
Interrupt handling

Andrew N. Sloss (asloss@arm.com)

April 25th, 2001

CHAPTER 1 Interrupt handling
Handling interrupts is at the heart of an embedded system. By managing the inter-
action with external systems through effective use of interrupts can dramatically
improve system efficiency and the use of processing resources. The actual process
of determining a good handling method can be complicated, challenging and fun.
Numerous actions are occurring simultaneously at a single point and these actions
have to be handled fast and efficiently. This chapter will provide a practical guide
to designing an interrupt handler and discuss the various trade-offs between the
different methods. The methods covered will be as follows:

• Non-nested interrupt handler

• Nested interrupt handler

• Re-entrant nested interrupt handler

• Prioritized interrupt handler

Embedded systems have to handle real world events such as the detection of a key
being pressed, synchonization of video output, or handle the transmission and
reception of data packets for a communication device. These events have to be han-
dled in real time, which means an action has to take place within a particular time
period to process the event. For instance, when a key is pressed on an embedded
system it has to respond quickly enough so that the user can see a character appear-
ing on the screen, without any noticeable delay. If an inordinate delay occurs the
user will perceive the system as being non-responsive.
Interrupt handling 1

Interrupt handling

2

An embedded system has to handle many events. An event halts the normal flow of
the processor. For ease of explanation, events can be divided into two types,
planned and unplanned. Planned events are events such as a key being pressed, a
timer producing an interrupt periodically, and software interrupt. Unplanned events
are data aborts, instruction aborts, and undefined instruction aborts. In this chapter
planned events will be called interrupts and unplanned events will be called excep-
tions. When an event occurs the normal flow of execution from one instruction to
the next is halted and re-directed to another instruction that is designed specifically
to handle that event. Once the event has been serviced the processor can resume
normal execution by setting the program counter to point to the instruction after the
instruction that was halted (except for data and prefetch abort, where instructions
may have to be re-executed).

At a physical level, an interrupt is raised when the IRQ pin on the ARM core is set
HIGH. The timing of the interrupt source can either follow the clock of the proces-
sor or not. When the interrupt source follows the processor clock it is said to be a
synchronous interrupt source and when it does not follow the processor clock it is
said to an asynchronous interrupt source. See figure 1.1.

Figure 1.1 Asynchronous and synchronous interrupt sources

Note: Internally all interrupts presented to the ARM core are synchronous.

• An example of a asynchronous interrupt is when a key is pressed the interrupt
pin on the processor is then set HIGH; identifying that an interrupt has occurred.

• An example of a synchronous interrupt source is when a real time clock or timer
periodically sets the interrupt pin HIGH.

In an embedded system there are usually multiple interrupt sources. These interrupt
sources share a single pin. This is due to the fact that there are only two interrupt
pins available on the ARM core. The sharing is controlled by a piece of hardware
called an interrupt controller that allows individual interrupts to be either enabled

Asynchronous

Synchronous
Interrupt handling

or disabled. The controller provides a set of programmable registers, which can be
used to read or write masks and obtain the interrupt status.

There are two ways to trigger an interrupt (edge or level). Both rely in a change in
voltage (See figure 1.2). The change can either be on the rising edge or a change in
voltage level.

Figure 1.2 Interrupt triggers (Top - level, and Bottom - rising edge)

 From a software viewpoint the advantages and disadvantages are as follows:

• Rising Edge - interrupt will be triggered as the signal goes HIGH, but will not
be re-triggered until signal goes LOW and HIGH again.

• Level - interrupt continuously active while signal is HIGH, so will keep re-enter
ing interrupt handler until signal is cleared. The interrupt can occur even if the
processor has not been powered up.

Note: most ARM microcontrollers have a trigger method that is software config-
urable.

Interrupts allow an embedded system to respond to multiple real world events in
rapid time. This is important for systems that have to handle complex mechanisms
such as a large chemical plant or a mobile phone. To handle these demands a spe-
cial purpose operating systems has to be designed so that the reaction time is kept to
a minimum. These operating systems are given the general name of Real Time
Operating Systems (RTOS). An RTOS can be applied to a broad range of applica-
tions.

For consistency the following definitions will be used in this chapter:

• A Task is an independent piece of code that can be executed at a particular
address in memory and has a hard coded stack and heap. These are normally
used in simple embedded systems without a memory management unit.

3 v

3 v

0 v

0 v
Interrupt handling 3

Interrupt handling

4

• A Process is like a task except that it executes in its own virtual address space
and has a stack and heap located within that virtual space. Processes can be
implemented on embedded systems that include a special device that changes
address space and paging (Memory Management Unit).

• Threads are similar to processes but can easily be assigned to be executed on a
different processor. For instance, a Symmetric Multi-Processor (SMP) systems
can have different threads running on different processors.

To handle multiple tasks a RTOS uses a number of different scheduling methods.
Each method has different advantages and disadvantages depending upon the appli-
cation. It is important that the tasks can communicate with each other, since they
will probably have to share resources (memory or peripherals). The resources are
normally protected by some mechanism, such as a semaphore (which will be dis-
cussed in more detail later on in this chapter), so that only one task can access the
resource at a time. If the sharing of data is possible then a message passing system
can be adopted to help communication between the various tasks. Message passing
allows a task to pass data and control to another task without taking valuable
resources away from the entire embedded system.

The actual mechanism for swapping tasks is called a context switch. Preemptive
RTOS context switching occurs periodically when a timer interrupt is raised. The
context switch will first save the state of the currently active task and then will
restore the state of the next task to be active. The next task chosen depends upon the
scheduling algorithm (i.e. round robin) adopted.

The example shown below in figure 1.3 shows a simple embedded system with 3
interrupt sources (a button, serial peripheral, and timer). The button signal will
occur when the button is pressed. These signals will be sent to the interrupt control-
ler. If the interrupt controller masks this interrupt then it will not be passed to the
processor. Once an interrupt occurs the software handler then will determine which
interrupt has occurred by reading the appropriate interrupt control register. The
interrupt can then be serviced by an interrupt service routine (ISR).
Interrupt handling

Figure 1.3 Example of a simple interrupt system

The interrupt handler is the routine that is executed when an interrupt occurs and
an ISR is a routine that acts on a particular interrupt. For instance, an ISR for a
key being pressed might determine which key has been pressed and then assign a
character that is then placed into a keyboard buffer (for later processing by the
operating system).

All embedded systems have to fight a battle with interrupt latency. Interrupt
latency is the interval of time from an external interrupt request signal being
raised to the first interrupt service routine (ISR) instruction being fetched. Inter-
rupt latency is a combination of the hardware system and the software interrupt
handler. System designers have to balance the system to accommodate low inter-
rupt latency, as well as, handle multiple interrupts occurring simultaneously. If
the interrupts are not handled in a timely manner then the system may appear
slow. This becomes especially important if the application is safety critical.

There are two main methods to keep the interrupt latency low for a handler. The
first method is to use a nested interrupt handler. Figure 1.4 shows a nested inter-
rupt handler that allows further interrupts to occur even when servicing an exist-
ing interrupt. This is achieved by re-enabling the interrupts only when enough of
the processor context has been saved onto the stack. Once the nested interrupt has
been serviced then control is relinquished back to the original interrupt service
routine. The second method is to have some form of Prioritization. Prioritization
works by allowing interrupts with an equal or higher prioritization to interrupt a
currently serviced routine. This means that the processor does not spend exces-
sive time handling the lower priority interrupts.

ARM Processor

Interrupt Controller

Button

Serial

Timer
Interrupt handling 5

Interrupt handling

6

Figure 1.4 A three level nested interrupt

If the embedded system is memory constrained. Then the handler and the ISR
should be written in Thumb code since Thumb provides higher code density on the
ARM processor. If Thumb code is used then the designer has to be careful in swap-
ping the processor back into Thumb state when an interrupt occurs since the ARM
processor automatically reverts back to ARM state when an exception or interrupt
is raised. The entry and exit code in an interrupt handler must be written in ARM
code, since the ARM automatically switches to ARM state when servicing an
exception or interrupt. The exit code must be in ARM state, because the Thumb
instruction set does not contain the instructions required to return from an exception
or interrupt. As mentioned above the main body of the interrupt handler can be in
Thumb code to take advantage of code density and faster execution from 16-bit or
8-bit memory devices.

The rest of the chapter will cover these topics in more detail:

• ARM Processor

• Event priorities

• Vector table

• Controlling interrupts

• Setting up the interrupt stacks

• Installing and chaining interrupt handlers

• Simple non-nested interrupt handler

• Nested interrupt handler

• Re-entrant nested interrupt handler

Interrupt (1)

Interrupt (2)

Interrupt (3)

Normal Execution

Return

Return

Return

Interrupt handler

Safe area
Interrupt handling

• Prioritized interrupt handler (1) - Simple

• Prioritized interrupt handler (2) - Standard

• Prioritized interrupt handler (3) - Direct

• Prioritized interrupt handler (4) - Grouped

• Interworking with ARM and Thumb

• Context switching

• Semaphores

• Debug

• General notes for Real Time Operating Systems

Notation: banked registers r13 and r14 are notated as:

r13_<mode> or sp_<mode>
r14_<mode> or lr_<mode>
Interrupt handling 7

Interrupt handling

8

ARM Processor

On power-up the ARM processor has all interrupts disabled until they are enabled
by the initialization code. The interrupts are enabled and disabled by setting a bit in
the Processor Status Registers (PSR or CPSR where C stands for current). The
CPSR also controls the processor mode (SVC, System, User etc.) and whether the
processor is decoding Thumb instructions. The top 4 bits of the PSR are reserved
for the conditional execution flags. In a privileged mode the program has full read
and write access to CPSR but in an non-privileged mode the program can only read
the CPSR. When an interrupt or exception occurs the processor will go into the cor-
responding interrupt or exception mode and by doing so a subset of the main regis-
ters will be banked or swapped out and replaced with a set of mode registers.

M = Processor Mode Bit
T = Thumb Bit (1=Thumb state 0=ARM state)
I = IRQ (1=disabled 0=enabled)
F = FIQ (1=disabled 0=enabled)

Figure 1.5 Bottom 8-bits of the Processor Status Register (PSR)

As can be seen in figure 1.5, bits 6 and 7 control the disabling and enabling of the
interrupt masks. The ARM processor has two interrupt inputs both can be thought
of as general purpose interrupts. The first is called Interrupt Request (IRQ) and the
second is called a Fast Interrupt Request (FIQ).

Note: In privileged modes there is another register for each mode called Saved Pro-
cessor Status Register (SPSR). The SPSR is used to save the current CPSR before
changing modes.

I F T M M M M M

7 6 5 4 3 2 1 0

031
Interrupt handling

ARM Processor

Table 1.5 ARM Processor Modes

The User Mode (denoted with *) is the only mode that is a non-privileged mode. If
the CPSR is set to User mode then the only way for the processor to enter a privi-
leged mode is to either execute a SWI/Undefined instruction or if an exception
occur during code execution. The SWI call is normally provided as a function of
the RTOS. The SWI will have to set the CPSR mode to SVC or SYS and then
return to the halted program.

The processor automatically copies the CPSR into the SPSR for the mode being
entered when an exception occurs. This allows the original processor state to be
restored when the exception handler returns to normal program execution.

When an interrupt (IRQ or FIQ) occurs and the interrupts are enabled in the PSR
the ARM processor will continue executing the current instruction in the execution
stage of the pipeline before servicing the interrupt. This fact is particularly impor-
tant when designing a deterministic interrupt handler. As mentioned previously, on
the ARM processor either IRQ or FIQ interrupt can be separately enabled or dis-
abled. In general, FIQ’s are reserved for high priority interrupts that require short
interrupt latency and IRQ’s are reserved for more general purpose interrupts. It is
recommended that RTOS’s do not use the FIQ so that it can be used directly by an
application or specialized high-speed driver.

Figure 1.6 is an idealized overview of the different mode states. The m= denotes
that a change in state can be forced, due to the fact that the current active state is
privileged.

