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1 Fundamentals of ARMv8-A 
In ARMv8-A, a program executes at one of four Exception levels. In the 64-bit Execution state, the 
Exception level determines the level of execution privilege, in a similar way to the privilege levels 
defined in ARMv7-A. 

The concept of the Exception level is fundamental to the ARMv8-A architecture. All operations 
take place at a defined Exception level, and a register can exist in one or more Exception levels. 
Changing a bit in a register at one Exception level can have a different effect at another Exception 
level. 

Exception levels provide a logical separation of software execution privilege that applies across all 
operating states of the ARMv8-A architecture. System software determines the Exception level, 
and therefore the level of privilege, at which software runs. Exception levels are similar to, and 
support the concept of, hierarchical protection domains common in computer science. 

The type of software that typically runs at each of the Exception levels is: 

EL0 Normal user applications. EL0 corresponds to the lowest privilege level and is often 
described as unprivileged, whereas execution at any Exception level above EL0 is often 
referred to as privileged execution. 

EL1 An operating system kernel typically described as privileged. 

EL2 Hypervisor. 

EL3 Low-level firmware, including the Secure Monitor. 

An Exception level (ELn) with a larger value of n than another one is said to be at a higher 
Exception level. An Exception level with a smaller value of n than another is described as being at a 
lower Exception level. 

In general, a piece of software, such as an application, the kernel of an operating system, or a 
hypervisor, occupies a single Exception level. An exception to this is in-kernel hypervisors such as 
KVM, which operates across both EL2 and EL1. 

ARMv8-A also provides two Security states. The ARM® Architecture Reference Manual uses the 
terms Secure and Non-secure to refer to these System security states. Here, the Non-secure state 
is referred to as the Normal world. Non-secure state does not indicate any security vulnerability, 
but rather refers to normal operation, and is therefore the same as the Normal world. The word 
‘world’ is used to emphasize the relationship between the Secure world and other states that the 
device is capable of.  

The Operating System (OS) runs in the Normal world, in parallel with a trusted OS running in the 
Secure world on the same hardware. ARM TrustZone® technology enables the system to be 
partitioned between the Normal and Secure worlds. This provides protection against certain 
software attacks and hardware attacks. The Secure monitor acts as a gateway for moving between 
the Normal and Secure worlds. The Secure monitor in the ARMv8-A architecture is at a higher 
Exception level than all other software. 

The following figure shows the Exception levels in the Normal and Secure worlds. 



Fundamentals of ARMv8-A 

 

Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 

Page 5 of 34 ARM DOC 100878_0100_en 

Secure firmwareApplication

Normal world Secure world

Application Application Application

No EL2 in Secure 
world

EL0

EL1

EL3

EL2

Guest OS Guest OS Trusted OS

Hypervisor

Secure monitor

 

ARMv8-A also provides hardware support for virtualization. In the Normal world, virtualization 
enables more than one OS to co-exist and operate on the same system. This means that a 
hypervisor or Virtual Machine Manager (VMM) can run on the system and host multiple guest 
operating systems. Each of the guest operating systems is then, running on a virtual machine. Each 
OS is unaware that it is sharing time on the system with other guest operating systems. 

This means that the Normal world has the following components: 

Applications Applications running in the Normal world. 

Guest Operating 
Systems 

These include Linux or Windows running in Non-secure EL1. When 
running under a hypervisor, the OS kernels can be running either as a 
guest or a host, depending on the hypervisor model. 

Hypervisor This runs at EL2. The hypervisor, when present and enabled, switches 
operation between multiple Guest operating systems. 

The Secure world has the following components: 

Secure firmware On an application processor, Secure firmware must be the first thing that 
runs at boot time. It provides several services, including platform 
initialization, the installation of the Trusted OS, and routing of Secure 
monitor calls. The Secure firmware executes at EL3. 

Trusted OS The Trusted OS provides Secure services to the Normal world and 
provides a runtime environment for executing Secure or trusted 
applications. It executes at Secure EL1 when EL3 is using AArch64 and at 
Secure EL3 when EL3 is using AArch32. 
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2 Execution states 
The ARMv8-A architecture also defines two Execution States, AArch64 and AArch32. AArch64 state 
is unique to ARMv8-A, and uses 64-bit general-purpose registers, while AArch32 state provides 
backwards compatibility with ARMv7-A using 32-bit general-purpose registers. GNU and Linux 
documentation (except for Redhat and Fedora distributions) sometimes refers to AArch64 as 
ARM64. 

The AArch32 Execution state is compatible with an ARMv7-A implementation that includes the 
Virtualization Extensions, the Security Extensions, and the Large Physical Address Extensions. The 
ARMv8-A architecture allows the execution of different software layers, such as an Application, or 
an Operating System Kernel or a Hypervisor layer using either AArch32 or AArch64. The ARMv8-
A architecture defines how the execution in AArch32 and AArch64 interact.  

The following diagram show the organization of the Exception levels in AArch64. 
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The following diagram show the organization of the Exception levels in AArch32. 
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In AArch32 state, Trusted OS software executes in Secure EL3, and in AArch64 state it primarily 
executes in Secure EL1. 
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3 Changing Exception levels 
Previous versions of the ARM architecture defined an Exception model based on processor modes. 
For each exception type, the architecture defines the mode to which the exception is taken. This 
mode is called the target mode for the exception. However, configurable traps, enables, and 
routing controls can often change the target mode for an exception. ARMv8-A AArch32 follows 
this model. 

