a system register takes the following form:

MRS X0, TTBR0_EL1 // Move TTBR0_EL1 into X0

MSR TTBR0_EL1, X0 // Move X0 into TTBR0_EL1

Previous versions of the ARM architecture have used coprocessors for system configuration.
However, AArch64 does not include support for coprocessors.

The following table shows the Exception levels that have separate copies of each register. For
example, separate Auxiliary Control Registers (ACTLRs) exist as ACTLR_EL1, ACTLR_EL2 and
ACTLR_EL3.

Name Register Description Allowed
values of n

ACTLR_ELn Auxiliary Control
Register

 Controls processor-
specific features.

1, 2, 3

CCSIDR_ELn Current Cache Size
ID Register

Provides information
about the architecture of
the currently selected
cache.

1

CLIDR_ELn Cache Level ID
Register

The type of cache, or
caches, which are
implemented at each level.

The Level of Coherency
and Level of Unification for
the cache hierarchy.

1, 2, 3

CNTFRQ_ELn Counter-timer
Frequency Register

Reports the frequency of
the system timer.

0

CNTPCT_ELn Counter-timer
Physical Count
Register

Holds the 64-bit current
count value.

0

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 20 of 34 ARM DOC 100878_0100_en

CNTKCTL_ELn Counter-timer
Kernel Control
Register

Controls the generation of
an event stream from the
virtual counter. Also
controls access from EL0
to the physical counter,
virtual counter, EL1
physical timers, and the
virtual timer.

1

CNTP_CVAL_ELn Counter-timer
Physical Timer
Compare Value
Register

Holds the compare value
for the EL1 physical timer.

0

CPACR_ELn Coprocessor Access
Control Register

Controls access to trace,
floating-point, and SIMD
functionality.

1

CSSELR_ELn Cache Size Selection
Register

Selects the current Cache
Size ID Register,
CCSIDR_EL1, by
specifying the required
cache level and the cache
type, either instruction or
data cache.

1

CNTP_CTL_ELn Counter-timer
Physical Control
Register

Control register for the
EL1 physical timer.

0

CTR_ELn Cache Type Register Information about the
architecture of the
integrated caches.

0

DCZID_ELn Data Cache Zero ID
Register

Indicates the block size
that is written with byte
values of 0 by the Data
Cache Zero by virtual
address (DCZVA) system
instruction.

0

ELR_ELn Exception Link
Register

Holds the address of the
instruction which caused
the exception.

1, 2, 3

ESR_ELn Exception Syndrome
Register

Includes information about
the reasons for the
exception.

1, 2, 3

FAR_ELn Fault Address
Register

Holds the virtual faulting
address.

1, 2, 3

FPCR Floating-point
Control Register

Controls floating-point
extension behavior. The
fields in this register map
to the equivalent fields in

.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 21 of 34 ARM DOC 100878_0100_en

the AArch32 FPSCR.

FPSR Floating-point Status
Register

Provides floating-point
system status information.
The fields in this register
map to the equivalent
fields in the AArch32
FPSCR.

.

HCR_ELn Hypervisor
Configuration
Register

Controls virtualization
settings and trapping of
exceptions to EL2.

2

MAIR_ELn Memory Attribute
Indirection Register

Provides the memory
attribute encodings
corresponding to the
possible values in a Long-
descriptor format
translation table entry for
stage 1 translations at ELn.

1, 2, 3

MIDR_ELn Main ID Register The type of processor the
code is running on (part
number and revision).

1

MPIDR_ELn Multiprocessor
Affinity Register

The processor and cluster
IDs, in multi-core or
cluster systems.

1

RVBAR_ELn Reset Vector Based
Address Register

Holds the reset vector
base address for any
exception that is taken to
ELn.

1, 2, 3

SCR_ELn Secure Configuration
Register

Controls Secure state and
trapping of exceptions to
EL3.

3

SCTLR_ELn System Control
Register

Controls architectural
features, for example the
MMU, caches and
alignment checking.

0, 1, 2, 3

SPSR_ELn Saved Program
Status Register

Holds the saved processor
state when an exception is
taken to this mode or
Exception level.

abt, fiq, irq,
und, 1,2, 3

TCR_ELn Translation Control
Register

Determines which of the
Translation Table Base
Registers define the base
address for a translation
table walk required for the
stage 1 translation of a
memory access from ELn.