Mode Source PSR[4:0] Symbol Purpose

User* - 0x10 USR Normal program execution mode

FIQ FIQ 0x11 FIQ Fast Interrupt mode

IRQ IRQ 0x12 IRQ Interrupt mode

Supervisor SWI,Reset 0x13 SVC Protected mode for operating systems

Abort Prefetch
Abort, Data
Abort

0x17 ABT Virtual memory and/or memory protection
mode

Undefined Undefined
Instruction

0x1b UND Software emulation of hardware co-proces-
sors mode

System - 0x1f SYS Run privileged operating system tasks
mode
Interrupt handling 9

Interrupt handling

10
Figure 1.6 Simplified Finite State Machine on ARM Processor Modes

m=SYS

m=UND

m=SVC

m=DABT

m=PABT

m=IRQ

m=FIQ

m=USR32

IRQ

FIQ

PABT

DABT

RESET/SWI

UND

event

event

event

event

event

event

event

event := UND | SWI | DABT |
PABT | IRQ | FIQ | RESET

mode
change

event

SYS

UND

SVC

IRQ

FIQ

USR32

Power

ABT
Interrupt handling

Int

ARM Processor
Figure 1.7 Register organization

On the ARM processor there are 17 registers always available in any mode and 18
registers in a privileged mode. Each mode has a set of extra registers called banked
registers (see figure 1.7). Banked registers are swapped in, whenever a mode
change occurs. These banked registers replace a subset of the previous mode regis-
ters. For IRQ, the registers banked are r13, r14, and the CPSR is copied into
SPSR_irq. For FIQ, the registers banked are r8 to r14, and the CPSR is copied into
SPSR_fiq. Each mode (see figure 1.7) has a set of banked registers. Each banked
register is denoted by _irq or _fiq, so for example the banked register for r13 in IRQ
mode is shown as r13_irq.

Note: This is particular useful when designing interrupt handlers since these regis-
ters can be used for a specific purpose without affecting the user registers of the
interrupted process or task. An efficient compiler can take advantage of these regis-
ters.

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14/LR

r12

r13/SP

r15/PC

cpsr

-

r0

r1

r9_fiq

r2

r3

r4

r5

r6

r7

r8_fiq

r10_fiq

r11_fiq

r14_fiq

r12_fiq

r13_fiq

r15/PC

-

spsr_fiq

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_irq

r12

r13_irq

r15/PC

-

spsr_irq

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_svc

r12

r13_svc

r15/PC

-

spsr_svc

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_undef

r12

r13_undef

r15/PC

-

spsr_undef

r0

r1

r9

r2

r3

r4

r5

r6

r7

r8

r10

r11

r14_abort

r12

r13_abort

r15/PC

-

spsr_abort

User/System FIQ IRQ SVC Undef Abort
errupt handling 11

Interrupt handling

12
Figure 1.8 State machine showing an IRQ occurring

Figure 1.8 shows the state change when an IRQ occurs. Note for this example the
processor starts in state 1, which is in User mode. The IRQ bit (I-bit), within CPSR,
is set to 0 allowing an IRQ to interrupt the processor. When an IRQ occurs the pro-
cessor will automatically set the I-bit to 1, masking any further IRQ, see state 2.
The F-bit remains set to 0, hence allowing an FIQ to interrupt the processor. FIQ
are at a higher priority to IRQ, and as such, they should not be masked out. When
the mode changes to IRQ mode the CPSR, of the previous mode, in this example
User mode is automatically copied into the IRQ SPSR. The software interrupt han-
dler then takes over in state 3.

Figure 1.9 State machine showing an FIQ occurring

Figure 1.9 shows a state change when an FIQ occurs. The processor goes through
the same procedure as an IRQ interrupt but instead of just masking further IRQ (I-
Bit) from occurring, the ARM processor also masks FIQ’s (F-bit). This means that
both the I and F bits will be set to 1 when entering the Software Handler is state 3.

I= 0
F=0

M=FIQ
I=1
F=1

M=USER32
FIQ Interrupt

Software
Handler

Return
User Code

1.

2.

3.

I= 0
F=0

M=IRQ
I=1
F=0

M=USER32
IRQ Interrupt

Software
Handler

Return
User Code

1.

2.

3.
Interrupt handling

Event priorities
In FIQ mode there is no requirement to save r8 to r12. This means these registers
can be used to hold temporary data, such as buffer pointers or counters. This makes
FIQ’s ideal for servicing single source high-priority, low-latency interrupts.

Event priorities

The ARM processor has 7 events that can halt the normal sequential execution of
instructions. These events can occur simultaneously, so the processor has to adopt a
priority mechanism since not all events are created equal. For instance, the Reset is
the highest priority, since it occurs when the power to the ARM processor is tog-
gled. This means that when a reset occurs it takes precedence over all other events.
Similarly when a Data Abort occurs it takes precedence over all other events apart
from a Reset event. This priority mechanism is extremely important when multiple
events are occurring simultaneously since the ARM processor has to identify the
event with the high importance. The below table shows the priority level adopted
for each of the events:

Figure 1.10 Event priority levels

When events are prioritized and multiple events occur simultaneously then the
highest event will win out. The event handlers are normal code sequences that can
be halted when other events occur. It is important to design a system such that the
event handlers themselves do not generate further events. If this occurs then the
system is susceptible to event loops (or Cascade of Events). Event loops will cor-
rupt the link register (r14) or overflow the event stack. The corruption of the link
register means that the stored return address from the event will be incorrect. Over-
flow means that the space allocated for the stack has been extended and may possi-
bly corrupt the heap.

Event Priority I Bit F Bit

Reset 1 1 1

Data Abort 2 1 0

FIQ 3 1 1

IRQ 4 1 0

Pre-fetch Abort 5 1 0

SWI 6 1 -

Undefined Instruction 6 1 -
Interrupt handling 13

Interrupt handling

14
When multiple events occur, the current instruction will be completed no matter
what event has been raised, except when a data abort occurs on the first offending
data address being accessed by LDM or STM. Each event will be dealt with accord-
ing to the priority level set out in figure 1.10. The following is a list of the events
and how they should be handled in order of priority:

• Reset event occurs when the processor is powering up. This is the highest prior-
ity event and shall be taken whenever it is signaled. Upon entry into the reset
handler the CPSR is in SVC mode and both IRQ and FIQ bits are set to 1, mask-
ing any interrupts. The reset handler then initializes the system. This includes
setting up memory and caches etc. External interrupt sources can be initialized
before enabling IRQ or FIQ interrupts. This avoids the possibility of spurious
interrupts occurring before the appropriate handler has been setup. Note that one
of the very first actions that a reset handler has to do is to set up the stacks of all
the various modes. During the first few instructions of the handler it is assumed
that no exceptions or interrupts will occur. The code should be designed to
avoid using SWI’s, Undefined instructions, and memory access. This means that
the reset handler has to be carefully implemented so that it maps directly on to
the target system, to avoid any exceptions or interrupt taking place during the
handling of reset.

• Data Abort (DABT) events occur when the memory controller or MMU indicate
that an invalid memory address has been accessed, for example if there is no
physical memory for an address, or if the processor does not currently have
access permissions to a region of memory. The data abort is raised when
attempting to read or write to a particular memory address. Data aborts have a
higher priority than FIQ’s, so that the DABT exception can be flagged and dealt
with after an FIQ interrupt has occurred. Up on entry into a Data Abort handler
IRQ’s will be disabled (I-bit set 1), and FIQ will be enabled. This means that the
handler can be interrupted by an FIQ. If a pre-fetch abort occurs during an
instruction fetch then this indicates that the handler was placed in an area of
memory that was not currently paged in by the memory controller.

• FIQ interrupt occurs when an external peripheral sets the FIQ pin to nFIQ. An
FIQ interrupt is the highest priority interrupt. Upon entry into FIQ handler the
core disables both IRQ’s and FIQ’s interrupts. This means no external source
can interrupt the processor unless the IRQ and/or FIQ are re-enabled by soft-
ware. It is desirable that the FIQ handler is carefully designed to service the
interrupt efficiently. This same statement also applies to Aborts, SWI’s and to
IRQ interrupt handler.

• IRQ interrupt occurs when an external peripheral sets the IRQ pin. An IRQ
interrupt is the second highest priority interrupt. The IRQ handler will be
Interrupt handling

Vector table
entered, if neither a FIQ interrupt or data abort event has occurred. Upon entry
to the IRQ handler the IRQ interrupts are disabled. The IRQ’s (I-bit) should
remain disabled until the current interrupt source has been cleared.

• Pre-fetch Abort event occurs when an attempt to load an instruction results in a
memory fault. This exception only occurs if the instruction reaches the execu-
tion stage of the pipeline, and if none of the higher exceptions/interrupts have
been raised. Upon entry to the handler IRQ’s will be disabled, but the FIQ inter-
rupts will remain enabled. If an FIQ interrupt occurs it can be taken while ser-
vicing the Pre-fetch abort.

• SWI interrupt occurs when the SWI instruction has been fetched and decoded
successfully, and none of the other higher priority exceptions/interrupts have
been flagged. Upon entry to the handler the CPSR will be set to SVC mode.
Note: if a SWI calls another SWI (which is a common occurrence), then to avoid
corruption, the link register (LR & SPSR) must be stacked away before branch-
ing to the nested SWI.

• Undefined Instruction event occurs when an instruction not in the ARM/Thumb
instruction set has been fetched and decoded successfully, and none of the other
exceptions/interrupts have been flagged. The ARM processor “asks” the copro-
cessors if they can handle this coprocessor instruction (they have pipeline fol-
lowers, so they know which instruction is in the execute stage of the core). If no
coprocessor cliams the instruction then undefined instruction exception is
raised. If the instruction does not belong to a coprocessor then the Undefined
exception is raised immediately. Both the SWI instruction and Undefined
Instruction have the same level of priority, as they cannot occur at the same
instant in time. In other words the instruction being executed cannot be both a
SWI instruction and an Undefined instruction. Note: undefined instructions are
also used to provide software breakpoints when debugging in RAM.

Vector table

As mentioned in previous chapters the vector table starts at 0x00000000 (ARMx20
processors can optionally locate the vector table address to 0xffff0000). A vector
table consists of a set of ARM instructions that manipulate the PC (i.e. B, MOV,
and LDR). These instructions cause the PC to jump to a specific location that can
handle a specific exception or interrupt. The FIQ vector can avoid using B or LDR
instruction since the vector is at the end of the table. This means that the FIQ han-
dler can start at the FIQ vector location. FIQ’s can save processor cycles by not
forcing the pipe to be flushed when the PC is manipulated. Figure 1.11 shows the
Interrupt handling 15

Interrupt handling

16
vector table and the modes which the processor is placed into when a specific event
occurs.

When a vector uses LDR to load the address of the handler. The address of the han-
dler will be called indirectly, whereas a B (branch) instruction will go directly to the
handler. LDR’s have an advantage that they can address a full 32 bits, whereas B
are limited to 24 bits. LDR must load a constant located within a 4k of the vector
table but can branch to any location in the memory map.

Figure 1.11 Vector Table

Figure 1.12 shows a typical vector table of a real system. The Undefined Instruction
handler is located so that a simple branch is adequate, whereas the other vectors
require an indirect address using LDR.

0x00000000: 0xe59ffa38 8... : > ldr pc,0x00000a40
 0x00000004: 0xea000502 : b 0x1414
 0x00000008: 0xe59ffa38 8... : ldr pc,0x00000a48
 0x0000000c: 0xe59ffa38 8... : ldr pc,0x00000a4c
 0x00000010: 0xe59ffa38 8... : ldr pc,0x00000a50
 0x00000014: 0xe59ffa38 8... : ldr pc,0x00000a54

0x00000018: 0xe59ffa38 8... : ldr pc,0x00000a58
0x0000001c: 0xe59ffa38 8... : ldr pc,0x00000a5c

Figure 1.12 Shows a typical vector table

When booting a system, quite often, the ROM is located at 0x00000000. This
means that when SRAM is re-mapped to location 0x00000000 the vector table has
to be copied to SRAM at its default address prior to the re-map. This is normally
achieved by the system initialization code. SRAM is normally re-mapped because

Interrupt/Exception/Reset Mode Address

Reset SVC 0x00000000

Undefined instruction UND 0x00000004

Software interrupt (SWI) SVC 0x00000008

Prefetch abort ABT 0x0000000c

Data abort ABT 0x00000010

Reserved N/A 0x00000014

IRQ IRQ 0x00000018

FIQ FIQ 0x0000001c
Interrupt handling

Controlling Interrupts
it is wider and faster than ROM; also allows vectors to be dynamically updated as
requirements change during program execution.