When the processor takes an exception it: 

• Saves the current program state in the SPSR of the target mode. 

• Saves the return address for the exception: 

o In the Link Register (LR) of the target mode if the target mode is not Hyp mode. 

o In ELR_hyp if the target mode is Hyp mode. 

• Moves into the target mode. Unless the exception targets Monitor mode, it does so without 
changing Security state. 

The ARMv7-A architecture used Privilege levels PL0 to PL2. In ARMv8-A, the Exception levels have 
replaced the Privilege levels, but this section explains how PL1 continues to have a particular use. 
The following table shows the full set of processor modes for an ARMv7-A processor that includes 
the Virtualization Extensions and the Security Extensions. It also shows the Privilege level that 
ARMv7-A assigns to each mode, which defines its execution privilege. Execution privilege is defined 
independently in each Security state.  

Mode Function Security 
state 

ARMv7-A 
Privilege level 

User (USR) Unprivileged mode in which most 
applications run 

Both PL0 

FIQ Entered on an FIQ interrupt exception Both PL1 

IRQ Entered on an IRQ interrupt exception Both 

Supervisor 
(SVC) 

Entered on reset or when a Supervisor 
Call instruction (SVC) is executed 

Both 

Monitor 
(MON) 

Entered when the SMC instruction 
(Secure Monitor Call) is executed or 
when the processor takes an exception 
that is configured to be taken to 
Monitor mode.  

Provided to support switching between 
Secure and Non-secure states. 

Secure only 

Abort (ABT) Entered on a memory access exception Both 

Undef (UND) Entered when an UNDEFINED 
instruction is executed 

Both 

System (SYS) Privileged mode, sharing the register 
view with User mode 

Both 
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Hyp (HYP) Entered by the Hypervisor Call and Hyp 
Trap exceptions. 

Non-secure 
only 

PL2 

In the ARMv7-A architecture, the processor mode can change under privileged software control or 
automatically when taking an exception. When an exception occurs, the core saves the current 
Execution state and the return address, enters the mode that is required to deal with the 
exception, and possibly disables hardware interrupts. Applications operate at the lowest level of 
privilege, PL0, previously unprivileged User mode. 

Operating systems run at PL1. In a system with the Virtualization Extensions the Hypervisor runs 
at PL2. The Secure monitor, which acts as a gateway for moving between the Secure and Normal 
worlds, also operates at PL1. 

ARMv8-A does not change this Exception model, but adds the following rules to cover cases that 
were not possible in ARMv7-A: 

• If EL2 is using AArch64, then any exception that targets Hyp mode is taken to EL2 using 
AArch64. 

• If EL3 is using AArch64, then any exception that targets Monitor mode is taken to EL3 using 
AArch64. 

In AArch64, the processor modes are mapped onto the Exception levels as in the following figure. 
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When an exception is taken, the processor changes to the Exception level (equivalent to processor 
mode in ARMv7-A) which supports the handling of that exception type. The Secure monitor, which 
operates at PL1 at AArch32, operates at EL3 in AArch64. 

3.1 Mapping the processor modes onto the 
Exception levels 
Exception levels that are present in Secure state depend on whether EL3 is using AArch64. This 
affects how the processor modes map onto the Exception levels. 

The following figure shows how the AArch32 processor modes map onto the Exception levels 
when EL3 is using AArch64: 
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Secure 
User modeUser mode

Normal world Secure world

Supervisor, Abort, IRQ, FIQ, 
Undefined and System modes

Supervisor, Abort, IRQ, FIQ, 
Undefined and System modes

Hyp mode

Secure monitor, executing in AArch64 state

EL0 using AArch32

EL1 using AArch32

EL2 using AArch32

EL3 using AArch64

 

The Monitor mode that was used in ARMv7-A is not present in ARMv8-A. This is because EL3 
provides the Secure Monitor functionality, and EL3 is using AArch64. 

When EL3 is using AArch32, the mapping of the AArch32 processor modes onto the Exception 
levels is: 

Secure 
User modeUser mode

Normal world Secure world

Supervisor, Abort, IRQ, FIQ, 
Undefined and System modes

Supervisor, Abort, IRQ, FIQ, 
Undefined and System modes

Hyp mode

Secure monitor, executing in AArch64 state

EL0 using AArch32

EL1 using AArch32

EL2 using AArch32

EL3 using AArch32

 

Comparing the two figures, the mapping is unchanged in the Normal world, but in the Secure 
world the Supervisor mode, Abort mode, IRQ mode, FIQ mode, Undefined mode, and System 
mode are promoted from EL1 to EL3. This happens because: 

• EL3 provides the Secure Monitor functionality. 

• The ARMv6 Security Extensions defined Monitor mode as a Secure state mode as peer of 
Supervisor mode, Abort mode, IRQ mode, FIQ mode, Undefined mode, and System mode. 
These modes therefore appear as EL3 along with the Secure Monitor functionality 

This remapping has no effect on the operation of the processor. Operation within AArch32 state is 
defined completely in terms of interactions between the processor modes, without reference to 
any associated Privilege levels or Exception levels. 

3.2 Privilege levels in ARMv8-A 
The set of modes (Supervisor, Abort, IRQ, FIQ, Undefined, and System) are EL3 modes in Secure 
state when EL3 is using AArch32, and are EL1 modes under all other circumstances. 

To avoid this complicated description, these modes can be described as PL1 modes, reflecting their 
Privilege level in ARMv7-A. Related to this: 
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• Controls that affect execution in these modes, in both Security states, can be described as PL1 
controls. 