Also controls the

1, 2, 3

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 22 of 34 ARM DOC 100878_0100_en

translation table format
and holds cacheability and
shareability information.

TPIDR_ELn User Read/Write
Thread ID Register

Provides a location where
software executing at ELn
can store thread
identifying information, for
OS management purposes.

0, 1, 2, 3

TPIDRRO_ELn User Read-Only
Thread ID Register

Provides a location where
software executing at EL1
or higher can store thread
identifying information.
This information is visible
to software executing at
EL0, for OS management
purposes.

0

TTBR0_ELn Translation Table
Base Register 0

Holds the base address of
translation table 0, and
information about the
memory it occupies. This
is one of the translation
tables for the stage 1
translation of memory
accesses at ELn.

1, 2, 3

TTBR1_ELn Translation Table
Base Register 1

Holds the base address of
translation table 1, and
information about the
memory it occupies.

This is one of the
translation tables for the
stage 1 translation of
memory accesses at EL0
and EL1

1

VBAR_ELn Vector Based
Address Register

Holds the exception base
address for any exception
that is taken to ELn.

1, 2, 3

VTCR_ELn Virtualization
Translation Control
Register

Controls the translation
table walks required for
the stage 2 translation of
memory accesses from
Non-secure EL0 and EL1.
Also holds cacheability and
shareability information for
the accesses.

2

VTTBR_ELn Virtualization
Translation Table
Base Register

Holds the base address of
the translation table for
the stage 2 translation of
memory accesses from

2

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 23 of 34 ARM DOC 100878_0100_en

Non-secure EL0 and EL1.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 24 of 34 ARM DOC 100878_0100_en

9 The System Control Register
The System Control Register (SCTLR) is a register that controls standard memory, system facilities
and provides status information for functions that are implemented in the core.

31 30 29 28 27 26 25 24 14 13 12 11 10 3 2 1 01821 20 19 9

22 4567815161723

EE C A MSA

UCI EOE WXN

nTWE

nTWI

UCT

DZE UMA

SED

ITD

CP15BEN
SA0

SCTLR_EL1 I

31 30 29 28 27 26 25 24 14 13 12 11 10 3 2 1 01821 20 19 9

22 4567815161723

EE C A MSA

WXN

I
SCTLR_EL2
SCTLR_EL3

Not all bits are available above EL1. The individual bits represent the following:

UCI When this is set, EL0 access for DC CVAU, DC CIVAC, DC CVAC, and IC IVAU
instructions is enabled in AArch64.

EE Exception endianness.

0 Little endian

1 Big endian.

EOE Endianness of data accesses at EL0. The possible values of this bit are:

0 Little-endian.

1 Big-endian.

WXN Write permission implies XN (eXecute Never)

0 Regions with write permission are not forced to XN.

1 Regions with write permission are forced to XN.

nTWE A value of 0 means that WFE instructions are trapped to EL1 if the instruction would
have caused the core to sleep.

A value of 1 means that WFE instructions are executed as normal.

nTWI A value of 0 means that WFI instructions are trapped to EL1 if the instruction would
have caused the core to sleep.

A value of 1 means that WFI instructions are executed as normal.

UCT A value of 1 means EL0 access to the CTR_EL0 register in AArch64 is enabled.

A value of 0 mean EL0 access to the CLR_ELO register in AArch64 is disabled.

DZE Access to DC ZVA instruction at EL0.

0 Execution not allowed.

1 Execution allowed.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 25 of 34 ARM DOC 100878_0100_en

I This is an enable bit for instruction caches at EL0 and EL1.

0 Instruction accesses to Normal memory are not cached.

1 Instruction accesses to Normal memory are cached.

UMA User Mask Access. Controls access to interrupt masks from EL0, when EL0 is using
AArch64.

0 Attempts to use an MSR or MSR instruction to access the DAIF is trapped at
EL1.

1 Attempt to use an MSR or MRS instruction to access the DAIF is not trapped at
EL1.

SED Disables SETEND instructions at EL0 using AArch32.

0 SETEND instructions are enabled.

1 The SETEND instruction is disabled.

ITD IT Disable bit. The possible values of this bit are:

0 The IT instruction is available.

1 The IT instruction is treated as a 16-bit instruction. Only another 16-bit
instruction, or the first half of a 32-bit instruction, can follow. This depends on the
implementation.

CP15BEN CP15 barrier enable. If implemented, it is an enable bit for the AArch32 CP15 DMB,
DSB, and ISB barrier operations.