Controlling Interrupts

The ARM processor has a simple way to control the enabling and disabling of inter-
rupts. The application has to be in a privileged mode.

void event_EnableIRQ (void)

{
__asm {

 MRS r1, CPSR
 BIC r1, r1, #0x80
 MSR CPSR_c, r1

}
}

First, the CPSR is first copied into r1. Then to enable IRQ interrupts bit 7 (IRQ bit)
of the register is set to 0. The updated register is copied back to the CPSR, which
enables the IRQ interrupts.

void event_DisableIRQ (void)
{

__asm {
MRS r1, CPSR

 ORR r1, r1, #0x80
 MSR CPSR_c, r1

}
}

Note: interrupts are only enabled or disabled once the MSR instruction has com-
pleted the execution stage of the pipeline. Interrupts can still occur when the MSR
is in the pipeline.

To disable IRQ interrupts bit 7 has to be set to 1 (See above code). To enable FIQ
interrupts the following code is used.

void event_EnableFIQ (void)
{

__asm {
 MRS r1, CPSR
 BIC r1, r1, #0x40
 MSR CPSR_c, r1

}

Interrupt handling 17

Interrupt handling

18
}

Enabling FIQ interrupts is similar to enabling the IRQ interrupts except that bit 6 of
the CPSR is manipulated. To disable FIQ interrupts the following inline assembler
code should be used. Once the IRQ and FIQ bits are set to 0 (enabling interrupts)
the core will not be able to masked out an interrupt.

void event_DisableFIQ (void)

{
__asm {
MRS r1, CPSR

 ORR r1, r1, #0x40
 MSR CPSR_c, r1

}
}

These functions could be called by a SWI handler; the processor would therefore be
in ARM state and in a privileged mode (SVC).

Note: there are no instructions to read or write to the CPSR in Thumb state. To
manipulate the CPSR the processor has to be placed into ARM state.

Returning from an interrupt handler

Due to the processor pipeline, the return address from an interrupt or execpetion
handler has to be manipulated. The address which is stored in the link register will
include an offset. This means that the value of the offset has to be subtracted from
the link register. Figure 1.13 shows the various offsets for each event.

Figure 1.13 Pointer counter offset

Event Offset Return from handler

Reset n/a n/a

Data Abort -8 SUBS pc,lr,#8

FIQ -4 SUBS pc,lr,#4

IRQ -4 SUBS pc,lr,#4

Pre-fetch Abort -4 SUBS pc,lr,#4

SWI 0 MOVS pc,lr

Undefined Instruction 0 MOVS pc,lr
Interrupt handling

Returning from an interrupt handler
Note: the Data Abort is -8 indicating that the return address will be the original
instruction that caused the Data Abort.

For an interrupt a typical method of return is to use the following instruction:

SUBS pc, r14, #4

The ‘S’ at the end of the instruction indicates that the destination register is the PC
and that the CPSR is automatically updated. The #4 is due to the fact that both the
IRQ and FIQ handlers must return one instruction before the instruction pointed to
by the link register.

Another method, which is more widely used is to subtract 4 from the link register at
the beginning of the handler. For example:

SUB lr,lr #4
<handler code>
MOVS pc,lr

And then finally, lr is copied into the PC and the CPSR is updated. An alternative
approach, which will be described later in this chapter, is to :-

On entry:

SUB lr,lr,#4 ; adjust lr
STMFD sp_irq!,{r0-r3,lr} ; working registers
<handler code>

On exit:

LDMFD sp_irq!,{r0-r3,pc}^ ; restore registers

Note: ^ in this context means restore CPSR from SPSR
Interrupt handling 19

Interrupt handling

20
Setting up the interrupt stacks

Where the interrupt stack is placed depends upon the RTOS requirements and the
specific hardware being used. Figure 1.14 shows two possible designs. Design A is
a standard design found on many ARM based systems. If the Interrupt Stack
expands into the Interrupt vector the target system will crash. Unless some check is
placed on the extension of the stack and some means to handle that error when it
occurs.

Before an interrupt can be enabled the IRQ mode stack has to be setup. This is nor-
mally accomplished in the initialization code for the system. It is important that the
maximum size of the stack is known, since that size can be reserved for the inter-
rupt stack. Below are possible memory layouts with a linear address space.

Figure 1.14 Typical stack design layouts

The example in figure 1.14 shows two possible stack layouts. The first (A) shows
the tradition stack layout with the interrupt stack being stored underneath the code
segment. The second, layout (B) shows the interrupt stack at the top of the memory
above the user stack. One of the main advantages that layout (B) has over layout
(A) is that the stack grows into the user stack and thus does not corrupt the vector
table. For each mode a stack has to be setup. This is carried out every time the pro-
cessor is reset.

User Stack

Heap

Code

Interrupt Vectors

Interrupt Stack

0x00000000

0x00008000

User Stack

Code

Interrupt Vectors

Interrupt Stack

0x00000000

Heap

A. B.
Interrupt handling

Setting up the interrupt stacks
Figure 1.15 Simple stack layout

Figure 1.15 shows the layout of a simple system. Below shows a corresponding set
of defines that map onto this memory layout. The user stack is set to 0x20000 and
the IRQ stack is set to 0x8000. Remember that the stack grows downwards. With
the SVC stack set to a location 128 bytes below the user stack.

USR_Stack EQU 0x20000
IRQ_Stack EQU 0x8000
SVC_Stack EQU IRQ_Stack-128

The following is a set of defines that are used to change the processor modes. This
is achieved by OR-ing the various components of the PSR (e.g. Interrupt masks and
mode changes).

Vectors

Free Space

SVC Stack

IRQ Stack

code

static data

Unused

User Stack

0x20000

0x10000

0x8000+code size

0x8000

0x8000 - 128

0x8000 - 640

0x20

0x00
Interrupt handling 21

Interrupt handling

22
Usr32md EQU 0x10
FIQ32md EQU 0x11
IRQ32md EQU 0x12
SVC32md EQU 0x13
Abt32md EQU 0x17
Und32md EQU 0x1b

The following define is useful since it can be used to disable both IRQ and FIQ
interrupts:

NoInt EQU 0xc0

The initialization code is required to set up the stack register for each processor
mode used. The below code assumes that the processor is in SVC mode. The stack
register, which is normally r13, is one of the registers that is always banked when a
mode change occurs (see figure 1.7). The code below first shows how to initialize
the IRQ stack. For safety reasons, it is best to always make sure that interrupts are
disabled.

MOV r2, #NoInt|IRQ32md
MSR CPSR_c, r2
LDR sp_irq, =IRQ_NewStack
:

IRQ_NewStack
DCD IRQ_Stack

Similarly for setting up SVC stack the CPSR has to be manipulated to force the pro-
cessor into SVC mode to gain access to the banked stack register r13_svc.

 MOV r2, #NoInt|SVC32md
MSR CPSR_c, r2
LDR r13_svc, =SVC_NewStack
:

SVC_NewStack
DCD SVC_Stack

Lastly the user stack register needs to be setup. Once in user mode the processor
cannot be forced into any other mode since User mode has no privileges to write to
the CPSR (alternatively the processor can be put into System mode to setup the
User mode stack).

MOV r2, #Usr32md
MSR CPSR_c, r2
LDR r13_usr, =USR_NewStack
:

USR_NewStack
DCD USR_Stack
Interrupt handling

Installing and chaining interrupt handlers
The above method uses separate stacks for each mode rather than processing using
a single stack. This has a number of advantages:

• If a single task corrupts the stack then the whole system would become unsta-
ble. Using separate stacks allows for the possible debugging and isolation of an
errant task/s.

• It reduces stack memory requirements. If interrupts are serviced on the task’s
stack then separate space must be reserved on each task’s stack to handle the
interrupt.

Installing and chaining interrupt handlers

For ROM and/or FlashROM based systems the vector table can be fixed without
requiring installation. These systems tend to copy the complete vector table as a
block from ROM to RAM without requiring the installation of individual vectors.
This technique is normally used in the initialization stage since the memory tends to
be re-mapped.

If the vector table is not located in ROM then a mechanism to install a handler can
be adopted. Installing an interrupt handler means placing a vector entry for the IRQ
address (0x00000018) or FIQ address (0x0000001C), so that the entry points to the
appropriate handler. Chaining means saving the existing vector entry and inserting
a new entry. If the new inserted handler can not handle a particular interrupt source
this handler can return control to the original handler by called the saved vector
entry.

Note: Chaining interrupt handlers may increase the interrupt latency of the system.

Figure 1.16 Shows how the IRQ vector entry is re-directed to a handler

IRQ unknown

Vector Table

IRQ Handler

Vector Table
Interrupt handling 23

Interrupt handling

24
There are two main methods to re-direct a vector entry. These methods are either
using a B (branch) or an LDR (load relative). The first example written in C installs
a vector entry using the B instruction. In the form shown in figure 1.15

Figure 1.17 Pattern for a Branch instruction

The code below shows how to install a handler into the vector table. The first
parameter is the address of the handler and the second parameter is the address of a
vector in the vector table. The vector address will be either 0x00000018 or
0x0000001C (IRQ or FIQ) depending upon the handler being installed

Note: subtracting 8 in calculating the offset is due to the pipeline since the PC will
be fetching the 2nd instruction after the instruction currently being executed. Shift-
ing two bits to the left will encode the address as required for the branch instruc-
tion, since the ARM processor can only branch to an address that is word aligned,
the ARM extends the branch range by not encoding the bottom 2 bits, which would
always be zero.

#define BAL 0xEA000000

unsigned event_installHandler (unsigned handler,unsigned *vector)
{
volatile unsigned new_vector;
volatile unsigned old_vector;
unsigned offset;

offset = ((handler-(unsigned)vector-0x8)>>2);

if (offset & 0xff000000) {
printf (“Error: Address out of range \n”);
exit(1);
}

new_vector = BAL | offset;
old_vector = *vector;
*vector = new_vector;
return old_vector;
}

Pattern Instruction

0xEAaaaaaa BAL <address>
Interrupt handling

Installing and chaining interrupt handlers
If the range of the handler is beyond the range of the B instruction then a method
using LDR has to be adopted that takes advantage of the full 32 bit addressing
range. In the form shown in figure 1.18.

Figure 1.18 Pattern for a load immediate instruction

This means that an extra memory location (word) has to be used to store the address
of the handler. This location has to be local to the LDR instruction in the vector
table because the immediate address is an offset from the PC. Maximum offset is
0xFFF. Below is an example of how to call the install routine:

unsigned address_irqHandler;
event_installHandler ((unsigned)&address_irqHandler,0x000000018);

Note: the address_irqHandler has to be assigned before calling the install routine.

The routine below shows an implementation of an install handler for inserting an
LDR instruction into the vector table.

#define LDR 0xE59FF000
#define VOLATILE volatile unsigned

unsigned event_installHandler (unsigned address,VOLATILE *vector)
{
unsigned new_vector;
unsigned old_vector;

new_vector = LDR | ((address-(unsigned)vector-0x8);

old_vector = *vector;
*vector = new_vector;
return old_vector;
}

Chaining involves adapting the LDR insertion technique by first copying the previ-
ous vector and storing it in a new location. Once this is complete a new vector can
be inserted into the vector table as shown in figure 1.18.

Pattern Instruction

0xE59FFiii LDRAL pc,<immediate address>
Interrupt handling 25

Interrupt handling

26
Figure 1.18 Chaining of Interrupts

Once handler2 has been chained and an interrupt occurs, handler2 will identify the
source. If the source is known to handler2 then the interrupt will be serviced. If the
interrupt source is unknown then handler1 will be called. The chaining code in this
example assumes that the interrupt vector entity for IRQ is in the form shown in
Figure 1.19.

Figure 1.19 IRQ Entry in the vector table

Note: Chaining can be used to share an interrupt handler with a debug monitor but
care must be taken that the new interrupt latency does not cause time out issues
with the debugger.

The code below finds the address of the previous vector table entry and copies it to
a new location chained_vector. Then the new handler handler2 can be inserted into
the vector table. This chained_vector address is a global static and should be per-
manently in scope.

#define LDR 0xE59FF000

static void event_chainHandler (unsigned handler2, unsigned *vector)
{
unsigned chain_vec;
unsigned *handler1;

 chain_vec = 0;

 chain_vec = *vector;

chain_vec ^= LDR;
 handler1 = (volatile unsigned *) (vector+chain_vec+0x8);

chained_vector = *handler1;
 *handler1 = handler2;

}

Address Pattern Instruction

0x00000018 0xe59ffa38 LDR pc,0x00000a58

IRQ Handler1

Vector Table

IRQ Handler2

Vector Table

Handler1
Interrupt handling

Simple non-nested interrupt handler
Simple non-nested interrupt handler

The simplest interrupt handler is a handler that is non-nested. This means that the
interrupts are disabled until control is returned back to the interrupted task or pro-
cess. A non-nested interrupt handler can service a single interrupt at a time. Han-
dlers of this form are not suitable for complex embedded systems which service
multiple interrupts with differing priority levels.