• The translation system that is used when executing in these modes or in User mode is called 
the PL1&0 translation regime. 
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4 Changing Execution state 
Sometimes the Execution state of your system has to change. This could be, for example, if you are 
running an AArch64 operating system, and want to run a 32-bit application at EL0. To do this, the 
system must switch to AArch32. You can only change Execution state by changing Exception level. 
Taking an exception can change Execution state from AArch32 to AArch64, and returning from an 
exception can change it from AArch64 to AArch32. 

When the application has completed or execution returns to the OS, the system can switch back 
to AArch64. The following figure shows that you cannot do it the other way around. An AArch32 
operating system cannot host a 64-bit application. This is shown in the following figure: 
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EL0

EL1
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An AArch64
OS can host

a mix of
AArch64 

and AArch32
applications

An AArch32
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an AArch64 
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An AArch32 
hypervisor 
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an AArch64 OS

An AArch64 
hypervisor 
can host 

an AArch64 and 
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AArch64 OS AArch32 OS

Hypervisor

AArch32 
App

AArch32 
App
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Moving between the two states is performed at the level of the Secure monitor, hypervisor or 
operating system. A hypervisor or operating system executing in AArch64 state can support 
AArch32 operation at lower privilege levels. This means that an OS running in AArch64 can host 
both AArch32 and AArch64 applications. Similarly, an AArch64 hypervisor can host both AArch32 
and AArch64 guest operating systems. However, a 32-bit operating system cannot host a 64-bit 
application and a 32-bit hypervisor cannot host a 64-bit guest operating system.  

To change between Execution states at the same Exception level, the system must switch to a 
higher Exception level and then return to the original Exception level. 

As an example, you might have 32-bit and 64-bit applications running under a 64-bit OS. In this 
case, the 32-bit application can execute and generate a Supervisor Call (SVC) instruction, or 
receive an interrupt, causing a switch to EL1 and AArch64. The OS can then switch tasks and 
return to EL0 in AArch64. Practically speaking, this means that you cannot have a mixed 32-bit and 
64-bit application, because there is no direct way of calling between them. 

The main points when changing between AArch64 and AArch32 Execution states can be 
summarized as follows: 

• Changing to AArch32 requires going from a higher to a lower Exception level. This is the result 
of exiting an exception handler by executing the ERET instruction.  

• Changing to AArch64 requires going from a lower to a higher Exception level. The exception 
can be the result of an instruction execution or an external signal. 

• If, when taking an exception or returning from an exception, the Exception level remains the 
same, then the Execution state also cannot change. 
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• Both AArch64 and AArch32 Execution states have Exception levels that are similar, but there 
are some differences between Secure and Non-secure operation. The Execution state the 
processor is in when the exception is generated can limit the Exception levels available to the 
other Execution state. 

• Where an ARMv8-A processor operates in AArch32 Execution state at a particular Exception 
level, it uses the same exception model as in ARMv7-A for exceptions that are taken to that 
Exception level. 

• Code at EL3 cannot take an exception to a higher Exception level, so cannot change Execution 
state, except by going through a reset. 

For the highest implemented Exception level (EL3 on most ARMv8-A processors), the Execution 
state to use for each Exception level when taking an exception is fixed. The Exception level can 
only be changed by resetting the processor. For EL2 and EL1, when not the highest implemented 
Exception level, this is controlled by a higher privilege level using System registers. 

  



Fundamentals of ARMv8-A 

 

Copyright © 2017 ARM Limited or its affiliates. All rights reserved. 

Page 13 of 34 ARM DOC 100878_0100_en 

5 Registers 
ARMv8-A provides 31 × 64-bit general-purpose registers, always accessible, and accessible in all 
Exception levels. In the AArch64 Execution state, each register (X0-X30) is 64 bits wide. The 
increased width helps to reduce register pressure in most applications. 

Each 64-bit general-purpose register (X0 - X30) also has a 32-bit form (W0 - W30). 

31 0

Wn

3263

Xn  

The 32-bit W register forms the lower half of the corresponding 64-bit X register. That is, W0 
forms the lower word of X0, and W1 forms the lower word of X1. 

Reads from W registers ignore the higher 32 bits of the corresponding X register and leave them 
unchanged. Writes to W registers set the higher 32 bits of the X register to zero. So, writing 
0xFFFFFFFF into W0 sets X0 to 0x00000000FFFFFFFF. 

Note 
Occasionally Rn is used to designate an ARMv8-A register. This means that the register can be 
either Xn or Wn. 

5.1 Special registers 
In addition to the thirty one (X0 to X30) ARMv8-A core registers, there are also several special 
registers. 

 

Special 
registers

Stack pointer
Zero register

Program counter

EL0 EL1 EL2 EL3

Program Status Register
Exception Link Register

XZR/WZR
SP_EL0

PC

SP_EL1

SPSR_EL1

ELR_EL1

SP_EL2

SPSR_EL2

ELR_EL2

SP_EL3

SPSR_EL3

ELR_EL3

X30X30X30X30

 

Note 

There is no register that is called X31 or W31. Some instructions are encoded so that the 
number 31 represents the zero register, ZR (WZR/XZR). There is also a restricted group 
of instructions in which one or more of the arguments are encoded so that number 31 
represents the stack pointer (SP). 