SA0 Stack Alignment Check Enable for EL0.

SA Stack Alignment Check Enable.

C Data cache enable. This is an enable bit for data caches at EL0 and EL1.

Data accesses to Cacheable Normal memory are cached.

A Alignment check enable bit.

M Enable the MMU.

9.1 Accessing the SCTLR
To access the SCTLR_ELn, use:

MRS <Xt>, SCTLR_ELn // Read SCTLR_ELn into Xt
MSR SCTLR_ELn, <Xt> // Write Xt to SCTLR_ELn

As in the following example:

MRS X0, SCTLR_EL1 // Read System Control Register configuration
 // data
ORR X0, X0, #(1 << 2) // Set [C] bit (bit [2]) to enable data caching
ORR X0, X0, #(1 << 12) // Set [I] bit (bit [12]) to enable instruction
 // caching
MSR SCTLR_EL1, X0 // Write System Control Register configuration
 // data

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 26 of 34 ARM DOC 100878_0100_en

Note

Caches in the processor must be invalidated before data and instruction caches are enabled
in any of the Exception levels.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 27 of 34 ARM DOC 100878_0100_en

10 Changing Execution state (registers)
You can only change Execution state by changing Exception level. Taking an exception can change
Execution state from AArch32 to AArch64, and returning from an exception can change it from
AArch64 to AArch32.On entry to an Exception level using AArch64 from an Exception level using
AArch32:

• The values of the upper 32 bits of registers that were accessible to any lower Exception level
using AArch32 execution are UNKNOWN.

• The registers that are not accessible during AArch32 execution retain the state that they had
before AArch32 execution.

• On exception entry to EL3, when EL2 was using AArch32, the values of the upper 32 bits of
the ELR_EL2 are UNKNOWN.

• When entering an Exception level that is not accessible during AArch32 execution, AArch64
stack pointers (SPs) and Exception Link Registers (ELRs) at that Exception level, retain the state
that they had before AArch32 execution. This applies to the following registers:

o SP_EL0.

o SP_EL1.

o SP_EL2.

o ELR_EL1.

In general, application programmers write applications for either AArch32 or AArch64. It is only
the OS that must take account of the two Execution states and the switch between them.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 28 of 34 ARM DOC 100878_0100_en

11 Registers at AArch32
Being compatible with ARMv7-A means that, for a processor operating in the AArch32 Execution
state, there must be some correspondence between the AArch32 state of the ARMv8-A
architecture, and the view of it provided by the ARMv7-A general-purpose registers.

Remember that, in the ARMv7-A architecture, there are sixteen 32-bit general-purpose registers
(R0-R15) for software use. Fifteen of them (R0-R14) can be used for general-purpose data storage.
The remaining register, R15, is the program counter (PC) whose value is altered as the core
executes instructions. Software can also access the CPSR, and the saved copy of the CPSR from
the previously executed mode in the SPSR. On taking an exception, the CPSR is copied to the
SPSR of the mode to which the exception is taken.

Which of these registers is accessed, and where, depends on the processor mode the software is
executing in and the register itself. This is called banking. The shaded registers in Figure 4-7 on
page 4-16 are banked. They use physically distinct storage and are usually accessible only when a
process is executing in that particular mode.

(A/C)PSR

User FIQ IRQ ABT SVC UND

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (sp)

R14 (lr)

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8_fiq

R9_fiq

R10_fiq

R11_fiq

R12_fiq

SP_fiq

LR_fiq

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP_irq

LR_irq

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP_abt

LR_abt

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP_svc

LR_svc

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP_und

LR_und

R15 (pc)

SPSR_fiq

CPSR

SPSR_irq

CPSR

SPSR_abt

CPSR

SPSR_svc

CPSR

SPSR_und

CPSR

Banked

CPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (sp)

R14 (lr)

R15 (pc)

Sys MON HYP

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP_mon

LR_mon

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

SP_hyp

LR_hyp

R15 (pc)

SPSR_mon

CPSR

SPSR_hyp

CPSR

ELR_hyp

Mode

Banking is used in ARMv7 to reduce the latency for exceptions. However, this also means that of a
considerable number of possible registers, fewer than half can be used at any one time.