When the IRQ interrupt is raised the ARM processor will disable further IRQ inter-
rupts occurring. The processor will then set the PC to point to the correct entry in
the vector table and executes that instruction. This instruction will alter the PC to
point to the interrupt handler.

Once in the interrupt code the interrupt handler has to first save the context, so that
the context can be restored upon return. The handler can now identify the interrupt
source and call the appropriate Interrupt Service Routine (ISR). After servicing the
interrupt the context can be restored and the PC manipulated to point back to next
instruction prior to the interruption.

Note: within the IRQ handler, IRQ interrupts will remain disabled until the handler
manipulates the CPSR to re-enable the interrupt or returns to the interrupted task.

Figure 1.20 shows the various stages that occur when an interrupt is raised in a sys-
tem that has implemented a simple non-nest interrupt handler.

Usage Handles and services individual interrupts sequentially.

Interrupt latency High - cannot handle further interrupts occuring while an
interrupt is being serviced.

Advantages Relatively easy to implement and debug

Disadvantages Cannot be used to handle complex embedded systems with
multiple priority interrupts.
Interrupt handling 27

Interrupt handling

28
Figure 1.20 Simple non-nested interrupt handler

Each stage is explained in more detail below:

1. External source (for example from an interrupt controller) sets the Interrupt flag.
Processor masks further external interrupts and vectors to the interrupt handler
via an entry in the vector table.

2. Upon entry to the handler, the handler code saves the current context of the non
banked registers.

3. The handler then identifies the interrupt source and executes the appropriate
interrupt service routine (ISR).

4. ISR services the interrupt.

5. Upon return from the ISR the handler restores the context.

6. Enables interrupts and return.

The following code is an example of a simple wrapper for an IRQ interrupt handler.
It assumes that the IRQ stack has been setup correctly.

SUB lr, lr, #4
STMFD sp_irq!, {r0-r3, r12, lr}

 {specific interrupt handler and service routine code}
LDMFD sp_irq!, {r0-r3, r12, pc}^

The first instruction sets the link register (r14) to return back to the correct location
in the interrupt task or process. As mentioned previously, because of the pipeline,

Disable Interrupts

Save Context

 Interrupt Handler

Restore Context

Enable Interrupts

Interrupt

Return to
Task

Service Interrupt
Routine

1.

2.

3.

4.

5.

6.
Interrupt handling

Simple non-nested interrupt handler
on entry to an IRQ handler the link register points 4 bytes beyond the return address
so the handler must subtract 4 to account for the discrepancy.

Note: the link register is stored on the stack. To return to the interrupted task the
link register contents is restored from the stack to PC.

STMFD instruction saves the context by placing a subset of the register onto the
stack. To reduce interrupt latency a minimum number of registers should be saved.
The time taken to execute a STMFD or LDMFD instruction is proportionally to the
number of registers being transferred. Both these instructions are extremely useful
since they depart from the RISC philosophy due to code efficiency. The registers
are saved to the stack pointed to by the register r13_irq or r13_fiq. If you are using
a high level language within your system it is important to understand the calling
convention as this will influence the decision on which registers will be saved on
the stack. For instance, the ARM compiler (armcc) preserves r4-r11 within the sub-
routine calls so there is no need to preserve them unless they are going to be used
by the interrupt handler. If no C routines are called it may not be necessary to save
all of the registers. It is not necessary to save the IRQ (or FIQ) SPSR register as this
will not be destroyed by any subsequent interrupt since the interrupts will not re-
enable interrupts within a non-nested interrupt handler. Once the registers have
been saved on the stack it is now safe to call C functions within the interrupt han-
dler to process an interrupt.

At the end of the handler the LDMFD instruction will restore the context and return
from the interrupt handler. The ’̂ ’ at the end of the LDMFD instruction means that
the CPSR will be restored from the SPSR. If the process was in Thumb state prior
to the interrupt occurring the processor will returned back to Thumb state. Finally,
LR points two instructions ahead of the interrupted instruction. By assigning the PC
to LR minus 4. The PC will point to the next instruction after interruption.

In this handler all processing is handled within the interrupt handler which returns
directly to the application. This handler is suitable for handling FIQ interrupts how-
ever it is not suitable for handling IRQ’s in an RTOS environment.

Note: the ’̂ ’ is only valid if the PC is loaded at the same time. If the PC is not
loaded then ’̂ ’ will mean restore user bank registers.

Once the interrupt handler has been entered and the context has been saved the han-
dler must determine the interrupt source. The following code shows a simple exam-
ple on how to determine the interrupt source. IRQStatus is the address of the
Interrupt handling 29

Interrupt handling

30
interrupt status register. If the interrupt source is not determined then control is
passed to the chained debug monitor handler.

LDR r0, IRQStatus
LDR r0, [r0]
TST r0, #0x0080
BNE timer_isr
TST r0, #0x0001
BNE button_isr
LDMFD sp!, {r0 - r3, lr}
LDR pc, debug_monitor

Nested interrupt handler

A nested interrupt handler allows for another interrupt to occur within the currently
called handler. This is achieved by re-enabling the interrupts before the handler has
fully serviced the current interrupt. For a real time system this feature increases the
complexity of the system. This complexity introduces the possibility of subtle tim-
ing issues that can cause a system failure. These subtle problems can be extremely
difficult to resolve. The nested interrupt method has to be designed carefully so that
these types of problems are avoided. This is achieved by protecting the context res-
toration from interruption, so that the next interrupt will not fill (overflow) the
stack, or corrupt any of the registers.

Note: the single goal of any nested interrupt handler is to respond to interrupts suf-
ficiently that the handler neither waits for asynchronous events, nor forces them to
wait for the handler. The second key point is that regular synchronous code is unaf-
fected by the various interruptions.

Usage Handles multiple interrupts without a priority assignment.

Interrupt latency Medium to high.

Advantages Can enable interrupts before the servicing of an individual
interrupt is complete reducing interrupt latency.

Disadvantages Does not handle priorization of interrupts, so lower prior-
ity interrupts can block higher priority interrupts.
Interrupt handling

Nested interrupt handler
Figure 1.21 Nested interrupt handler

interrupt

Disable interrupt

Save Context

Service
Interrupt

Restore Context

Switch to mode

Start Constructing a Frame

Enable Interrupt

Finish
Frame
Construction

Complete
Service
Routine

Restore Context

return to task

interrupt

interrupt

Prepare stack

enter interrupt handler

return to task

complete not complete

1.

2.

3.

4. 5.

6.

7.

8.

9.

10.

11.
Interrupt handling 31

Interrupt handling

32
Due to an increase in complexity, there are many standard problems that can be
observed if nested interrupts are supported. One of the main problems is a race con-
dition where a cascade of interrupts occur. This will cause a continuous interruption
of the handler until either the interrupt stack was full (overflowing) or the registers
were corrupted. A designer has to balance efficiency with safety. This involves
using a defensive coding style that assumes problems will occur. The system should
check the stack and protect against register corruption where possible.

Figure 1.21 shows a nested interrupt handler. As can been seen from the diagram
the handler is quite a bit more complicated than the simple non-nested interrupt
handler described in the previous section.

How stacks are organized is one of the first decisions a designer has to make when
designing a nested interrupt handler. There are two fundamental methods that can
be adopted. The first uses a single stack and the second uses multiple stacks. The
multiple stack method uses a stack for each interrupt and/or service routine. Having
multiple stacks increases the execution time and complexity of the handler. For a
time critical system these tend to be undesirable characteristics.

The nested interrupt handler entry code is identical to the simple non-nested inter-
rupt handler, except on exit, the handler tests a flag which is updated by the ISR.
The flag indicates whether further processing is required. If further processing is
not required then the service routine is complete and the handler can exit. If further
processing is required the handler may take several actions; re-enabling interrupts
and/or perform a context switch.

Re-enabling interrupts involves switching out of IRQ mode (typically to SVC mode
or SYSTEM mode). We cannot simply re-enable interrupts in IRQ mode as this
would lead to the link register (lr_irq) being corrupted if an interrupt occurred after
a branch with link (BL) instruction. This problem will be discussed in more detail
in the next section called Re-entrant interrupt handler.

As a side note, performing a context switch involves flattening (empting) the IRQ
stack as the handler should not perform a context switch while there is data on the
IRQ stack unless the handler can maintain a separate IRQ stack for each task which
is as mentioned previously undesirable. All registers saved on the IRQ stack must
be transferred to the task’s stack (typically the SVC stack). The remaining registers
must then be saved on the task stack. This is transferred to a reserved block on the
stack called a stack frame.
Interrupt handling

Nested interrupt handler
The following code is an example of a nested interrupt handler, it is based on the
design shown in figure 1.21. The rest of this section will walk through the various
stages.

The example below uses a frame structure. All registers are saved in the frame
except for the stack pointer (r13). This is saved in the task control block (TCB).
The order of the registers is unimportant except that FRAME_LR and FRAME_PC
should be the last two registers in the frame. This is because we will return with the
instruction

LDMIA sp!, {lr, pc}^

It is important to note that there may be other registers that are required to be saved
in the stack frame. This requirement depends upon the RTOS or application being
developed. For example:

• The r13_usr and lr_usr registers, if the RTOS supports both User and SVC
modes.

• The floating point registers if you wish to support hardware floating point or
floating point emulation.

There are a number of defines used in this example. The following defines are used
to manipulate the PSR.

Maskmd EQU 0x1f ; masks the processor mode
SVC32md EQU 0x13 ; sets the processor mode to SVC
I_Bit EQU 0x80 ; Enables and Disable IRQ interrupts

The next set of defines are for manipulating the stack frame. This is useful since if
interrupts are re-enabled the interrupted handler has to be able to store the registers
into the stack frame. In this example stack frames are stored on the SVC stack.

FRAME_R0 EQU 0x00
FRAME_R1 EQU FRAME_R0+4
FRAME_R2 EQU FRAME_R1+4
FRAME_R3 EQU FRAME_R2+4
FRAME_R4 EQU FRAME_R3+4
FRAME_R5 EQU FRAME_R4+4
FRAME_R6 EQU FRAME_R5+4
FRAME_R7 EQU FRAME_R6+4
FRAME_R8 EQU FRAME_R7+4
FRAME_R9 EQU FRAME_R8+4
FRAME_R10 EQU FRAME_R9+4
FRAME_R11 EQU FRAME_R10+4
FRAME_R12 EQU FRAME_R11+4
FRAME_PSR EQU FRAME_R12+4
FRAME_LR EQU FRAME_PSR+4
FRAME_PC EQU FRAME_LR+4
FRAME_SIZE EQU FRAME_PC+4
Interrupt handling 33

Interrupt handling

34
The entry point for the handler (again this is for an IRQ handler) is the same code as
the simple non-nested interrupt handler. The link register is set to point to the cor-
rect instruction and the context is saved on to the IRQ stack (r13_irq/sp_irq).

The interrupt service code, after the entry point, services the interrupt. Once com-
plete or partially complete control is passed back to the handler, which then calls
the subroutine read_RescheduleFlag. The read_RescheduleFlag routine then deter-
mines whether further processing is required. It returns a non-zero value in r0 if no
further processing is required, otherwise it returns 0.

The return flag in r0 is then tested and if not equal to 0 the handler restore context
and then returns control back to the halted task.

If r0 is set to 0, indicating that further processing is required. The first operation is
to save the spsr, so a copy of the spsr_irq is moved into r2. SPSR can then be stored
in the stack frame by the handler later on in the code.

Then the IRQ stack address (sp_irq) is copied into r0 for use later. The next step is
to flatten (empty) the IRQ stack. This is done by adding 6*4 bytes to the stack.
Note that since the stack grows downwards, the ADD operation will reset the stack.
The handler does not need to worry about the data on the IRQ stack being corrupted
by another nested interrupt, as interrupts are still disabled and the handler will not
re-enable the interrupts until the data on the IRQ stack has been recovered.

The handler then switches to SVC mode, interrupts are still disabled. The cpsr is
copied to r1 and modified to set SVC mode. r1 is then written back to the cpsr and

2IRQ IRQ_Entry
 SUB lr_irq, lr_irq, #4
 STMDB sp_irq!, {r0-r3, r12, lr_irq}
 :
 <interrupt service code>

3IRQ BL read_RescheduleFlag

3IRQ CMP r0, #0

4IRQ LDMNEIA sp_irq!, {r0-r3, r12, pc}^

5IRQ MRS r2, spsr_irq

5IRQ MOV r0, sp_irq
ADD sp_irq, sp_irq, #6*4
Interrupt handling

Nested interrupt handler
the current mode changes to SVC mode. A copy of the new cpsr is left in r1 for
later use.