Name Size Description 

WZR 32 bits Zero register 

XZR 64 bits Zero register 

WSP 32 bits Current stack pointer 
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SP 64 bits Current stack pointer 

PC 64 bits Program counter 
Table 2 Special registers in AArch64 

Note 

The 64-bit form of the stack pointer does not use an X prefix. 

When executing in AArch64, the exception return state is held in the following dedicated registers 
for each Exception level: 

• Exception Link Register (ELR). 

• Saved Processor State Register (SPSR). 

The following table identifies special registers by Exception level: 

 EL0 EL1 EL2 EL3 

Stack pointer (SP) SP_EL0 SP_EL1 SP_EL2 SP_EL3 

Exception Link Register (ELR) - ELR_EL1 ELR_EL2 ELR_EL3 

Saved Process Status Register (SPSR) - SPSR_EL1 SPSR_EL2 SPSR_EL3 

The Procedure Call Standard (PCS) also defines a dedicated Frame Pointer (FP), which makes 
debugging and call-graph profiling easier by making it possible to unwind the stack reliably. 

The Zero register 
The zero register does what its name implies. 

It ignores all writes to it and all reads of the zero register return 0. You can use the zero register 
in most, but not all, instructions. 

The stack pointer 
The stack pointer (SP) is a register that points to the top of the stack. The choice of stack pointer 
to use is separated to some extent from the Exception level. By default, taking an exception selects 
the stack pointer for the target Exception level (SP_ELn). For example, taking an exception to EL1 
selects SP_EL1. Each Exception level has its own stack pointer. 

However, when in AArch64 at an Exception level other than EL0, the processor can use either: 

• The 64-bit stack pointer that is associated with that Exception level (SP_ELn), or, 

• The stack pointer that is associated with EL0 (SP_EL0). EL0 can only access SP_EL0. 

The SP cannot be referenced by most instructions. However, some arithmetic instructions, for 
example, the ADD instruction, can read and write to the current stack pointer to adjust the stack 
pointer in a function. For example: 

ADD SP, SP, #0x10  // Adjust SP to be 0x10 bytes before its current value 

ADD SP, SP, #256  // SP = SP + 256 
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The Program Counter 
The Program Counter (PC) holds the current program address. It cannot be referred to by 
number as if part of the general register file and therefore cannot be used as the source or 
destination of arithmetic instructions, or as the base, index or transfer register of load and store 
instructions.  

The only instructions that read the PC are those whose function is to compute a PC-relative 
address (ADR, ADRP, literal load, and direct branches), and the branch-and-link instructions that 
store a return address in the link register (BL and BLR). The only way to modify the program 
counter is using branch, exception generation, and exception return instructions. 

Where the PC is read by an instruction to compute a PC-relative address, then its value is the 
address of that instruction. Unlike ARMv7-A, there is no implied offset of 4 or 8 bytes. 

The Exception Link Register (ELR) 
The Exception Link Register holds the address to return to after an exception. 
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6 Processor state 
AArch64 does not have a direct equivalent of the ARMv7-A Current Program Status Register (CPSR). 
In AArch64, the components of the traditional CPSR are supplied as fields that can be accessed 
independently. These are referred to collectively as Processor State (PSTATE). There are also 
instructions that operate on elements of PSTATE.  

The Processor State, or PSTATE fields, for AArch64 have the following definitions: 

Name Description 

N Negative condition flag. 

Z Zero condition flag. 

C Carry condition flag. 

V oVerflow condition flag. 

D Debug mask bit. 

A SError mask bit. 

I IRQ mask bit. 

F FIQ mask bit. 

SS Software Step bit. 

IL Illegal Execution state bit. 

EL (2) Exception level. 

nRW Execution state 

0 = 64-bit 

1 = 32-bit 

SP Stack pointer selector. 

0 = SP_EL0 

1 = SP_ELn 

PSTATE fields are accessed using special-purpose registers. The Special-purpose registers are read 
directly using the MRS instruction, and written directly using MSR instructions.  

The special registers are: 

Special purpose register Description PSTATE fields 

CurrentEL Holds the current Exception level. EL 

DAIF Specifies the current interrupt mask bits. D, A, I, F 

NZCV Holds the condition flags. N, Z, C, V 

SPSel At EL1 or higher, this selects between the SP 
for the current Exception level and SP_EL0. 

SP 
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For example, to access the SPSel: 

MRS X0, SPSel   //Read SPSel into X0 
MSR SPSel, X0   //Write X0 to SPSel 

Exception handler code, for example, can switch from using SP_ELn to SP_EL0. 

SP_EL1 might point to a piece of memory that holds a small stack that the kernel can guarantee to 
always be valid. SP_EL0 might point to a kernel task stack that is larger, but not guaranteed to be 
safe from overflow. This switch is controlled by writing to the SPSel bit, as shown in the following 
code: 

MSR SPSel, #0   // switch to SP_EL0 
MSR SPSel, #1   // switch to the SP of the current Exception  
     // level ELn 

Further PSTATE fields can be accessed using the following operands. 

Operand PSTATE fields Notes 

DAIFSet  D, A, I, F Sets any of the PSTATE.{D,A, I, F} bits to 1 

DAIFClr D, A, I, F Sets any of the PSTATE.{D,A, I, F} bits to 0 

SPSel SP Directly sets PSTATE.SP to either 1 or 0 
 

For example: 

MSR DAIFSet, #Imm4   // Used to set any or all of DAIF to 1 

MSR DAIFClr, #Imm4   // Used to clear any or all of DAIF to 0 

MSR SPSel, #Imm1   // Used to select the stack pointer, between SP_EL0  

    // and SP_ELn 

In AArch64, return from an exception is by executing the ERET instruction. This causes the 
SPSR_ELn to be copied into PSTATE. The ALU flags, Execution state, Exception level, and the 
processor branches are all restored. From this point, execution continues from the address in 
ELR_ELn. 