ARMv8-A has 31 ×64-bit general-purpose registers that are always accessible in all Exception
levels.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 29 of 34 ARM DOC 100878_0100_en

When taking an exception from AArch32 to AArch64, there are some special considerations.
AArch64 handler code can require access to AArch32 registers and the architecture therefore
defines mappings to allow access to AArch32 registers.

Bits [63:32] of the X registers are not available in AArch32 state and contain either 0 or the last
value that is written in AArch64. There is no architectural guarantee on which value it is. It is
therefore usual to access AArch32 registers as W registers.

This mapping is shown in the following figure:

(A/C)PSR

User FIQ IRQ ABT SVC UND

W0

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W12

W13

W14

R15

R0

R1

R2

R3

R4

R5

R6

R7

W24

W25

W26

W27

W28

W29

W30

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

W17

W16

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

W21

W20

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

W19

W18

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

W23

W22

R15 (pc)

SPSR_fiq

CPSR

SPSR_irq

CPSR

SPSR_abt

CPSR

SPSR_EL1

CPSR

SPSR_und

CPSRCPSR

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13 (sp)

R14 (lr)

R15 (pc)

Sys MON HYP

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15 (pc)

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

W15

R14

R15 (pc)

SPSR_EL3

CPSR

SPSR_EL2

CPSR

ELR_EL2

Inaccessible from AArch64

Mode

AArch32 also maps the banked registers to AArch64 registers that would otherwise be
inaccessible.

The SPSR and ELR_Hyp registers in AArch32 are extra registers that are only accessible using
system instructions. They are not mapped into the AArch64 general-purpose register space of the
AArch64 architecture. Some of these registers correspond between AArch32 and AArch64:

• SPSR_svc maps to SPSR_EL1.

• SPSR_hyp maps to SPSR_EL2.

• ELR_hyp maps to ELR_EL2.

The following registers are only used during AArch32 execution. However, during execution at
EL1 using AArch64, they retain their state and are inaccessible during AArch64 execution at that
Exception level.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 30 of 34 ARM DOC 100878_0100_en

• SPSR_abt.

• SPSR_und.

• SPSR_irq.

• SPSR_fiq.

The SPSR registers are only accessible during AArch64 execution at higher Exception levels for
context switching.

If an exception is taken to an Exception level using AArch64 from an Exception level using
AArch32, the top 32 bits of the AArch64 ELR_ELn are all zero.

11.1 System registers at AArch32
In the ARMv7-A architecture the functionality provided by the System Registers was accessed
through CP15 registers.

In much the same way as the mapping between 32-bit W registers at AArch64 map onto the
AArch32 General Purpose registers, there is a defined mapping between CP15 registers and
AArch64 system registers.

Many system registers are 32-bit, in which case there is a one to one mapping between the
AArch32 and the AArch64 instance. For example, the AArch32 Hyp System Control Register
(HSCTLR) maps to SCTLR_EL2

Some AArch64 system registers are 64 bits wide, and these often map to two AArch32 CP15
registers. For example:

• HCR maps to HCR_EL2[31:0].

• HCR2 maps to HCR_EL2[63:32].

11.2 PSTATE at AArch32
In ARMv8-A, the different components of the traditional CPSR are presented as Processor State
(PSTATE) fields that can be accessed independently. PSTATE also includes fields that are specific to
AArch32 state.

The following figure shows the CPSR bit assignments at AArch32;

31 30 29 28 27 26 25 24 14 13 12 11 10 3 2 1 01821 20 19 9

22 4567815161723

N Z C V Q IT J IL GE IT [7:2] E A I F T M M [3:0]

Giving extra PSTATE bits which are accessible only at AArch32:

Name Description

Q Cumulative saturation (sticky) flag.

GE (4) Greater than or Equal flags.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 31 of 34 ARM DOC 100878_0100_en

IT (8) If-Then execution bits.

J J bit.

T T32 bit.

E Endianness bit.

M Mode field.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 32 of 34 ARM DOC 100878_0100_en

12 A64 instructions
One of the most significant changes introduced in the ARMv8-A architecture was the addition of a
new instruction set for AArch64. This instruction set contains many of the same features as the
existing AArch32 (ARMv7-A) 32-bit instruction set.

The addition of A64 provides access to 64-bit wide integer registers and data operations, and the
ability to use 64-bit sized pointers to memory. The new instructions are called A64 and execute in
the AArch64 Execution state. ARMv8-A also includes the original ARM instruction set, now called
A32, and the Thumb® (T32) instruction set.