The next stage is to create a stack frame. This is achieved by extending the stack by
the frame size. Once the stack frame has been created then registers r4 to r11 can be
saved in to the stack frame. This will free up enough registers to allow us to recover
the remaining registers from the IRQ stack (still pointed to by r0).

The stack frame will contain the information shown in figure 1.22. The only regis-
ters that are not in the frame are the registers which are stored upon entry to the IRQ
handler.

Figure 1.22 SVC stack frame

6IRQ MRS r1, cpsr
BIC r1, r1, #Maskmd
ORR r1, r1, #SVC32md
MSR cpsr, r1

7SVC SUB sp_svc, sp_svc, #FRAME_SIZE-FRAME_R4
STMIA sp_svc, {r4-r11}
LDMIA r0, {r4-r9}

Label Offset Register

FRAME_R0 +0 -

FRAME_R1 +4 -

FRAME_R2 +8 -

FRAME_R3 +12 -

FRAME_R4 +16 r4

FRAME_R5 +20 r5

FRAME_R6 +24 r6

FRAME_R7 +28 r7

FRAME_R8 +32 r8

FRAME_R9 +36 r9

FRAME_R10 +40 r10

FRAME_R11 +44 r11

FRAME_R12 +48 -

FRAME_PSR +52 -

FRAME_LR +56 -

FRAME_PC +60 -
Interrupt handling 35

Interrupt handling

36
Figure 1.23 shows which registers in SVC mode correspond to existing IRQ regis-
ters.

Figure 1.23 Data retrieved from the IRQ stack

The handler has now retrieved all the data from the IRQ stack so it is now safe to
re-enable interrupts.

IRQ interrupts are now re-enabled and the handler has saved all the important regis-
ter. The handler can now complete the SVC stack frame.

Figure 1.24 Shows a completed stack frame which can either be used for a context
switch or can be used to handle nested interrupts.

Registers
(SVC) Context

r4 r0

r5 r1

r6 r2

r7 r3

r8 r12

r9 lr (previous interrupt)

8SVC BIC r1, r1, #I_Bit
MSR cpsr, r1

9SVC STMDB sp!, {r4-r7}
STR r2, [sp, #FRAME_PSR]
STR r8, [sp, #FRAME_R12]
STR r9, [sp, #FRAME_PC]
STR lr, [sp, #FRAME_LR]
Interrupt handling

Nested interrupt handler
Figure 1.24 Complete SVC stack frame has been setup.

At this stage the remainder of the interrupt servicing may be handled. A context
switch may be performed by saving the current value of SP in the current task’s
control block and loading a new value for SP from the new task’s control block. For
example, if r0 contains a pointer to the current task’s control block and r1 contains a
pointer to the new task’s control block the following would perform the context
switch.

It is now possible to return to the interrupted task/handler, or to another task if a
context switch occurred.

Label Offset Register

FRAME_R0 +0 r0

FRAME_R1 +4 r1

FRAME_R2 +8 r2

FRAME_R3 +12 r3

FRAME_R4 +16 r4

FRAME_R5 +20 r5

FRAME_R6 +24 r6

FRAME_R7 +28 r7

FRAME_R8 +32 r8

FRAME_R9 +36 r9

FRAME_R10 +40 r10

FRAME_R11 +44 r11

FRAME_R12 +48 r12

FRAME_PSR +52 PSR (IRQ)

FRAME_LR +56 LR

FRAME_PC +60 LR (IRQ)

10SVC STR sp_svc, [r0, TCB_SP]
LDR sp_svc, [r1, TCB_SP]

11SVC LDMIA sp_svc!, {r0-r12, lr}
MSR SPSR, lr
LDMIA sp_svc!, {lr_svc, pc}^
Interrupt handling 37

Interrupt handling

38
Re-entrant interrupt handler

A re-entrant interrupt handler is a method of handling multiple interrupts where
interrupts are filtered by priority. This is important since there is a requirement that
interrupts with higher priority have a lower latency. This type of filtering cannot be
achieved using the conventional nested interrupt handler.

The basic difference between a re-entrant interrupt handler and a nested interrupt
handler is that the interrupts are re-enabled early on in the interrupt handler to
achieve low interrupt latency. There are a number of issues relating to re-enabling
the interrupts early, which are described in more detail later in this section.

Note: all interrupts in a re-entrant interrupt handler must be serviced in SVC mode,
System mode, or an Abort mode on the ARM processor.

If interrupts are re-enabled in an interrupt mode and the interrupt routine performs a
BL (subroutine call) instruction, the subroutine return address will be set in the
lr_irq register. This address would be subsequently destroyed by an interrupt, which
would overwrite the return address into lr_irq register. To avoid this, the interrupt
routine should swap into SVC mode or SYSTEM. The BL instruction can then use
lr_svc register to store the subroutine address. The interrupts must be disabled at
source by setting a bit in the interrupt controller before re-enabling interrupts via
the CPSR.

If interrupts are re-enabled in the CPSR before processing is complete and the inter-
rupt source is not disabled, an interrupt will be immediately re-generated leading to
an infinite interrupt sequence or race condition. Most interrupt controllers have an
interrupt mask register which allows you to mask out one or more interrupts leaving
the remainder of the interrupts enabled.

Note: watchdog timers can be a useful method to reset a system that has gone into a
race condition.

The interrupt stack is unused since interrupts are serviced in SVC mode (i.e. on the
task’s stack). Instead the IRQ stack pointer (r13) is used to point to a 12 byte struc-
ture which will be used to store some registers temporarily on interrupt entry. In the

Usage Handle multiple interrupts that can be prioritized.

Interrupt latency Low

Advantages Handling of interrupts with differing priorities.

Disadvantages Interrupt handler tends to be more complex
Interrupt handling

Re-entrant interrupt handler
following code r13 is used instead of SP to indicate that r13 is not being used as a
stack pointer although in fact these are synonymous.

 Figure 1.25 Re-entrant interrupt handler

interrupt

Disable interrupt

Save Partial Context

Enable Interrupt

Restore Context

enter interrupt handler

Change Mode

Reserve Stack Space

Clear External Interrupt

Service
Interrupt

servicing
incomplete

servicing complete

return to task

Continue
Servicing
Interrupt

Restore Context

return to task

interrupt

and Save Complete
Context

Enable External Interrupt

Re-save Context

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.
Interrupt handling 39

Interrupt handling

40
It is paramount for a re-entrant interrupt handler to operate effectively that the inter-
rupts be prioritized. If the interrupts are not prioritized the system latency degrades
to that of a nested interrupt handler as lower priority interrupts will be able to pre-
empt the servicing of a higher priority interrupt. This can lead to the locking out of
higher priority interrupts for the duration of the servicing of a lower priority inter-
rupt.

Note: that r13_irq (sp_irq) has been set up to point to a 12 byte data structure, and
does not point to a standard IRQ stack. The following are the offsets for the data
items in the structure:

IRQ_R0 EQU 0
IRQ_SPSR EQU 4
IRQ_LR EQU 8

As with all interrupt handlers there are some standard definitions that are required
to manipulate the CPSR/SPSR registers:

Maskmd EQU 0x1f ; masks the processor mode
SVC32md EQU 0x13 ; sets the processor mode to SVC
I_Bit EQU 0x80 ; Enables and Disable IRQ interrupts

The start of the handler includes a normal interrupt entry point, with 4 being sub-
tracted from the lr_irq.

It is now important to assign values to the various fields in the data structure
pointed to by r13_irq. The registers that are recorded are lr_irq, spsr_irq and r0.
The r0 register is used to transfer a pointer to the data structure when swapping to
SVC mode since r0 will not be banked (r13_irq cannot be used for this purpose as
it is not visible from SVC mode).

Now save the data structure pointed to by r13_irq by copying the address into r0.

2IRQ IRQ_Entry
 SUB lr_irq, lr_irq, #4

2IRQ STR lr_irq, [r13_irq, #IRQ_LR]
MRS lr_irq, spsr
STR lr_irq, [r13_irq, #IRQ_SPSR]
STR r0, [r13_irq, #IRQ_R0]

2IRQ MOV r0, r13_irq

Offset (from r13_irq) Value

+0 r0 (on entry)
Interrupt handling

Re-entrant interrupt handler
Figure 1.26 Data structure

The handler will now set the processor into SVC mode using the standard proce-
dure of manipulating the CPSR:

The processor is now in SVC mode. The link register for SVC mode is saved on the
SVC stack. -8 provides room on the stack for two 32-bit words.

lr_irq is then recovered and stored on the SVC stack. Both the link registers for IRQ
and SVC are now stored on the SVC stack.

The rest of the IRQ context is now recovered from the data structure passed into the
SVC mode. The r14_svc (or lr_svc) will now contain the SPSR for the IRQ mode.

The volatile registers are now saved onto the SVC stack. r8 is used to hold the inter-
rupt mask for the interrupts which have been disabled in this interrupt handler and
which need to be re-enabled later.

Here we disable the interrupt source(s) which caused this interrupt. A real world
example would probably prioritize the interrupts and disable all interrupts lower
than the current priority to prevent a low priority interrupt from locking out a high
priority interrupt. The description of interrupt prioritizing of interrupts will occur

+4 spsr_irq

+8 lr_irq

3IRQ MRS r14_irq, CPSR
BIC r14_irq, r14_irq, #Maskmd
ORR r14_irq, r14_irq, #SVC32md
MSR CPSR_c, r14_irq

4SVC STR lr_svc, [sp_svc, #-8]!

4SVC LDR lr_svc, [r0, #IRQ_LR]
STR lr_svc, [sp_svc, #4]

4SVC LDR r14_svc, [r0, #IRQ_SPSR]
LDR r0, [r0, #IRQ_R0]

4SVC STMDB sp_svc!, {r0-r3, r8, r12, r14}

Offset (from r13_irq) Value

.

Interrupt handling 41

Interrupt handling

42
later on in this chapter. The labels ic_Base, IRQStatus, IRQEnableSet, and IRQEn-
ableClear will be discussed in more detail in the next section.

Since the interrupt source has been cleared it is now safe to re-enable interrupts.
This is achieved by switching the I_Bit.

It is now possible to process the interrupt. The interrupt processing should not
attempt to do a context switch as the source interrupt is still disabled. If during the
interrupt processing a context switch is needed it should set a flag which will be
picked up later by the interrupt handler

It is now safe to re-enable interrupts at the source as we have processed it and the
original source of the interrupt is removed.

The handler needs to check if further processor is required. If the returned value is
non-zero, in r0, then no further processing is required.

The return flag in r0 is then tested and if not equal to 0 the handler restore context
and then returns control back to the halted task.

A stack frame now has to be created so that the service routine can complete. This
can be achieve by restoring part of the context and then storing the complete con-
text back on to the SVC stack:

5SVC LDR r14_svc, =ic_Base
LDR r8, [r14_svc, #IRQStatus]
STR r8, [r14, #IRQEnableClear]

6SVC MRS r14, cpsr_svc
BIC r14, r14, #I_Bit
MSR cpsr_svc, r14

7SVC BL process_interrupt

9SVC LDR r14, =IC_Base
STR r8, [r14, #IRQEnableSet]

9SVC BL read_RescheduleFlag

8SVC CMP r0, #0
LDMNEIA sp_svc!, {r0-r3, r8, r12, lr_svc}
MSRNE spsr_svc, lr_svc
LDMNEIA sp_svc!, {lr_svc, pc}^

10SVC LDMIA sp_svc!, {r0-r3, r8}
STMDB sp_svc!, {r0-r11}
Interrupt handling

Re-entrant interrupt handler
Call the subroutine continue_servicing. This subroutine will finish the servicing of
the interrupt:

After the interrupt routine has been serviced, return can be given back to the inter-
rupted task by recovering r0 to r12. Reset the SPSR and load the link register and
the PC from the stack frame:

11SVC BL continue_servicing

12SVC LDMIA sp_svc!, {r0-r12, lr}
MSR spsr_svc, lr
LDMIA sp_svc!, {lr, pc}^

interrupt

Disable Interrupts Save Minimum Context

Get External Interrupt
Status

Identify Interrupt Priority
& mask off lower priority
interrupts and enable IRQs

Jump to service routine

Service
Interrupt

Create a context

Switch on internal
interrupts followed by
external interrupt

Restore Context

return to task

1. 2.