PSTATE.{N, Z, C, V} fields can be accessed at EL0. All other PSTATE fields can be accessed at EL1 
or higher and are UNDEFINED at EL0. 
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7 The Saved Process Status Register 
When taking an exception, the processor state is stored in the relevant Saved Program Status 
Register (SPSR), in a similar way to the CPSR in ARMv7-A. The SPSR holds the value of PSTATE 
fields before taking an exception and is used to restore the value of PSTATE fields when executing 
an exception return. 

The following figure shows the SPSR when exceptions are taken from AArch64: 
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The following figure shows the SPSR when exceptions are taken from AArch32: 
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The individual bits represent the following values for AArch64: 

N Negative result (N flag). 

Z Zero result (Z) flag. 

C Carry over (C flag). 

V Overflow (V flag). 

SS Software Step. Indicates whether software step was enabled when an exception was 
taken. 

IL Illegal Execution State bit. Shows the value of PSTATE.IL immediately before the 
exception was taken. 

D Debug exception mask bit. On a reset or taking an exception to AArch64 state, this bit 
is set to 1. 

A SError (System Error) mask bit. 

I IRQ mask bit. 

F FIQ mask bit. 

M[4] Used to record the Execution state (0 indicates AArch64 and 1 indicates AArch32). 

M[3:0] Mode or Exception level that an exception was taken from. 

In ARMv8-A, the SPSR to be used depends on the Exception level. If the exception is taken in EL1, 
then SPSR_EL1 is used. If the exception is taken in EL2, then SPSR_EL2 is used, and if the 
exception is taken in EL3, SPSR_EL3 is used. The core populates the SPSR when taking an 
exception. 

Note 

The register pairs ELR_ELn and SPSR_ELn that are associated with an Exception level 
retain their state during execution at a lower Exception level. 
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8 System registers 
System configuration in AArch64 is controlled through system registers accessed using MSR and 
MRS instructions. This contrasts with ARMv7-A, where system registers are typically accessed 
through coprocessor 15 (CP15) operations. 

The name of a register tells you the lowest Exception level that it can be accessed from. For 
example: 

• TTBR0_EL1 is accessible from EL1, EL2, and EL3. 

• TTBR0_EL2 is accessible from EL2 and EL3. 

Registers that have the suffix _ELn have a separate, banked copy in some or all the levels, though 
not EL0. Few system registers are accessible from EL0, although the Cache Type Register 
(CTR_EL0) is an example of one that is. 

Code to access a system register takes the following form: 

MRS X0, TTBR0_EL1  // Move TTBR0_EL1 into X0  

MSR TTBR0_EL1, X0  // Move X0 into TTBR0_EL1 

Previous versions of the ARM architecture have used coprocessors for system configuration. 
However, AArch64 does not include support for coprocessors. 

The following table shows the Exception levels that have separate copies of each register. For 
example, separate Auxiliary Control Registers (ACTLRs) exist as ACTLR_EL1, ACTLR_EL2 and 
ACTLR_EL3.  

Name Register Description Allowed 
values of n 

ACTLR_ELn Auxiliary Control 
Register 

 Controls processor-
specific features. 

1, 2, 3 

CCSIDR_ELn Current Cache Size 
ID Register 

Provides information 
about the architecture of 
the currently selected 
cache. 

1 

CLIDR_ELn Cache Level ID 
Register 

The type of cache, or 
caches, which are 
implemented at each level. 

The Level of Coherency 
and Level of Unification for 
the cache hierarchy. 

1, 2, 3 

CNTFRQ_ELn Counter-timer 
Frequency Register 

Reports the frequency of 
the system timer. 

0 

CNTPCT_ELn Counter-timer 
Physical Count 
Register 

Holds the 64-bit current 
count value. 

0 
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CNTKCTL_ELn Counter-timer 
Kernel Control 
Register 

Controls the generation of 
an event stream from the 
virtual counter. Also 
controls access from EL0 
to the physical counter, 
virtual counter, EL1 
physical timers, and the 
virtual timer. 

1 

CNTP_CVAL_ELn Counter-timer 
Physical Timer 
Compare Value 
Register 

Holds the compare value 
for the EL1 physical timer.  

0 

CPACR_ELn Coprocessor Access 
Control Register 

Controls access to trace, 
floating-point, and SIMD 
functionality. 

1 

CSSELR_ELn Cache Size Selection 
Register 

Selects the current Cache 
Size ID Register, 
CCSIDR_EL1, by 
specifying the required 
cache level and the cache 
type, either instruction or 
data cache.  

1 

CNTP_CTL_ELn Counter-timer 
Physical Control 
Register 

Control register for the 
EL1 physical timer.  

0 

CTR_ELn Cache Type Register Information about the 
architecture of the 
integrated caches. 

0 

DCZID_ELn Data Cache Zero ID 
Register 

Indicates the block size 
that is written with byte 
values of 0 by the Data 
Cache Zero by virtual 
address (DCZVA) system 
instruction. 

0 

ELR_ELn Exception Link 
Register 

Holds the address of the 
instruction which caused 
the exception. 

1, 2, 3 

ESR_ELn Exception Syndrome 
Register  

Includes information about 
the reasons for the 
exception.  