Both A32 and T32 execute in AArch32 state, and provide backward compatibility with ARMv7-A.
Although they are similar in many respects, the A64 instruction set is different to the older ISA and
is encoded differently. A64 adds some additional capabilities while also removing other features
that would potentially limit the speed or energy efficiency of high performance implementations.
The ARMv8-A architecture includes some enhancements to the 32-bit instruction sets (A32 and
T32) as well. However, code that makes use of such features is not compatible with older ARMv7-
A implementations. Instruction opcodes in the A64 instruction set, though, are still 32 bits long,
not 64 bits.

The A64 instruction set also provides extra addressing modes with respect to A32, allowing a 64-
bit index register to be added to the 64-bit base register, with optional scaling of the index by the
access size. Also, it provides sign or zero-extension of a 32-bit value within an index register, again
with optional scaling.

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 33 of 34 ARM DOC 100878_0100_en

13 The ARMv8-A instruction sets
The A64 instruction set is similar to the existing A32 instruction set. The instructions themselves
are still 32 bits wide and have similar syntax.

The instruction sets use a generic naming convention within the ARMv8-A architecture, so that the
original 32-bit instruction set states are now called:

A32 When in AArch32 state, the instruction set is largely compatible with ARMv7-A, though
there are differences. It also provides some new instructions to align with some of the
features that are introduced in the A64 instruction set.

T32 The Thumb instruction set was first included in the ARM7TDMI processor and originally
contained only 16-bit instructions. 16-bit instructions gave much smaller programs at the
cost of some performance. ARMv7-A processors, including those in the Cortex-A series,
support Thumb-2 technology, which extends the Thumb instruction set to provide a mix
of 16-bit and 32-bit instructions. This gives performance similar to that of ARM, while
retaining the reduced code size. Because of its size and performance advantages, it is
increasingly common for all 32-bit code to be compiled or assembled to take advantage of
Thumb-2 technology.

In keeping with the naming convention, and reflecting the 64-bit operation, the instruction set for
AArch64 is called A64

All A64 instructions are the same length, unlike T32, which is a variable-length instruction set. This
makes management and tracking of generated code sequences easier, particularly affecting dynamic
code generators.

13.1 Switching between instruction sets
It is not possible to use code from the two Execution states within a single application. There is no
interworking between A64 and A32 or T32 instruction sets in ARMv8-A as there is between A32
and T32 instruction sets. Code that is written in A64 for the ARMv8-A processors cannot run on
ARMv7-A Cortex®-A series processors. However, code that is written for ARMv7-A processors
can run on ARMv8-A processors in the AArch32 Execution state. This is summarized in the
following figure.

T32

Mixed 16 and 32-bit instructions
32-bit general purpose registers

A32

32-bit instructions
32-bit general purpose registers

A64

32-bit instructions
32 and 64-bit general purpose registers

BX
BLX
MOV PC
LDR PC

Exception
entry or
return

Exception
entry

Exception
return

Fundamentals of ARMv8-A

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Page 34 of 34 ARM DOC 100878_0100_en

13.2 Addressing
When the processor can store 64-bit values in a single register, it becomes much simpler to access
large amounts of memory within a program. A single thread executing on a 32-bit core is limited to
accessing 4GB of address space. Large parts of that addressable space are reserved for use by the
OS kernel, library code, peripherals, and more. As a result, lack of space means that the program
might need to map some data in or out of memory while executing. Having a larger address space,
with 64-bit pointers, avoids this problem. It also makes techniques such as memory-mapped files
more attractive and convenient to use. The file contents are mapped into the memory map of a
thread, even though the physical RAM might not be large enough to contain the whole file.

	1 Fundamentals of ARMv8-A
	2 Execution states
	3 Changing Exception levels
	3.1 Mapping the processor modes onto the Exception levels
	3.2 Privilege levels in ARMv8-A

	4 Changing Execution state
	5 Registers
	5.1 Special registers
	The Zero register
	The stack pointer
	The Program Counter
	The Exception Link Register (ELR)

	6 Processor state
	7 The Saved Process Status Register
	8 System registers
	9 The System Control Register
	9.1 Accessing the SCTLR

	10 Changing Execution state (registers)
	11 Registers at AArch32
	11.1 System registers at AArch32
	11.2 PSTATE at AArch32

	12 A64 instructions
	13 The ARMv8-A instruction sets
	13.1 Switching between instruction sets
	13.2 Addressing