3.

4.

5.

6.

7.

8.9.
Interrupt handling 43

Interrupt handling

44
Prioritized interrupt handler (1) - simple

The simple and nested interrupt handler services interrupts on a first-come-first-
serve basis, whereas a prioritized interrupt handler will associate a priority level
with a particular interrupt source. A priority level is used to dictate the order that
the interrupts will be serviced. This means that a higher priority interrupt will take
precedence over a lower priority interrupt, which is a desirable characteristic in an
embedded system.

Methods of prioritization can either be achieved in hardware or software. Hardware
prioritization means that the handler is simpler to design since the interrupt control-
ler will provide the current highest priority interrupt that requires servicing. These
systems require more initialization code at startup since the interrupts and associ-
ated priority level tables have to be constructed before the system can be switched
on. Software prioritization requires an external interrupt controller. This controller
has to provide a minimal set of functions that include being able to set and unset
masks and read interrupt status and source.

For software systems the rest of this section will describe a priority interrupt han-

dler and to help with this a fictional interrupt controller will be used. The interrupt
controller takes in multiple interrupt sources and will generate an IRQ and/or FIQ
signal depending upon whether a particular interrupt source is enabled or disabled.

Figure 1.27 Simple priority interrupt handler

Usage Handles prioritized interrupts.

Interrupt latency Low

Advantages Deterministic Interrupt Latency since the priority level is
identified first and then the service is called after the lower
priority interrupts are masked.

Disadvantages The time taken to get to a low priority service routine is the
same as for a high priority routine.

t1txrxt2

8 4 2 u

3 2 1 031

Binary

Bit Position
Interrupt handling

Prioritized interrupt handler (1) - simple
Figure 1.27 show a diagram of a priority interrupt handler it is similar to the re-
entrant interrupt handler.

The interrupt controller has a register that holds the raw interrupt status (IRQRaw-
Status). A raw interrupt is an interrupt that has not been masked by a controller.
IRQEnable register determines which interrupt are masked from the processor. This
register can only be set or cleared using IRQEnableSet and IRQEnableClear. Fig-
ure 1.24 shows a summary of the register set names and the type of operation (read/
write) that can occur with these register. Most interrupt controllers also have a cor-
responding set of registers for FIQ, some interrupt controllers can also be pro-
grammed to select what type of interrupt distinction, as in, select the type of
interrupt raised (IRQ/FIQ) from a particular interrupt source.

Figure 1.28 Interrupt controller registers

The registers are offset from a base address in memory. Figure 1.29 shows all the
offsets for the various registers. The offset 0x08 is used for both IRQEnable and
IRQEnableSet.

Figure 1.29 Register offsets

In the interrupt controller each bit is associated with a particular interrupt source. In
the example (shown in figure 1.30), bit 2 is associated with a transmit interrupt
source for serial communication.

Figure 1.30 32-bit Interrupt Control Register

Register R/W Description

IRQRawStatus r represents interrupt sources that are actively HIGH

IRQEnable r masks the interrupt sources that generate IRQ/FIQ to the CPU

IRQStatus r represents interrupt sources after masking

IRQEnableSet w sets the interrupt enable register

IRQEnableClear w clears the interrupt enable register

Address Read Write

ic_Base+0x00 IRQStatus reserved

ic_Base+0x04 IRQRawStatus reserved

ic_Base+0x08 IRQEnable IRQEnableSet

ic_Base+0x0c IRQEnableClear
Interrupt handling 45

Interrupt handling

46
The following defines connect the 4 interrupt sources, used in the example, to a cor-
responding set of priority levels.

PRIORITY_0 EQU 2 ; Comms Rx
PRIORITY_1 EQU 1 ; Comms Tx
PRIORITY_2 EQU 0 ; Timer 1
PRIORITY_3 EQU 3 ; Timer 2

The next set of defines provides the bit pattern for each of the priority levels. For
instance for a PRIORITY_0 interrupt the binary pattern would be 0x00000004 (or
1<<2).

BINARY_0 EQU 1 << PRIORITY_0 ; 1<<2 0x00000004
BINARY_1 EQU 1 << PRIORITY_1 ; 1<<1 0x00000002
BINARY_2 EQU 1 << PRIORITY_2 ; 1<<0 0x00000001
BINARY_3 EQU 1 << PRIORITY_3 ; 1<<3 0x00000008

For each priority level there is a corresponding mask that masks out all interrupts
that are equal or lower in priority. For instance, MASK_2 will mask out interrupt
from Timer2 (priority=3) and CommRx (priority=2).

MASK_3 EQU PRIORITY_3
MASK_2 EQU MASK_3 + PRIORITY_2
MASK_1 EQU MASK_2 + PRIORITY_1
MASK_0 EQU MASK_0 + PRIORITY_0

The defines for the interrupt controller registers are listed below. ic_Base is the
base address and rest, for instance IRQStatus, are all offsets from that base address.

ic_Base EQU 0x80000000
IRQStatus EQU 0x0
IRQRawStatus EQU 0x4
IRQEnable EQU 0x8
IRQEnableSet EQU 0x8
IRQEnableClear EQU 0xc

Standard define to disable IRQ interrupts.

I_Bit EQU 0x80

Again, to begin, the handler starts with a standard entry to the interrupt handler and
place the IRQ link register on the IRQ stack.

2IRQ IRQ_Handler
SUB lr_irq,lr_irq, #4
STMFD sp_irq!, {lr_irq}
Interrupt handling

Prioritized interrupt handler (1) - simple
Next the handler obtains the SPSR and places the content into r14_irq. This is pos-
sible since the link register has been saved as part of the stack. Freeing up a group
of registers for use in processing the prioritization.

The handler needs to obtain the status of the interrupt controller. This is achieved
by loading in the base address of the interrupt controller in to r14 and loading r10
with ic_Base (r14) offset by IRQStatus (0x00).

The handler now needs to determine the highest priority interrupt. This is achieved
by testing the status information. If a particular interrupt source matches a priority
level that priority is set in r11. The method goes from lowest to highest priority.

After this code segment r14_irq will contains the base address of the interrupt con-
troller and r11 will contain the bit of the highest priority interrupt. It is now impor-
tant to disable the lower and equal priority interrupts so that the higher priority
interrupts can still interrupt the handler. This method is more deterministic since the
time taken to discover the priority is always the same.

To set the interrupt mask in the controller the handler has to determine the current
IRQ enable register and also obtain the start address of the priority mask table.

Note: the priority_masks are defined later on in this section.

r12 will now contain the current IRQ enable register and r10 will contain the start
address of the priority table. To obtain the correct mask, since r11 contains the bit
field (0-3) of the interrupt, all that needs to be done is shift left 2 bits (using the LSL

2IRQ MRS r14_irq, SPSR
STMFD sp_irq!, {r10,r11,r12,r14_irq}

3IRQ LDR r14,=ic_Base
LDR r10,[r14,#IRQStatus]

4IRQ TST r10,#BINARY_3
MOVNE r11,#PRIORITY_3
TST r10,#BINARY_2
MOVNE r11,#PRIORITY_2
TST r10,#BINARY_1
MOVNE r11,#PRIORITY_1
TST r10,#BINARY_0
MOVNE r11,#PRIORITY_0

4IRQ LDR r12,[r14_irq,#IRQEnable]
ADR r10, priority_masks
Interrupt handling 47

Interrupt handling

48
#2). This will multiply the address by 4 and add that to the start address of the prior-
ity table.

The new mask will be contained in r10. The next step is to clear the lower priority
interrupts using the mask. This is achieved by performing a binary AND with the
the mask and r12 (IRQ enable register) and then clearing the bits by storing the new
mask (r12) into IRQEnableClear register.

It is now safe to Enable IRQ interrupts by setting the I bit in the CPSR to 0.

Lastly the handler needs to jump to the correct service routine. This is achieved by
manipulating r11 and the PC. r11 still contains the highest priority interrupt. By
shifting r11 left by 2 (multiplying r11 by 4) and adding it to the PC this allows the
handler to jump to the correct routine by loading the address of the service routine
directly into the PC. The jump table has to follow the instruction that loads the PC.
There is a NOP in between the jump table and the instruction that manipulates the
PC due to the fact that the PC will be pointing one instruction ahead (or 4 bytes).

The following is the priority mask table. The masks are in the interrupt source bit
order.

priority_masks
DCD MASK_2
DCD MASK_1
DCD MASK_0
DCD MASK_3

Here is an example of start of the service routine for the timer0 service routine.

4IRQ LDR r10,[r10,r11,LSL #2]

4IRQ AND r12,r12,r10
STR r12,[r14_irq,#IRQEnableClear]

4IRQ MSR r14_irq,cpsr
BIC r14_irq,r14_irq,#I_BIT
MSR cpsr_c, r14_irq

5IRQ LDR pc,[pc,r11,LSL#2]
NOP
DCD service_timer0
DCD service_commtx
DCD service_commrx
DCD service_timer1

6&7IRQ service_timer0
STMFD sp_irq!, {r0-r9}
:

 <insert service routine>
Interrupt handling

Prioritized interrupt handler (2) - standard
The service routine is then inserted after the header above. Once the service routine
is complete the interrupt sources must be reset and control is passed back in the
interrupted task.

The handler must disable the IRQ’s before the interrupt can be switched back on.
This is achieved using the standard method.

The external interrupts can now be restored to their original value. This can be
achieved since r12 still contains the original value. This relies on the fact that the
service did not modify r12.

To return back to the interrupted task, context is restored and the original SPSR is
copied back into the IRQ SPSR.

Prioritized interrupt handler (2) - standard

A simple priority interrupt handler tests all the interrupts to establish the highest
priority. An alternative solution is to branch early when the highest priority inter-

7IRQ LDMFD r13_irq!, {r0-r10}

8IRQ MRS r11, cpsr
ORR r11, r11, #I_BIT ; disable bit
MSR cpsr_c, r11

8IRQ LDR r11, =ic_Base
STR r12, [r11,#IRQEnableSet]

9IRQ LDMFD sp!, {r11,r12,r14}
MSR spsr_cf, r14_irq
LDMFD sp!, {pc}^

Usage Handles higher priority interrupts in a shorter time to
lower priority interrupts.

Interrupt latency Low

Advantages Higher priority interrupts treated with greater urgency
with no duplication of code to set external interrupt masks
etc.

Disadvantages There is a time penalty since this handler requires two
jumps resulting in the pipeline being flushed each time a
jump occurs.
Interrupt handling 49

Interrupt handling

50
rupt has been identified. The prioritized interrupt handler follows the same entry
code as for the simple prioritized interrupt handler.

Figure 1.31 Part of a prioritized interrupt handler

The prioritized interrupt handler has the same start as a simple prioritized handler
but intercepts the interrupts with a higher priority earlier.

Obtain external interrupt
status

Is a priority 1
interrupt?

Is a priority 2
interrupt?

Disable lower priority
interrupts

Enable External Interrupts

Enable Internal Interrupts

Service
Interrupt

Interrupt
Restore Contect

return
to task

3.

4.

5.

6.

7.

8.9.
Interrupt handling

Prioritized interrupt handler (2) - standard
Assign r14 to point to the base of the interrupt controller and load r10 with the
interrupt controller status register.

To allow the handler to be re-locatable the current address pointed to by the PC is
recorded into r11.

The priority level can now be tested by testing from the highest to the lowest prior-
ity. The first priority level that matches will determine the priority level of the inter-
rupt. Once a match is achieved then a branch to the routine that masks off the lower
priority interrupts occurs.

To disable the equal or lower priority interrupts, the handler enters a routine that
first calculates the priority level using the base address in r11 and the link register.

r11 will now contain the value 0,8,16 or 24. These values correspond to the priority
level of the interrupt multiplied by 8. r11 is then normalized by shifting r11 right 3
and adding the result to the address of the priority_table. r11 will equal one of the
priority interrupt numbers (0,1,2, or 3).

The priority mask can now be determined since the priority level has already been
obtained. The same technique of shifting left by 2 and adding that to the r10, which
contains the address of the priority_mask.