1, 2, 3 

FAR_ELn Fault Address 
Register 

Holds the virtual faulting 
address.  

1, 2, 3 

FPCR Floating-point 
Control Register 

Controls floating-point 
extension behavior. The 
fields in this register map 
to the equivalent fields in 

. 
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the AArch32 FPSCR. 

FPSR Floating-point Status 
Register 

Provides floating-point 
system status information. 
The fields in this register 
map to the equivalent 
fields in the AArch32 
FPSCR.  

. 

HCR_ELn Hypervisor 
Configuration 
Register 

Controls virtualization 
settings and trapping of 
exceptions to EL2.  

2 

MAIR_ELn Memory Attribute 
Indirection Register 

Provides the memory 
attribute encodings 
corresponding to the 
possible values in a Long-
descriptor format 
translation table entry for 
stage 1 translations at ELn. 

1, 2, 3 

MIDR_ELn Main ID Register The type of processor the 
code is running on (part 
number and revision). 

1 

MPIDR_ELn Multiprocessor 
Affinity Register 

The processor and cluster 
IDs, in multi-core or 
cluster systems.  

1 

RVBAR_ELn Reset Vector Based 
Address Register 

Holds the reset vector 
base address for any 
exception that is taken to 
ELn. 

1, 2, 3 

SCR_ELn Secure Configuration 
Register 

Controls Secure state and 
trapping of exceptions to 
EL3. 

3 

SCTLR_ELn System Control 
Register 

Controls architectural 
features, for example the 
MMU, caches and 
alignment checking. 

0, 1, 2, 3 

SPSR_ELn Saved Program 
Status Register 

Holds the saved processor 
state when an exception is 
taken to this mode or 
Exception level. 

abt, fiq, irq, 
und, 1,2, 3 

TCR_ELn Translation Control 
Register 

Determines which of the 
Translation Table Base 
Registers define the base 
address for a translation 
table walk required for the 
stage 1 translation of a 
memory access from ELn. 

Also controls the 

1, 2, 3 
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translation table format 
and holds cacheability and 
shareability information. 

TPIDR_ELn User Read/Write 
Thread ID Register 

Provides a location where 
software executing at ELn 
can store thread 
identifying information, for 
OS management purposes. 

0, 1, 2, 3 

TPIDRRO_ELn User Read-Only 
Thread ID Register 

Provides a location where 
software executing at EL1 
or higher can store thread 
identifying information. 
This information is visible 
to software executing at 
EL0, for OS management 
purposes. 

0 

TTBR0_ELn Translation Table 
Base Register 0 

Holds the base address of 
translation table 0, and 
information about the 
memory it occupies. This 
is one of the translation 
tables for the stage 1 
translation of memory 
accesses at ELn.  

1, 2, 3 

TTBR1_ELn Translation Table 
Base Register 1 

Holds the base address of 
translation table 1, and 
information about the 
memory it occupies.  

This is one of the 
translation tables for the 
stage 1 translation of 
memory accesses at EL0 
and EL1 

1 

VBAR_ELn Vector Based 
Address Register 

Holds the exception base 
address for any exception 
that is taken to ELn.  

1, 2, 3 

VTCR_ELn Virtualization 
Translation Control 
Register 

Controls the translation 
table walks required for 
the stage 2 translation of 
memory accesses from 
Non-secure EL0 and EL1. 
Also holds cacheability and 
shareability information for 
the accesses.  

2 

VTTBR_ELn Virtualization 
Translation Table 
Base Register 

Holds the base address of 
the translation table for 
the stage 2 translation of 
memory accesses from 

2 
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Non-secure EL0 and EL1.  
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9 The System Control Register 
The System Control Register (SCTLR) is a register that controls standard memory, system facilities 
and provides status information for functions that are implemented in the core. 
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Not all bits are available above EL1. The individual bits represent the following: 

UCI When this is set, EL0 access for DC CVAU, DC CIVAC, DC CVAC, and IC IVAU 
instructions is enabled in AArch64.  

EE Exception endianness. 

0     Little endian 

1     Big endian. 

EOE Endianness of data accesses at EL0. The possible values of this bit are: 

0     Little-endian. 

1     Big-endian. 

WXN Write permission implies XN (eXecute Never) 

0     Regions with write permission are not forced to XN. 

1     Regions with write permission are forced to XN. 

nTWE A value of 0 means that WFE instructions are trapped to EL1 if the instruction would 
have caused the core to sleep. 

A value of 1 means that WFE instructions are executed as normal. 

nTWI A value of 0 means that WFI instructions are trapped to EL1 if the instruction would 
have caused the core to sleep. 

A value of 1 means that WFI instructions are executed as normal. 

UCT A value of 1 means EL0 access to the CTR_EL0 register in AArch64 is enabled. 

A value of 0 mean EL0 access to the CLR_ELO register in AArch64 is disabled. 

DZE Access to DC ZVA instruction at EL0.  

0      Execution not allowed. 

1      Execution allowed. 
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I This is an enable bit for instruction caches at EL0 and EL1.  

0     Instruction accesses to Normal memory are not cached. 

1     Instruction accesses to Normal memory are cached. 

UMA User Mask Access. Controls access to interrupt masks from EL0, when EL0 is using 
AArch64. 

0      Attempts to use an MSR or MSR instruction to access the DAIF is trapped at 
EL1. 

1     Attempt to use an MSR or MRS instruction to access the DAIF is not trapped at 
EL1. 

SED Disables SETEND instructions at EL0 using AArch32. 