3IRQ LDR r14_irq, =ic_Base
LDR r10, [r14_irq,#IRQStatus]

4IRQ MOV r11,pc

5IRQ TST r10, #BINARY_0
BLNE disable_lower
TST r10, #BINARY_1
BLNE disable_lower
TST r10, #BINARY_2
BLNE disable_lower
TST r10, #BINARY_3
BLNE disable_lower

5IRQ disable_lower
 SUB r11,r11,lr_irq

5IRQ LDR r12,=priority_table
LDRB r11,[r12,r11,LSR #3]

5IRQ ADR r10, priority_mask
LDR r10,[r10,r11,LSL #2]
Interrupt handling 51

Interrupt handling

52
Copy the base address for the interrupt controller into register r14_irq and use this
value to obtain a copy of the IRQ enable register in the controller and place it into
the r12.

The new mask will be contained in r10, The next step is to clear the lower priority
interrupts using the mask. This is achieved by preforming a binary AND with the
mask in r10 and r12 (IRQEnable register) and then clearing the bits by storing the
result into the IRQEnableClear register.

It is now safe to enable IRQ interrupts by setting the I bit in the CPSR to 0.

Lastly the handler needs to jump to the correct service routine. This is achieved by
manipulating r11 and the PC. r11 still contains the highest priority interrupt. By
shifting r11 left by 2 (multiplying r11 by 4) and adding it to the PC this allows the
handler to jump to the correct routine by loading the address of the service routine
directly into the PC. The jump table must follow the instruction that loads the PC.
There is a NOP in between the jump table and the instruction that manipulates the
PC this is due to the fact that the PC will be pointing one instruction ahead (or 4
bytes).

The following is the priority mask table. The masks are in the interrupt bit order.

priority_masks
DCD MASK_2
DCD MASK_1
DCD MASK_0
DCD MASK_3

The following is the priority table. The priorities are in the priority order.

prority_table
DCB PRIORITY_0

6IRQ LDR r14_irq, =ic_Base
LDR r12,[r14_irq, #IRQEnable]

6IRQ AND r12,r12,r10
STR r12,[r14_irq,#IRQEnableClear]

7IRQ MSR r14_irq,cpsr
BIC r14_irq,r14_irq,#I_Bit
MSR cpsr_c, r14_irq

8IRQ LDR pc,[pc,r11,LSL#2]
NOP
DCD service_timer0
DCD service_commtx
DCD service_commrx
DCD service_timer1
Interrupt handling

Prioritized interrupt handler (3) - direct
DCB PRIORITY_1
DCB PRIORITY_2
DCB PRIORITY_3
ALIGN

Prioritized interrupt handler (3) - direct

A direct prioritized interrupt handler branches directly to the interrupt service rou-
tine (ISR). Each ISR is responsible for disabling the lower priority interrupts before
modifying the CPSR so that interrupts are re-enabled. This type of handler is rela-
tively simple since the masking is done by the service routine. This does cause min-
imal duplication of code since each service routine is effectively carrying out the
same task.

Below is a set of defines that associates an interrupt source with a bit position
within the interrupt controller. This will be used to help mask the lower priority
within the ISR’s.

bit_timer0 EQU 0
bit_commtx EQU 1
bit_commrx EQU 2
bit_timer1 EQU 3

To begin, the base address of the ISR table has to be loaded into r12. This register is
used to jump to the correct ISR once the priority has been established for the inter-
rupt source.

ADR r12, isr_table

Then identify the priority and interrupt. This is achieved by checking the highest
priority interrupt first and then working down to the lowest. Once a high priority
interrupt is identified the PC is then loaded with the address of the appropriate ISR.

Usage Handles higher priority interrupts in a shorter time goes
directly to the specific service routine.

Interrupt latency Low

Advantages Uses on a single jump and saves valuable cycles to go to
the service.

Disadvantages Each service routine has to have a mechanism to set the
external interrupt mask to stop lower priority interrupts
from halting the service routine.
Interrupt handling 53

Interrupt handling

54
The indirect address is stored at the address of the isr_table plus the priority level
shifted 2 bits to the left (a multiple of 4).

TST r10,#BINARY_0
LDRNE pc,[r12,#PRIORITY_0,LSL #2]
TST r10,#BINARY_1
LDRNE pc,[r12,#PRIORITY_1,LSL #2]
TST r10,#BINARY_2
LDRNE pc,[r12,#PRIORITY_2,LSL #2]
TST r10,#BINARY_3
LDRNE pc,[r12,#PRIORITY_3,LSL #2]

Note: r10 contains the IRQStatus register.

The following is the ISR jump table. The ISR jump table ordered with the highest
priority interrupt at the beginning of the table.

isr_table
DCD service_timer0
DCD service_commtx
DCD service_commrx
DCD service_timer1

The service_timer0 shows an example of ISR used in a direct priority interrupt
handler. Each ISR has to change depending upon the particular interrupt source.
The source bit of the interrupt is first moved into r11.

service_timer0
MOV r11,#bit_timer0

A copy the base address for the interrupt controller placed into register r14_irq and
this address plus offset is used to obtain a copy of the IRQEnable register on con-
troller and subsequently this is placed into r12.

LDR r14_irq, =ic_Base
LDR r12,[r14_irq,#IRQEnable]

The address of the priority mask table has to be copied into r10 so it can be used to
calculate the address of the actual mask. R11 is shifted left 2 positions. This give an
offset 0,4,8, or 12. This plus the address of the priority mask table address to used
to load the mask into r10. The priority mask table is the same for the priority inter-
rupt handler in the previous section.

ADR r10,priority_masks
LDR r10,[r10,r11,LSL#2]

r10 will contain the ISR mask and r12 will contain the current mask. The binary
operation of an AND is used to merge the two masks. Then the new mask is used to
set the interrupt controller using IRQEnableClear register.

AND r12,r12,r10
Interrupt handling

Prioritized interrupt handler (4) - grouped
STR r12,[r14,#IRQEnableClear]

It is now safe to enable IRQ interrupts by setting the I bit in the CPSR to 0.

MRS r14_irq,cpsr
BIC r14,r14,#I_Bit ; clear irq bit
MSR cpsr_c,r14_irq

The handler can continue servicing the current interrupt unless an interrupt with a
higher priority occurs, in which case that interrupt will take precedence over the
current interrupt.

Prioritized interrupt handler (4) - grouped

Lastly the grouped priority interrupt handler is assigned a group priority level to a
set of interrupt sources. This is sometimes important when there is a large number
of interrupt sources. It tends to reduce the complexity of the handler since it is not
necessary to scan through every interrupt to determine the priority level. This may
improve the response times.

The following will take the same example as used previously and group the timer
sources into group 0 and communication sources into group 1 (see figure 1.32).
Group 0 is given a higher priority to group 1 interrupts.

Figure 1.32 Group Interrupt Sources

Usage Mechanism for handling interrupts that are grouped into
different priority levels.

Interrupt latency Low

Advantages Useful when the embedded system has to handle a large
number of interrupts. It also reduces the response time
since the determining of the priority level is shorter.

Disadvantages Determining how the interrupts are grouped together.

Group Interrupts

0 timer0, timer1

1 commtx, commrx
Interrupt handling 55

Interrupt handling

56
The following defines group the various interrupt sources into their priority group.
This is achieved by using a binary OR operation on the binary patterns.

GROUP_0 EQU BINARY_0+BINARY_3
GROUP_1 EQU BINARY_1+BINARY_2

The following defines group the various masks for the interrupts together.

GMASK_1 EQU GROUP_1
GMASK_0 EQU AMASK_1+GROUP_0

These defines provide the connection of masks to interrupt sources. This can then
used in the priority mask table.

MASK_TIMER0 EQU GMASK_0
MASK_COMMTX EQU GMASK_1
MASK_COMMRX EQU GMASK_1
MASK_TIMER1 EQU GMASK_0

The below show shows the start of a standard interrupt handler.

interrupt_handler
SUB lr,lr,#4

STMFD sp_irq,{lr}
MRS r14,spsr_irq
STMFD sp_irq!,{r10,r11,r12,r14}

Obtain the status of the interrupt using the standard mechanism of using an offset
from the interrupt controller.

LDR r14_irq, =ic_Base
LDR r10, [r14_irq,#IRQStatus]

Identify the group that the interrupt sources belong. This is achieved by using the
binary AND operation on the source. The letter ‘S’ post-fixed to the instructions
means update execution flag on the CPSR.

ANDS r11,r10,#GROUP_0
ANDEQS r11,r10,#GROUP_1

r11 will now contain the highest priority group (0 or 1). Now mask out the other
interrupt sources by applying a binary AND operation with 0xf.

AND r10,r11,#0xf

Load the address of the lowest significant bit table and then load the byte offset
from the start of the table by the value in r10 (0,1,2, or 3 see figure 1.33). Once the
Interrupt handling

Prioritized interrupt handler (4) - grouped
lowest significant bit position is loaded into r11 the handler then branches to a rou-
tine to mask out the other group.

ADR r11,lowest_significant_bit
LDRB r11,[r11,r10]
B disable_lower_priority

Figure 1.33 Lowest Significant Bit Table

lowest_significant_bit
; 0 1 2 3 4 5 6 7 8 9 a b c d e f
DCB 0xff,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0

Once in the disable_lower_priority interrupts routine check for spurious interrupt
(or ghost interrupts). If r11 is equal to 0xff jump to the unknown_condition routine.

disable_lower_priority
CMP r11,#0xff
BEQ unknown_condition

Obtain the IRQEnable register by offset from the ic_Base address and place the
result in r12.

LDR r12,[r14,#IRQEnable]

Binary Pattern Value

0000 unknown

0001 0

0010 1

0011 0

0100 2

0101 0

0110 1

0111 0

1000 3

1001 0

1010 1

1011 0

1100 2

1101 0

1110 1

1111 0
Interrupt handling 57

Interrupt handling

58
Find the mask by loading in the address of the priority mask and then shift the data
in r11 left by 2. Add the result (value = 0,4,8,or 12) to the priority mask address.
r10 will now contain a mask to disable lower priority group interrupts from being
raised.

ADR r10,priority_mask
LDR r10,[r10,r11,LSL #2]

The new mask will be contained in r10, The next step is to clear the lower priority
interrupts using the mask. This is achieved by preforming a binary AND with the
mask in r10 and r12 (IRQEnable register) and then clearing the bits by storing the
result into the IRQEnableClear register.

AND r12,r12,r10
STR r12,[r14,#IRQEnableClear]

It is now safe to enable IRQ interrupts by setting the I bit in the CPSR to 0.

MRS r14,cpsr
BIC r14,r14,#IRQ_QBIT
MSR cpsr_c,r14

Lastly the handler needs to jump to the correct service routine. This is achieved by
manipulating r11 and the PC. r11 still contains the highest priority interrupt. By
shifting r11 left by 2 (multiplying r11 by 4) and adding it to the PC this allows the
handler to jump to the correct routine by loading the address of the service routine
directly into the PC. The jump table must follow the instruction that loads the PC.
There is a NOP in between the jump table and the instruction that manipulates the
PC owing to the fact that the PC will be pointing one instruction ahead (or 4 bytes).

LDR pc,[pc,r11,LSL #2]
NOP
DCD servive_timer0
DCD service_commtx
DCD service_commrx
DCD service_timer1

The following table contains the various masks for the lower priority groups. The
table is ordered by interrupt source bit position.

priority_mask
DCD MASK_TIMER0
DCD MASK_COMMTX
DCD MASK_COMMRX
DCD MASK_TIMER1
Interrupt handling

ARM/Thumb interworking
ARM/Thumb interworking

ARM/Thumb interworking mechanism can vary between tool chains. To minimize
the amount of work required in implementing an embedded system which includes
both ARM and Thumb code most of the code should be written in C/C++. This will
allow the source code to use the ARM/Thumb interworking facilities for a particu-
lar C/C++ compiler and hence minimize the amount of assembler code which needs
to be rewritten. Essentially only the following pieces of code require writing in
assembler (or in-line assembler).

• Any code that changes processor mode (e.g. User -> SVC mode) or accesses
CPSR/SPSR.

• Any code which accesses the high register (r8-r14) frequently (e.g. context
switching). This is tool chain specific.

• Minimal veneers on exception handlers such as SWI handlers and IRQ handlers.
These handlers should do the minimum necessary in assembler before calling C
code and doing the bulk of the processing in C.

• Any code that makes use of the force user mode transfer facility of the ARM
processor (e.g. context switching user registers).