0     SETEND instructions are enabled. 

1     The SETEND instruction is disabled. 

ITD IT Disable bit. The possible values of this bit are: 

0     The IT instruction is available. 

1     The IT instruction is treated as a 16-bit instruction. Only another 16-bit 
instruction, or the first half of a 32-bit instruction, can follow. This depends on the 
implementation. 

CP15BEN CP15 barrier enable. If implemented, it is an enable bit for the AArch32 CP15 DMB, 
DSB, and ISB barrier operations. 

SA0 Stack Alignment Check Enable for EL0. 

SA Stack Alignment Check Enable. 

C Data cache enable. This is an enable bit for data caches at EL0 and EL1.  

Data accesses to Cacheable Normal memory are cached. 

A Alignment check enable bit. 

M Enable the MMU. 

9.1 Accessing the SCTLR 
To access the SCTLR_ELn, use: 

MRS <Xt>, SCTLR_ELn    // Read SCTLR_ELn into Xt  
MSR SCTLR_ELn, <Xt>    // Write Xt to SCTLR_ELn 

 

As in the following example: 

MRS X0, SCTLR_EL1   // Read System Control Register configuration  
     // data 
ORR X0, X0, #(1 << 2)  // Set [C] bit (bit [2]) to enable data caching 
ORR X0, X0, #(1 << 12)  // Set [I] bit (bit [12]) to enable instruction  
     // caching  
MSR SCTLR_EL1, X0   // Write System Control Register configuration  
     // data 
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Note 

Caches in the processor must be invalidated before data and instruction caches are enabled 
in any of the Exception levels. 
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10 Changing Execution state (registers) 
You can only change Execution state by changing Exception level. Taking an exception can change 
Execution state from AArch32 to AArch64, and returning from an exception can change it from 
AArch64 to AArch32.On entry to an Exception level using AArch64 from an Exception level using 
AArch32: 

• The values of the upper 32 bits of registers that were accessible to any lower Exception level 
using AArch32 execution are UNKNOWN. 

• The registers that are not accessible during AArch32 execution retain the state that they had 
before AArch32 execution. 

• On exception entry to EL3, when EL2 was using AArch32, the values of the upper 32 bits of 
the ELR_EL2 are UNKNOWN. 

• When entering an Exception level that is not accessible during AArch32 execution, AArch64 
stack pointers (SPs) and Exception Link Registers (ELRs) at that Exception level, retain the state 
that they had before AArch32 execution. This applies to the following registers: 

o SP_EL0. 

o SP_EL1. 

o SP_EL2. 

o ELR_EL1. 

In general, application programmers write applications for either AArch32 or AArch64. It is only 
the OS that must take account of the two Execution states and the switch between them. 
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11 Registers at AArch32 
Being compatible with ARMv7-A means that, for a processor operating in the AArch32 Execution 
state, there must be some correspondence between the AArch32 state of the ARMv8-A 
architecture, and the view of it provided by the ARMv7-A general-purpose registers. 

Remember that, in the ARMv7-A architecture, there are sixteen 32-bit general-purpose registers 
(R0-R15) for software use. Fifteen of them (R0-R14) can be used for general-purpose data storage. 
The remaining register, R15, is the program counter (PC) whose value is altered as the core 
executes instructions. Software can also access the CPSR, and the saved copy of the CPSR from 
the previously executed mode in the SPSR. On taking an exception, the CPSR is copied to the 
SPSR of the mode to which the exception is taken. 

Which of these registers is accessed, and where, depends on the processor mode the software is 
executing in and the register itself. This is called banking. The shaded registers in Figure 4-7 on 
page 4-16 are banked. They use physically distinct storage and are usually accessible only when a 
process is executing in that particular mode. 
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Banking is used in ARMv7 to reduce the latency for exceptions. However, this also means that of a 
considerable number of possible registers, fewer than half can be used at any one time. 

ARMv8-A has 31 ×64-bit general-purpose registers that are always accessible in all Exception 
levels.  
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When taking an exception from AArch32 to AArch64, there are some special considerations. 
AArch64 handler code can require access to AArch32 registers and the architecture therefore 
defines mappings to allow access to AArch32 registers. 

Bits [63:32] of the X registers are not available in AArch32 state and contain either 0 or the last 
value that is written in AArch64. There is no architectural guarantee on which value it is. It is 
therefore usual to access AArch32 registers as W registers. 

This mapping is shown in the following figure: 
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AArch32 also maps the banked registers to AArch64 registers that would otherwise be 
inaccessible. 

The SPSR and ELR_Hyp registers in AArch32 are extra registers that are only accessible using 
system instructions. They are not mapped into the AArch64 general-purpose register space of the 
AArch64 architecture. Some of these registers correspond between AArch32 and AArch64: 

• SPSR_svc maps to SPSR_EL1. 

• SPSR_hyp maps to SPSR_EL2. 

• ELR_hyp maps to ELR_EL2. 

The following registers are only used during AArch32 execution. However, during execution at 
EL1 using AArch64, they retain their state and are inaccessible during AArch64 execution at that 
Exception level. 
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• SPSR_abt. 

• SPSR_und. 

• SPSR_irq. 

• SPSR_fiq. 

The SPSR registers are only accessible during AArch64 execution at higher Exception levels for 
context switching. 

If an exception is taken to an Exception level using AArch64 from an Exception level using 
AArch32, the top 32 bits of the AArch64 ELR_ELn are all zero. 

11.1 System registers at AArch32 
In the ARMv7-A architecture the functionality provided by the System Registers was accessed 
through CP15 registers.  

In much the same way as the mapping between 32-bit W registers at AArch64 map onto the 
AArch32 General Purpose registers, there is a defined mapping between CP15 registers and 
AArch64 system registers. 

Many system registers are 32-bit, in which case there is a one to one mapping between the 
AArch32 and the AArch64 instance. For example, the AArch32 Hyp System Control Register 
(HSCTLR) maps to SCTLR_EL2 

Some AArch64 system registers are 64 bits wide, and these often map to two AArch32 CP15 
registers. For example: 

• HCR maps to HCR_EL2[31:0]. 

• HCR2 maps to HCR_EL2[63:32]. 

11.2 PSTATE at AArch32 
In ARMv8-A, the different components of the traditional CPSR are presented as Processor State 
(PSTATE) fields that can be accessed independently. PSTATE also includes fields that are specific to 
AArch32 state. 

The following figure shows the CPSR bit assignments at AArch32; 
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Giving extra PSTATE bits which are accessible only at AArch32: 

Name Description 

Q Cumulative saturation (sticky) flag. 

GE (4) Greater than or Equal flags.  
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IT (8) If-Then execution bits. 

J J bit. 

T T32 bit. 

E Endianness bit. 

M Mode field. 
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12 A64 instructions 
One of the most significant changes introduced in the ARMv8-A architecture was the addition of a 
new instruction set for AArch64. This instruction set contains many of the same features as the 
existing AArch32 (ARMv7-A) 32-bit instruction set.  

The addition of A64 provides access to 64-bit wide integer registers and data operations, and the 
ability to use 64-bit sized pointers to memory. The new instructions are called A64 and execute in 
the AArch64 Execution state. ARMv8-A also includes the original ARM instruction set, now called 
A32, and the Thumb® (T32) instruction set. 

Both A32 and T32 execute in AArch32 state, and provide backward compatibility with ARMv7-A. 
Although they are similar in many respects, the A64 instruction set is different to the older ISA and 
is encoded differently. A64 adds some additional capabilities while also removing other features 
that would potentially limit the speed or energy efficiency of high performance implementations. 
The ARMv8-A architecture includes some enhancements to the 32-bit instruction sets (A32 and 
T32) as well. However, code that makes use of such features is not compatible with older ARMv7-
A implementations. Instruction opcodes in the A64 instruction set, though, are still 32 bits long, 
not 64 bits. 

The A64 instruction set also provides extra addressing modes with respect to A32, allowing a 64-
bit index register to be added to the 64-bit base register, with optional scaling of the index by the 
access size. Also, it provides sign or zero-extension of a 32-bit value within an index register, again 
with optional scaling. 
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13 The ARMv8-A instruction sets 
The A64 instruction set is similar to the existing A32 instruction set. The instructions themselves 
are still 32 bits wide and have similar syntax. 

The instruction sets use a generic naming convention within the ARMv8-A architecture, so that the 
original 32-bit instruction set states are now called: 

A32 When in AArch32 state, the instruction set is largely compatible with ARMv7-A, though 
there are differences. It also provides some new instructions to align with some of the 
features that are introduced in the A64 instruction set. 

T32 The Thumb instruction set was first included in the ARM7TDMI processor and originally 
contained only 16-bit instructions. 16-bit instructions gave much smaller programs at the 
cost of some performance. ARMv7-A processors, including those in the Cortex-A series, 
support Thumb-2 technology, which extends the Thumb instruction set to provide a mix 
of 16-bit and 32-bit instructions. This gives performance similar to that of ARM, while 
retaining the reduced code size. Because of its size and performance advantages, it is 
increasingly common for all 32-bit code to be compiled or assembled to take advantage of 
Thumb-2 technology. 

In keeping with the naming convention, and reflecting the 64-bit operation, the instruction set for 
AArch64 is called A64 

All A64 instructions are the same length, unlike T32, which is a variable-length instruction set. This 
makes management and tracking of generated code sequences easier, particularly affecting dynamic 
code generators. 

13.1 Switching between instruction sets 
It is not possible to use code from the two Execution states within a single application. There is no 
interworking between A64 and A32 or T32 instruction sets in ARMv8-A as there is between A32 
and T32 instruction sets. Code that is written in A64 for the ARMv8-A processors cannot run on 
ARMv7-A Cortex®-A series processors. However, code that is written for ARMv7-A processors 
can run on ARMv8-A processors in the AArch32 Execution state. This is summarized in the 
following figure. 

 

T32

Mixed 16 and 32-bit instructions
32-bit general purpose registers

A32

32-bit instructions
32-bit general purpose registers

A64

32-bit instructions
32 and 64-bit general purpose registers

BX
BLX
MOV PC
LDR PC

Exception 
entry or 
return

Exception 
entry

Exception 
return
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13.2 Addressing 
When the processor can store 64-bit values in a single register, it becomes much simpler to access 
large amounts of memory within a program. A single thread executing on a 32-bit core is limited to 
accessing 4GB of address space. Large parts of that addressable space are reserved for use by the 
OS kernel, library code, peripherals, and more. As a result, lack of space means that the program 
might need to map some data in or out of memory while executing. Having a larger address space, 
with 64-bit pointers, avoids this problem. It also makes techniques such as memory-mapped files 
more attractive and convenient to use. The file contents are mapped into the memory map of a 
thread, even though the physical RAM might not be large enough to contain the whole file. 
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