There are times when routines must be written in ARM assembly code for perfor-
mance reason (e.g. block copy routines). If these routines are to be used in Thumb
state they need to follow the rules for writing ARM/Thumb interworking assembler
(essentially, the routines need to return using a BX instruction)

When calling a function pointer in from within an ARM/Thumb kernel, the func-
tion pointer has to have bit 0 set to indicate a pointer to a Thumb function and clear
to indicate an ARM function. To ensure the function is called in the correct proces-
sor mode the code must use the BX instruction. The code must also ensure that bit 0
of the link register is set when calling from Thumb state to ensure that the function
correctly returns to Thumb state. This can be achieved by writing a sequence of
veneers to call a function pointer in registers 0 through 7 as follows.

__call_via_via_r0 BX r0
__call_via_via_r1 BX r1
__call_via_via_r2 BX r2
__call_via_via_r3 BX r3
__call_via_via_r4 BX r4
__call_via_via_r5 BX r5
__call_via_via_r6 BX r6
__call_via_via_r7 BX r7
Interrupt handling 59

Interrupt handling

60
When using the above table of veneers the BL instruction should be used to call the
appropriate veneer for the function pointer which you have placed in one of the reg-
isters 0 through 7. The BL instruction in Thumb state automatically sets bit 0 of the
link register. For example:

 LDR r2, function_pointer
 BL __call_via_r2

Context Switch

A context switch is where a currently running task (using all the registers on the
processor) is swapped with another task that was lying dormant. This first involves
first saving all the current registers into a data structure or Process Control Block
(PCB). Once the registers are saved then the dormant or replacement task registers
can be restored from the dormant tasks PCB.

Note: scheduler determines which task is to be active next. A scheduler tends to be
unique for a particular application and/or operating system, since the end require-
ments differ.

Figure 1.34 Simple context switch scheduler between two tasks A and B

Task A or B - running

Timer Interrupt

Which task is

Save Task A to PCB(A) Save Task B to PCB(B)

Restore Task B from PCB(B) Restore Task A from PCB(A)

active?

A B
Interrupt handling

Context Switch
Figure 1.34 shows a simple scheduler that context switches between two tasks.
Basically when either task is running and a timer interrupt occurs the scheduler will
context switch to the other task as shown in the diagram.

Each task has their own unique PCB (see figure 1.35), respectively called
handler_taskapcb_str and handler_taskbpcb_str. In this example, a simple sched-
uler is used to swap between the two tasks by first determining which task is cur-
rently running and then swapping to the other dormant task. Before entering this it
is assumed the r13_irq stack pointer has been copied into a location pointed to by
handler_irqstack_str.

Figure 1.35 Task Process Control Block (PCB)

The first operation is to obtain the address of the currently running task. In this
example, the current task is stored at address of handler_currenttaskaddr_str. It is
simply a matter of loading the address and then loading the contents of the address
into a register. In this example, 60 bytes (15 words/registers) are subtracted from
the start of the PCB. This makes it easier to save all the registers by using the

Offset Task Register

-4 r14_usr

-8 r13_usr

-12 r12_usr

-16 r11_usr

-20 r10_usr

-24 r9_usr

-28 r8_usr

-32 r7_usr

-36 r6_usr

-40 r5_usr

-44 r4_usr

-48 r3_usr

-52 r2_usr

-56 r1_usr

-60 r0_usr

-64 r14_irq

-68 SPSR
Interrupt handling 61

Interrupt handling

62
ascending and descending multiple register load and store instructions (STM/
LDM).

LDR r13_irq, =handler_currenttaskaddr_str
LDR r13_irq, [r13_irq]
SUB r13_irq, r13_irq,#60

r13_irq is then pointing to r0_usr. The current user task registers are then stored
into the PCB by using ‘^’ post-fixed at the end of the STMIA (ascends memory)
instruction. Then a copy is made of the SPSR into r0 since r0 can be used as a
scratch register since it has already been stored into the PCB. The ‘!’ has not been
used so r13_irq is still pointing to -60 offset, this means it can be used to store the
rest of the PCB. This is achieved using STMDB (descends memory) by saving r0
(SPSR) and r14_irq (return address of the interrupted task) into the PCB.

STMIA r13_irq, {r0-r14}^
MRS r0, SPSR
STMDB r13_irq, {r0,r14_irq}

The current task has had all the registers stored into the PCB. The new task regis-
ters now have to be loaded into the register set. This is achieved by first copying the
address of the location the next task PCB is held. This address is called
handler_nexttask_str. Again, -60 bytes are removed from the start of the PCB. This
is so the best possible use of the load and store multiple register instruction are
achieved with descending and ascending options.

LDR r13_irq, =handler_nexttask_str
LDR r13_irq, [r13_irq]
SUB r13_irq, r13_irq,#60
<task swap code>

At this point there has to be code to update the current and next tasks so that when
the next context switch occurs the handler_currenttask_str holds the
handler_nexttask_str data and vice-versa. The next step is to obtain the SPSR and
IRQ link register and place it into r0 and r14_irq respectively. Then copy r0 into the
IRQ SPSR.

LDMDB r13_irq, {r0,r14_irq}
MSR spsr_cxsf, r0

The user banked registers can now be restored. This is achieved by using the ‘^’
again to restore the user register for the next task. Note a NOP should always fol-
low LDMIA instruction with ‘^’ incase a register is corrupted.

LDMIA r13_irq, {r0-r14}^
NOP
Interrupt handling

Context Switch
It is now important to return the original IRQ stack. This is achieved by loading the
address of the IRQ stack into r13_irq. Then load r13_irq with the 32-bit word con-
taining the IRQ stack back into r13_irq.

LDR r13_irq, =handler_irqstack_str
LDR r13_irq,[r13_irq]

Lastly the context can relinquish control of the processor and return back to the
interrupted task. This is achieved by subtracting from the IRQ link register.

SUBS pc, r14_irq, #4

The following holds the address of the currently run task. It is assumed that the ini-
tialization code sets this address correctly.

handler_currenttaskaddr_str
DCD 0x0

The following holds the address of the next PCB to be run.

handler_nexttask_str
DCD 0x0

Store a copy of the IRQ stack thus freeing up the r13_irq for other uses.

handler_irqstack_str
DCD 0x0

This context PCB for task A. The ‘% 68’ indicated 68 bytes.

handler_taskabottom
% 68

handler_taskapcb_str

Likewise for task B PCB.

handler_taskbbottom
% 68

handler_taskbpcb_str

Note: a context switch should not occur within a handler that is nested (been recur-
sively invoked). This is because the registers being switched will be the previous
handler that was invoked instead of the application registers. A counter variable
can be used to indicate the depth of a nested handler. If zero then a context switch
can be allowed to occur.
Interrupt handling 63

Interrupt handling

64
Semaphore

A semaphore is a way of locking a process from interfering with data. Sharing data
is useful for message passing and multi-processing environments. The mechanism
is called inter-processor communication.

 unsigned int semaphore;

...

The semaphore must make use of the SWP instruction. The SWP instruction is an
atomic instruction which holds the CPU bus until the SWP transaction is complete.
The swaps the contents of a register and memory in a single instruction.

void mutex_gatelock (void)
{

 __asm
 {
 spin:
 MOV r1, &semaphore
 MOV r2, #1
 SWP r3,r2,[r1]
 CMP r3,#1
 BEQ spin
 }
 }

void mutex_gateunlock (void)

{
__asm
{
MOV r1, &semaphore
MOV r2, #0
SWP r0,r2,[r1]
}

}

Debug

Interrupt handlers can be difficult to debug and thus more time should be spent on
the planning and understanding of the interrupt mechanism. A careful design can
avoid race conditions or deadlock occurring. A simple way to help debug systems
is to slow the system down and use a simple LED to indicate when the interrupt
handler code is being executed or not. Obviously, if there is EmbeddedICE/Trace/
Logic Analyzer technology then these devices can be used to help debugging the
code. If there is a spare serial port or communication channel then it can be used to
Interrupt handling

General Notes for Real Time Operating System
record history of activities. This will require post analyzing of the history log to
determine the source of the problem.

General Notes for Real Time Operating System

Below are a set of general notes for designing an interrupt handler.

• The example code in this chapter assumes a perfect system unfortunately this is
seldom the case. There are times when ghost or rogue interrupts occur. It is up
to the designer of the interrupt handler to anticipate these spurious interrupts
and handle them appropriately.

• Reducing the number of registers being transferred by LDM and STM will
reduce the interrupt latency since the ARM processor will complete the execu-
tion of the current instruction in the pipeline.

• If it is a requirement that the RTOS be called from User mode in addition to
System or Supervisor (SVC) mode then you will need to use the SWI interface
to call the various RTOS API’s.

• The RTOS must run in System or SVC mode in order to perform operations
which are prohibited in user mode such as enabling or disabling interrupts. The
SWI mechanism provides a means whereby a user level task can call the RTOS
in SVC mode.

• If the embedded system is to be callable only from System or SVC mode there
is no requirement to use the SWI interface. This can significantly simplify the
design of the ABI.

• If the RTOS is directly linked with the application RTOS, calls can be made
using a simple BL instruction (i.e. a direct C function call).

• If the RTOS must be separately linked then the application must call the RTOS
indirectly. Typically this is done via a table of function pointers which is initial-
ized by the RTOS on startup.

• Many RTOS’s require a single entry/exit point. There are a number of reasons
for this requirement. The RTOS may need to perform rescheduling on exit from
an RTOS call. Without a single entry/exit call mechanism each RTOS function
must arrange to call the scheduler on exit.

• A debug monitor may need to monitor calls to the RTOS to allow breakpoints to
be set on system calls or to allow profiling of RTOS calls.
Interrupt handling 65

Interrupt handling

66
• The design of software interfaces may limit the number of arguments that can
be passed to the RTOS. For example, using a SWI interface limits the number of
arguments to about 11 as arguments must be passed in registers (they cannot be
passed on the stack as the SWI may be serviced in a different mode from the
caller and hence not be able to access the callers stack without special trickery).

• In general, handling calls such as ’printf’ is difficult as the RTOS does not know
how many arguments to save on the stack.

• The RTOS should not disable FIQ at any point in the RTOS as to do so will
reduce the FIQ interrupt latency. If the application is using the FIQ interrupt to
drive a fast device such as a DSP co-processor, or a software DMA even a small
reduction in the interrupt latency could adversely affect the system. As the
RTOS will not use FIQ in any form leaving FIQ enabled at critical points within
your RTOS will not matter as the interpretation of FIQ is entirely application
dependent. This does, however, place restrictions on the applications use of
FIQ. For example, the application cannot make any RTOS system call within a
FIQ routine.

Summary

This chapter introduces the definition of events, interrupts and exceptions. When a
particular event occurs how the ARM processor handles and assigns a priority
level. The mechanism for enabling and disabling interrupts, installing and chaining
handlers and designing stack layouts. The chapter then goes through the various
different types of handlers and how they are implemented. Finally, how to writing a
handler in Thumb code, debugging an interrupt handler and the various problems
associated with interrupt handlers for an RTOS. Summary of the various handler
are as follows:

Handler IL I>10 N P CD

Simple non-nested interrupt handler high nr n n n

Nested interrupt handler nedium nr y n n

Re-entrant Interrupt Handler low nr y Optional n

Prioritized interrupt handler (1) - Simple low nr y y n

Prioritized interrupt handler (2) - Standard low nr y y n

Prioritized interrupt handler (3) - Direct low nr y y y

Prioritized interrupt handler (4) - Group low r y y y
Interrupt handling

Summary
Where:

IL : Interrupt latency
I>10 : Greater then 10 interrupts
N : Nested interrupt handler
P : Interrupts can be prioritized
NR : Not recommended
R : recommended
Interrupt handling 67

Interrupt handling

68
 Interrupt handling

	Interrupt handling
	CHAPTER 1 Interrupt handling
	ARM Processor
	Event priorities
	Vector table
	Controlling Interrupts
	Returning from an interrupt handler
	Setting up the interrupt stacks
	Installing and chaining interrupt handlers
	Simple non-nested interrupt handler
	1. External source (for example from an interrupt controller) sets the Interrupt flag. Processor ...
	2. Upon entry to the handler, the handler code saves the current context of the non banked regist...
	3. The handler then identifies the interrupt source and executes the appropriate interrupt servic...
	4. ISR services the interrupt.
	5. Upon return from the ISR the handler restores the context.
	6. Enables interrupts and return.

	Nested interrupt handler
	Re-entrant interrupt handler
	Prioritized interrupt handler (1) - simple
	Prioritized interrupt handler (2) - standard
	Prioritized interrupt handler (3) - direct
	Prioritized interrupt handler (4) - grouped
	ARM/Thumb interworking
	Context Switch
	Semaphore
	Debug
	General Notes for Real Time Operating System
	Summary

